Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.557
Filtrar
1.
Plant Physiol Biochem ; 216: 109166, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39366201

RESUMEN

Nitrogen levels and distribution in the rhizosphere strongly regulate the root architecture. Nitrate is an essential nutrient and an important signaling molecule for plant growth and development. Hydroponic experiments were conducted to investigate the differences in endodermal suberization in tobacco (Nicotiana tabacum L.) roots at three nitrate levels. Nitrogen accumulation was detected in the roots, shoots, and xylem sap. Nitrate influx on the root surface was also measured using the non-invasive self-referencing microsensor technique (SRMT). RNA-Seq analysis was performed to identify the genes related to endodermal suberization, nitrate transport, and endogenous abscisic acid (ABA) biosynthesis. The results showed that root length, root-shoot ratio, nitrate influx on the root surface, and NiA and NRT2.4 genes were regulated to maintain the nitrogen nutrient supply in tobacco under low nitrate conditions. Low nitrate levels enhanced root endodermal suberization and hence reduced the apoplastic transport pathway, and genes from the KCS, FAR, PAS2, and CYP86 families were upregulated. The results of exogenous fluridone, an ABA biosynthesis inhibitor, indicated that suberization of the tobacco root endodermis had no relevance to radial nitrate transport and accumulation. However, ABA enhances suberization, relating to ABA biosynthesis genes in the CCD family and degradation gene ABA8ox1.

2.
Plant Cell Rep ; 43(11): 253, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370470

RESUMEN

KEY MESSAGE: CRISPR/Cas9-mediated knockout of SlWOX4 gene in tomato enhances tolerance to drought stress. Drought stress is one of the major abiotic factors that seriously affects plant growth and crop yield. WUSCHEL-related homeobox (WOX) transcription factors are involved in plant growth, development and stress response. However, little is known about the role of WOX genes in drought tolerance in tomato. Here, SlWOX4, a member of the WOX family in tomato, was functionally characterized in mediating drought tolerance. SlWOX4 was homologous to Nicotiana tabacum NtWOX4 with a conserved HD domain, and was localized in the nucleus. SlWOX4 was significantly down-regulated by drought and abscisic acid (ABA) treatments. The loss-of-function mutations of SlWOX4 produced using the CRISPR-Cas9 system in tomato improved drought tolerance by reducing water loss rate and enhancing stomatal closure. In addition, the wox4 lines exhibited reduced accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), increased antioxidant enzyme activity, proline contents and ABA contents under drought stress. Moreover, gene editing of SlWOX4 in tomato enhanced drought tolerance by regulating the expression of genes encoding antioxidants and ABA signaling molecules. In summary, SlWOX4 gene might negatively regulate drought stress tolerance in tomato and has great potential as a drought-resistant crop-breeding target genes.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Solanum lycopersicum , Estrés Fisiológico , Factores de Transcripción , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Especies Reactivas de Oxígeno/metabolismo , Edición Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Sistemas CRISPR-Cas , Resistencia a la Sequía
3.
New Phytol ; 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370767

RESUMEN

The evolution of adjustable stomatal pores, enabling CO2 acquisition, was one of the most significant events in the development of life on land. Here, we investigate how the guard cell signalling pathways that regulate stomatal movements evolved. We compare fern and angiosperm guard cell transcriptomes and physiological responses, and examine the functionality of ion channels from diverse plant species. We find that, despite conserved expression in guard cells, fern anion channels from the SLAC/SLAH family are not activated by the same abscisic acid (ABA) pathways that provoke stomatal closure in angiosperms. Accordingly, we find an insensitivity of fern stomata to ABA. Moreover, our analysis points to a complex evolutionary history, featuring multiple gains and/or losses of SLAC activation mechanisms, as these channels were recruited to a role in stomatal closure. Our results show that the guard cells of flowering and nonflowering plants share similar core features, with lineage-specific and ecological niche-related adaptations, likely underlying differences in behaviour.

4.
New Phytol ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219038

RESUMEN

Subclass III sucrose nonfermenting1-related protein kinase 2s (SnRK2s) are positive regulators of abscisic acid (ABA) signaling and abiotic stress responses. However, the underlying activation mechanisms of osmotic stress/ABA-activated protein kinase 8/9/10 (SAPK8/9/10) of rice (Oryza sativa) subclass III SnRK2s in ABA signaling remain to be elucidated. In this study, we employed biochemical, molecular biology, cell biology, and genetic approaches to identify the molecular mechanism by which OsPP47, a type one protein phosphatase in rice, regulates SAPK8/9/10 activity in ABA signaling. We found that OsPP47 not only physically interacted with SAPK8/9/10 but also interacted with ABA receptors PYLs. OsPP47 negatively regulated ABA sensitivity in seed germination and root growth. In the absence of ABA, OsPP47 directly inactivated SAPK8/9/10 by dephosphorylation. In the presence of ABA, ABA-bound OsPYL2 formed complexes with OsPP47 and inhibited its phosphatase activity, partially releasing the inhibition of SAPK8/9/10. SAPK8/9/10-mediated H2O2 production inhibited OsPP47 activity by oxidizing Cys-116 and Cys-256 to form OsPP47 oligomers, resulting in not only preventing the OsPP47-SAPK8/9/10 interaction but also blocking the inhibition of SAPK8/9/10 activity by OsPP47. Our results reveal novel pathways for the inhibition of SAPK8/9/10 in the basal state and for the activation of SAPK8/9/10 induced by ABA in rice.

5.
Protoplasma ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240379

RESUMEN

The phytohormone abscisic acid (ABA) is an important regulator of plant growth, but its potential participation in the process of in vitro shoot regeneration has not to date been reported. Here, we found that ABA appeared to inhibit in vitro shoot regeneration. ABA represses the formation of stem cell niches, thereby reducing the shoot regeneration by localizing the expression of WUSCHEL (WUS). During in vitro shoot regeneration, enrichment of H3K9ac in the specific region of WUS is a necessary event for its activation which could be inhibited by exogenous ABA. These findings reveal the potential function, as well as the possible way of ABA in regulating de novo shoot regeneration in Arabidopsis.

6.
Trends Microbiol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278787

RESUMEN

The AvrE family of type III secreted effectors are highly conserved among many agriculturally important phytopathogenic bacteria. Despite their critical roles in the pathogenesis of phytopathogenic bacteria, the molecular functions and virulence mechanisms of these effectors have been largely unknown. However, recent studies have identified host-interacting proteins and demonstrated that AvrE family effectors can form water-permeable channels in the plant plasma membrane (PM) to create a hydrated and nutrient-rich extracellular space (apoplast) required for disease establishment. Here, we summarize these recent discoveries and highlight open questions related to AvrE-targeted host proteins.

7.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273482

RESUMEN

Increasing numbers of reports have revealed novel catalytically active cryptic guanylate cyclases (GCs) and adenylate cyclases (ACs) operating within complex proteins in prokaryotes and eukaryotes. Here we review the structural and functional aspects of some of these cyclases and provide examples that illustrate their roles in the regulation of the intramolecular functions of complex proteins, such as the phytosulfokine receptor (PSKR), and reassess their contribution to signal generation and tuning. Another multidomain protein, Arabidopsis thaliana K+ uptake permease (AtKUP5), also harbors multiple catalytically active sites including an N-terminal AC and C-terminal phosphodiesterase (PDE) with an abscisic acid-binding site. We argue that this architecture may enable the fine-tuning and/or sensing of K+ flux and integrate hormone responses to cAMP homeostasis. We also discuss how searches with motifs based on conserved amino acids in catalytic centers led to the discovery of GCs and ACs and propose how this approach can be applied to discover hitherto masked active sites in bacterial, fungal, and animal proteomes. Finally, we show that motif searches are a promising approach to discover ancient biological functions such as hormone or gas binding.


Asunto(s)
Transducción de Señal , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/química , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/química , Animales , Humanos , Dominio Catalítico , Arabidopsis/metabolismo , Dominios Proteicos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química
8.
Plants (Basel) ; 13(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39273850

RESUMEN

Abscisic acid (ABA) and gibberellic acid (GA3) are regulators of fruit color and sugar levels, and the application of these hormones is a common practice in commercial vineyards dedicated to the production of table grapes. However, the effects of exogenous ABA and GA3 on wine cultivars remain unclear. We investigated the impact of ABA and GA3 application on Malbec grapevine berries across three developmental stages. We found similar patterns of berry total anthocyanin accumulation induced by both treatments, closely associated with berry H2O2 levels. Quantitative proteomics from berry skins revealed that ABA and GA3 positively modulated antioxidant defense proteins, mitigating H2O2. Consequently, proteins involved in phenylpropanoid biosynthesis were downregulated, leading to decreased anthocyanin content at the almost ripe stage, particularly petunidin-3-G and peonidin-3-G. Additionally, we noted increased levels of the non-anthocyanins E-viniferin and quercetin in the treated berries, which may enhance H2O2 scavenging at the almost ripe stage. Using a linear mixed-effects model, we found statistical significance for fixed effects including the berry H2O2 and sugar contents, demonstrating their roles in anthocyanin accumulation. In conclusion, our findings suggest a common molecular mechanism by which ABA and GA3 influence berry H2O2 content, ultimately impacting anthocyanin dynamics during ripening.

9.
Plants (Basel) ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273855

RESUMEN

Phytohormones play a crucial role in regulating growth, productivity, and development while also aiding in the response to diverse environmental changes, encompassing both biotic and abiotic factors. Phytohormone levels in soil and plant tissues are influenced by specific soil bacteria, leading to direct effects on plant growth, development, and stress tolerance. Specific plant growth-promoting bacteria can either synthesize or degrade specific plant phytohormones. Moreover, a wide range of volatile organic compounds synthesized by plant growth-promoting bacteria have been found to influence the expression of phytohormones. Bacteria-plant interactions become more significant under conditions of abiotic stress such as saline soils, drought, and heavy metal pollution. Phytohormones function in a synergistic or antagonistic manner rather than in isolation. The study of plant growth-promoting bacteria involves a range of approaches, such as identifying singular substances or hormones, comparing mutant and non-mutant bacterial strains, screening for individual gene presence, and utilizing omics approaches for analysis. Each approach uncovers the concealed aspects concerning the effects of plant growth-promoting bacteria on plants. Publications that prioritize the comprehensive examination of the private aspects of PGPB and cultivated plant interactions are of utmost significance and crucial for advancing the practical application of microbial biofertilizers. This review explores the potential of PGPB-plant interactions in promoting sustainable agriculture. We summarize the interactions, focusing on the mechanisms through which plant growth-promoting bacteria have a beneficial effect on plant growth and development via phytohormones, with particular emphasis on detecting the synthesis of phytohormones by plant growth-promoting bacteria.

10.
Plants (Basel) ; 13(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273899

RESUMEN

As an important part of heat shock response module, heat shock proteins (HSP) play an important role in plant defense response against heat stress; however, the involvement of the majority of the HSP family members against other abiotic stresses remains poorly understood. In the present study, LrHSP17.2 was identified and its function against abiotic stress was analyzed. The expression level of LrHSP17.2 was significantly induced by heat. Heterologous transgenes of LrHSP17.2 showed that LrHSP17.2 can increase the activity of catalase, peroxidase, superoxide dismutase to removes excess reactive oxygen species (ROS), maintain the stability of the membrane structure, and regulate genes related to antioxidant enzymes and defense under abiotic stress. In addition, LrHSP17.2 could be regulated by exogenous abscisic acid and melatonin, and the related hormone synthesis genes of transgenic plants were significantly up-regulated under heat stress. Taken together, our results revealed that LrHSP17.2 is involved in regulating abiotic stress responses by regulating ROS scavenging and stress-related genes in Lilium regale.

11.
Foods ; 13(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39272594

RESUMEN

The yellow-fleshed loquat is abundant in carotenoids, which determine the fruit's color, provide vitamin A, and offer anti-inflammatory and anti-cancer health benefits. In this research, the impact of abscisic acid (ABA), a plant hormone, on carotenoid metabolism and flesh pigmentation in ripening loquat fruits was determined. Results revealed that ABA treatment enhanced the overall content of carotenoids in loquat fruit, including major components like ß-cryptoxanthin, lutein, and ß-carotene, linked to the upregulation of most genes in the carotenoid biosynthesis pathway. Furthermore, a transcription factor, EjWRKY6, whose expression was induced by ABA, was identified and was thought to play a role in ABA-induced carotenoid acceleration. Transient overexpression of EjWRKY6 in Nicotiana benthamiana and stable genetic transformation in Nicotiana tabacum with EjWRKY6 indicated that both carotenoid production and genes related to carotenoid biosynthesis could be upregulated in transgenic plants. A dual-luciferase assay proposed a probable transcriptional control between EjWRKY6 and promoters of genes associated with carotenoid production. To sum up, pre-harvest ABA application could lead to carotenoid biosynthesis in loquat fruit through the EjWRKY6-induced carotenoid biosynthesis pathway.

12.
Sci Rep ; 14(1): 20411, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223242

RESUMEN

Wheat is an important staple crop not only in Pakistan but all over the globe. Although the area dedicated to wheat cultivation expands annually, the quantity of wheat harvested is declining due to various biotic and abiotic factors. Global wheat production and output have suffered as a result of the drought, which is largely driven by a lack of water and environmental factors. Organic fertilizers have been shown to reduce the severity of drought. The current research was conducted in semi-arid climates to mitigate the negative effects of drought on wheat during its critical tillering (DTS), flowering (DFS), and grain filling (DGFS) stages through the application of three different abscisic acid treatments: ABA0 (0 mgL-1) control, ABA1 (100 mgL-1) and ABA2 (200 mgL-1). Wheat growth and yield characteristics were severely harmed by drought stress across all critical development stages, with the DGFS stage being particularly vulnerable and leading to a considerable loss in yield. Plant height was increased by 24.25%, the number of fertile tillers by 25.66%, spike length by 17.24%, the number of spikelets per spike by 16.68%, grain count per spike by 11.98%, thousand-grain weight by 14.34%, grain yield by 26.93% and biological yield by 14.55% when abscisic acid (ABA) was applied instead of the control treatment. Moreover, ABA2 increased the more physiological indices (water use efficiency (36.12%), stomatal conductance (44.23%), chlorophyll a (24.5%), chlorophyll b (29.8%), transpiration rate (23.03%), photosynthetic rate (24.84%), electrolyte leakage (- 38.76%) hydrogen peroxide (- 18.09%) superoxide dismutase (15.3%), catalase (20.8%), peroxidase (- 18.09%), and malondialdehyde (- 13.7%)) of drought-stressed wheat as compared to other treatments. In the case of N, P, and K contents in grain were maximally improved with the application of ABA2. Through the use of principal component analysis, we were able to correlate our results across scales and provide an explanation for the observed effects of ABA on wheat growth and production under arid conditions. Overall, ABA application at a rate of 200 mgL-1 is an effective technique to boost wheat grain output by mitigating the negative effects of drought stress.


Asunto(s)
Ácido Abscísico , Sequías , Triticum , Ácido Abscísico/metabolismo , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Triticum/metabolismo , Triticum/fisiología , Clorofila/metabolismo , Estrés Fisiológico , Fotosíntesis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología
13.
Plant Physiol Biochem ; 216: 109114, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39250846

RESUMEN

Cadmium (Cd) is a significant heavy metal contaminant within the environment, carrying a notable level of toxicity that presents a substantial hazard to both plant and human. Carrot (Daucus carota), a significant root vegetable crop globally, have evolved multiple transcriptional regulatory mechanisms to cope with Cd stress, with a crucial involvement of the myeloblastosis (MYB) transcription factor. In this study, the DcMYB62 gene encoding 288 amino acids, localized in the nucleus and demonstrated transcription activation property, was isolated from carrot (cv. 'Kuroda'). There was a positive relationship observed between the levels of DcMYB62 expression and the accumulation patterns of carotenoids in two distinct carrot cultivars. Further investigation revealed that the expression of DcMYB62 improved Cd tolerance of Arabidopsis by increasing seed germination rate, root length, and overall survival rate. The levels of carotenoids in DcMYB62 transgenic Arabidopsis surpassed those in wild type, accompanied by elevated expression levels of 15-cis-phytoene desaturase, zeta-carotene desaturase, and carotenoid isomerase. Meanwhile, the heterologous expression of DcMYB62 promoted the biosynthesis of abscisic acid (ABA) and hydrogen sulfide (H2S), which in turn suppressed the formation of hydrogen peroxide and superoxide anion, while also stimulating stomatal closure. Furthermore, the heterologous expression of DcMYB62 increased the transcription of genes associated with heavy metal resistance in Arabidopsis, notably nicotianamine synthase. Overall, this study contributes to understanding how DcMYB62 promote Cd stress resistance of plants by regulating the biosynthesis pathways of carotenoids, ABA, and H2S, which offers valuable insights into the regulatory mechanism connecting DcMYBs with Cd stress response of carrot.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39322259

RESUMEN

GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), a leucine-rich repeat receptor-like kinase, is involved in abscisic acid (ABA)-induced stomatal closure. We investigated the role of GHR1 in reactive oxygen species (ROS) signaling for ABA-induced stomatal closure. Abscisic acid induced ROS production in wild type (WT) and the ghr1 of Arabidopsis thaliana. Hydrogen peroxide induced stomatal closure, accompanying the generation of acrolein in guard cells. The reactive carbonyl species (RCS) scavengers inhibited the ABA- and H2O2-induced stomatal closure in WT. In the ghr1, H2O2 failed to induce acrolein production and stomatal closure while RCS induced stomatal closure. Thus, GHR1 functions downstream of ROS and is required for the generation of RCS in guard-cell ABA signaling. In the ghr1, Ca2+ induced stomatal closure but RCS did not activate ICa channels. The GHR1 may be also involved in a Ca2+-independent pathway for ABA-induced stomatal closure.

15.
Plant Physiol Biochem ; 216: 109144, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39341182

RESUMEN

Plant root development depends on signaling pathways responding to external and internal signals. In this study we demonstrate the involvement of the Lotus japonicus LjNPF4.6 gene in the ABA and nitrate root responding pathways. LjNPF4.6 expression in roots is induced by external application of both nitrate and ABA. LjNPF4.6 promoter activity is spatially localized in epidermal cell layer and vascular bundle structures with the latter pattern being controlled by externally applied ABA. LjNPF4.6 cRNA injection achieves both nitrate and ABA uptake in Xenopus laevis oocytes and the analyses of L. japonicus knock-out insertion mutants confirmed the role played by LjNPF4.6 in root nitrate uptake. The phenotypic characterization of the Ljnpf4.6 plants indicates the role played by LjNPF4.6 in the root program development in response to exogenously applied nitrate and ABA. Based on the presented data, the mode of action of this transporter is discussed.

16.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39337250

RESUMEN

Seed germination is a pivotal stage in the plant life cycle, orchestrated by a myriad of internal and external factors, notably plant hormones. The underlying molecular mechanisms governing rice seed germination remain largely unelucidated. Herein, we uncover OsMBF1a as a crucial regulatory factor that employs a dual strategy to promote seed germination: positively activating genes involved in gibberellin (GA) biosynthesis pathways, while negatively regulating key genes responsible for abscisic acid (ABA) synthesis. Furthermore, OsMBF1a modulates the endogenous levels of ABA and GA in rice seeds, reinforcing its central role in the germination process. The expression of ZmMBF1a and ZmMBF1b, the homologous genes in maize, in rice seeds similarly affects germination, indicating the conserved functionality of MBF1 family genes in regulating seed germination. This study provides novel insights into the molecular mechanisms underlying rice seed germination and underscores the significance of MBF1 family genes in plant growth and development.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas , Oryza , Proteínas de Plantas , Semillas , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Giberelinas/metabolismo , Ácido Abscísico/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
17.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39337346

RESUMEN

Long non-coding RNAs (lncRNAs), a class of important regulatory factors for many biological processes in plants, have received much attention in recent years. To explore the molecular roles of lncRNAs in sweet cherry fruit ripening, we conducted widely targeted metabolome, transcriptome and lncRNA analyses of sweet cherry fruit at three ripening stages (yellow stage, pink stage, and dark red stage). The results show that the ripening of sweet cherry fruit involves substantial metabolic changes, and the rapid accumulation of anthocyanins (cyanidin 3-rutinoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside) is the main cause of fruit coloration. These ripening-related alterations in the metabolic profile are driven by specific enzyme genes related to the synthesis and decomposition of abscisic acid (ABA), cell wall disintegration, and anthocyanin biosynthesis, as well as transcription factor genes, such as MYBs, bHLHs, and WD40s. LncRNAs can target these ripening-related genes to form regulatory modules, incorporated into the sweet cherry fruit ripening regulatory network. Our study reveals that the lncRNA-mRNA module is an important component of the sweet cherry fruit ripening regulatory network. During sweet cherry fruit ripening, the differential expression of lncRNAs will meditate the spatio-temporal specific expression of ripening-related target genes (encoding enzymes and transcription factors related to ABA metabolism, cell wall metabolism and anthocyanin metabolism), thus driving fruit ripening.


Asunto(s)
Antocianinas , Frutas , Regulación de la Expresión Génica de las Plantas , Metaboloma , Prunus avium , ARN Largo no Codificante , Transcriptoma , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Prunus avium/crecimiento & desarrollo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ácido Abscísico/metabolismo , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redes Reguladoras de Genes , Galactósidos
18.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39337692

RESUMEN

Basic leucine zipper (bZIP) transcription factors (TFs) play a crucial role in anthocyanin accumulation in plants. In addition to bZIP TFs, abscisic acid (ABA) increases anthocyanin biosynthesis. Therefore, this study aimed to investigate whether bZIP TFs are involved in ABA-induced anthocyanin accumulation in sweet cherry and elucidate the underlying molecular mechanisms. Specifically, the BLAST method was used to identify bZIP genes in sweet cherry. Additionally, we examined the expression of ABA- and anthocyanin-related genes in sweet cherry following the overexpression or knockdown of a bZIP candidate gene. In total, we identified 54 bZIP-encoding genes in the sweet cherry genome. Basic leucine zipper 6 (bZIP6) showed significantly increased expression, along with increased anthocyanin accumulation in sweet cherry. Additionally, yeast one-hybrid and dual-luciferase assays indicated that PavbZIP6 enhanced the expression of anthocyanin biosynthetic genes (PavDFR, PavANS, and PavUFGT), thereby increasing anthocyanin accumulation. Moreover, PavbZIP6 interacted directly with the PavBBX6 promoter, thereby regulating PavNCED1 to promote abscisic acid (ABA) synthesis and enhance anthocyanin accumulation in sweet cherry fruit. Conclusively, this study reveals a novel mechanism by which PavbZIP6 mediates anthocyanin biosynthesis in response to ABA and contributes to our understanding of the mechanism of bZIP genes in the regulation of anthocyanin biosynthesis in sweet cherry.


Asunto(s)
Ácido Abscísico , Antocianinas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Prunus avium , Antocianinas/metabolismo , Antocianinas/biosíntesis , Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Prunus avium/genética , Prunus avium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Frutas/metabolismo , Frutas/genética
19.
Mol Biol Rep ; 51(1): 1025, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340719

RESUMEN

BACKGROUND: Hydroxynitrile lyases (HNLs) are a class of hydrolytic enzymes from a wide range of sources, which play crucial roles in the catalysis of the reversible conversion of carbonyl compounds derived from cyanide and free cyanide in cyanogenic plant species. HNLs were also discovered in non-cyanogenic plants, such as Arabidopsis thaliana, and their roles remain unclear even during plant growth and reproduction. METHODS AND RESULTS: The pattern of expression of the HNL in A. thaliana (AtHNL) in different tissues, as well as under abiotic stresses and hormone treatments, was examined by real-time quantitative reverse transcription PCR (qRT-PCR) and an AtHNL promoter-driven histochemical ß-glucuronidase (GUS) assay. AtHNL is highly expressed in flowers and siliques, and the expression of AtHNL was dramatically affected by abiotic stresses and hormone treatments. The overexpression of AtHNL resulted in transgenic A. thaliana seedlings that were more tolerance to mannitol and salinity. Moreover, transgenic lines of A. thaliana that overexpressed this gene were less sensitive to abscisic acid (ABA). Altered expression of ABA/stress responsive genes was also observed in hnl mutant and AtHNL-overexpressing plants, suggesting AtHNL may play functional roles on regulating Arabidopsis resistance to ABA and abiotic stresses by affecting ABA/stress responsive gene expression. In addition, the overexpression of AtHNL resulted in earlier flowering, whereas the AtHNL mutant flowered later than the wild type (WT) plants. The expression of the floral stimulators CONSTANS (CO), SUPPRESSOR OF OVER EXPRESSION OF CO 1 (SOC1) and FLOWERING LOCUS T (FT) was upregulated in plants that overexpressed AtHNL when compared with the WT plants. In contrast, expression of the floral repressor FLOWERING LOCUS C (FLC) was upregulated in AtHNL mutants and downregulated in plants that overexpressed AtHNL compared to the WT plants. CONCLUSION: This study revealed that AtHNL can be induced under abiotic stresses and ABA treatment, and genetic analysis showed that AtHNL could also act as a positive regulator of abiotic stress and ABA tolerance, as well as flowering time.


Asunto(s)
Ácido Abscísico , Aldehído-Liasas , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Ácido Abscísico/metabolismo , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Estrés Fisiológico
20.
Methods Enzymol ; 704: 291-312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300652

RESUMEN

The article reports methods for the expression and assay of 9-cis-epoxycarotenoid cleavage dioxygenase (NCED), an enzyme involved in the biosynthesis of phytohormone abscisic acid in plants. A method for the preparation of the unstable substrate 9'-cis-neoxanthin from fresh spinach is described. The inhibition of Solanum lycopersicum NCED by a series of aryl hydroxamic acid inhibitors is illustrated, and inhibitors D2 and D4 are assayed against NCED isozymes from Zea mays.


Asunto(s)
Dioxigenasas , Solanum lycopersicum , Zea mays , Dioxigenasas/metabolismo , Dioxigenasas/antagonistas & inhibidores , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/enzimología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Pruebas de Enzimas/métodos , Proteínas de Plantas/metabolismo , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...