Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
mSphere ; : e0054824, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352766

RESUMEN

Acanthamoeba species are among the most common free-living amoeba and ubiquitous protozoa, mainly distributed in water and soil, and cause Acanthamoeba keratitis (AK) and severe visual impairment in patients. Although several studies have reported genomic characteristics of Acanthamoeba, limited sample sizes and sources have resulted in an incomplete understanding of the genetic diversity of Acanthamoeba from different sources. While endosymbionts exert a significant influence on the phenotypes of Acanthamoeba, including pathogenicity, virulence, and drug resistance, the species diversity and functional characterization remain largely unexplored. Herein, our study sequenced and analyzed the whole genomes of 19 Acanthamoeba pathogenic strains that cause AK, and by integrating publicly available genomes, we sampled 29 Acanthamoeba strains from ocular, environmental, and other sources. Combined pan-genomic and comparative functional analyses revealed genetic differences and evolutionary relationships among the different sources of Acanthamoeba, as well as classification into multiple functional groups, with ocular isolates in particular showing significant differences that may account for differences in pathogenicity. Phylogenetic and rhizome gene mosaic analyses of ocular Acanthamoeba strains suggested that genomic exchanges between Acanthamoeba and endosymbionts, particularly potential antimicrobial resistance genes trafficking including the adeF, amrA, and amrB genes exchange events, potentially contribute to Acanthamoeba drug resistance. In conclusion, this study elucidated the adaptation of Acanthamoeba to different ecological niches and the influence of gene exchange on the evolution of ocular Acanthamoeba genome, guiding the clinical diagnosis and treatment of AK and laying a theoretical groundwork for developing novel therapeutic approaches. IMPORTANCE: Acanthamoeba causes a serious blinding keratopathy, Acanthamoeba keratitis, which is currently under-recognized by clinicians. In this study, we analyzed 48 strains of Acanthamoeba using a whole-genome approach, revealing differences in pathogenicity and function between strains of different origins. Horizontal transfer events of antimicrobial resistance genes can help provide guidance as potential biomarkers for the treatment of specific Acanthamoeba keratitis cases.

2.
J Virol ; : e0104524, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225468

RESUMEN

In the context of the virosphere, viral particles can compete for host cells. In this scenario, some viruses block the entry of exogenous virions upon infecting a cell, a phenomenon known as superinfection inhibition. The molecular mechanisms associated with superinfection inhibition vary depending on the viral species and the host, but generally, blocking superinfection ensures the genetic supremacy of the virus's progeny that first infects the cell. Giant amoeba-infecting viruses have attracted the scientific community's attention due to the complexity of their particles and genomes. However, there are no studies on the occurrence of superinfection and its inhibition induced by giant viruses. This study shows that mimivirus, moumouvirus, and megavirus, exhibit different strategies related to the infection of Acanthamoeba. For the first time, we have reported that mimivirus and moumouvirus induce superinfection inhibition in amoebas. Interestingly, megaviruses do not exhibit this ability, allowing continuous entry of exogenous virions into infected amoebas. Our investigation into the mechanisms behind superinfection blockage reveals that mimivirus and moumouvirus inhibit amoebic phagocytosis, leading to significant changes in the morphology and activity of the host cells. In contrast, megavirus-infected amoebas continue incorporating newly formed virions, negatively affecting the available viral progeny. This effect, however, is reversible with chemical inhibition of phagocytosis. This work contributes to the understanding of superinfection and its inhibition in mimivirus, moumouvirus, and megavirus, demonstrating that despite their evolutionary relatedness, these viruses exhibit profound differences in their interactions with their hosts.IMPORTANCESome viruses block the entry of new virions upon infecting a cell, a phenomenon known as superinfection inhibition. Superinfection inhibition in giant viruses has yet to be studied. This study reveals that even closely related viruses, such as mimivirus, moumouvirus, and megavirus, have different infection strategies for Acanthamoeba. For the first time, we have reported that mimivirus and moumouvirus induce superinfection inhibition in amoebas. In contrast, megaviruses do not exhibit this ability, allowing continuous entry of exogenous virions into infected amoebas. Our investigation shows that mimivirus and moumouvirus inhibit amoebic phagocytosis, causing significant changes in host cell morphology and activity. Megavirus-infected amoebas, however, continue incorporating newly formed viruses, affecting viral progeny. This research enhances our understanding of superinfection inhibition in these viruses, highlighting their differences in host interactions.

3.
Front Microbiol ; 15: 1405133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247694

RESUMEN

Acanthamoeba, are ubiquitous eukaryotic microorganisms, that play a pivotal role in recognizing and engulfing various microbes during predation, offering insights into microbial dynamics and immune responses. An intriguing observation lies in the apparent preference of Acanthamoeba for Gram-negative over Gram-positive bacteria, suggesting potential differences in the recognition and response mechanisms to bacterial prey. Here, we comprehensively review pattern recognition receptors (PRRs) and microbe associated molecular patterns (MAMPs) that influence Acanthamoeba interactions with bacteria. We analyze the molecular mechanisms underlying these interactions, and the key finding of this review is that Acanthamoeba exhibits an affinity for bacterial cell surface appendages that are decorated with carbohydrates. Notably, this parallels warm-blooded immune cells, underscoring a conserved evolutionary strategy in microbial recognition. This review aims to serve as a foundation for exploring PRRs and MAMPs. These insights enhance our understanding of ecological and evolutionary dynamics in microbial interactions and shed light on fundamental principles governing immune responses. Leveraging Acanthamoeba as a model organism, provides a bridge between ecological interactions and immunology, offering valuable perspectives for future research.

4.
J Ophthalmic Inflamm Infect ; 14(1): 43, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254750

RESUMEN

PURPOSE: To report real-world data (RWD) on the use of in vivo confocal microscopy (IVCM) in handling cases of suspected Acanthamoeba keratitis (AK) cases at a regional referral center during a 12-year period. METHODS: Retrospective study of patients with suspected AK presenting at a regional referral center for IVCM in Sweden from 2010 to 2022. Demographics, symptoms, outcomes, and clinical management were analyzed, and IVCM images were interpreted. RESULTS: Of 74 included patients with suspected AK, 18 (24%) were IVCM-positive, 33 (44%) were IVCM-negative, 15 had inconclusive IVCM results (20.2%), and 8 (11%) were referred for a second opinion based on IVCM, 4 of which were IVCM-positive (5.5%), yielding an overall IVCM-positive rate of 29.5%. Cultures were taken in 38 cases (51%) with only 2 cases (2.7%) culture-positive for AK. Of IVCM-negative cases, cultures were taken in 22 (67%) of cases and 100% of these were AK-negative. IVCM-positive cases had more clinic visits (median 30, P = 0.018) and longer follow-up time (median 890 days, P = 0.009) than IVCM-negative patients, while visual acuity improvement did not differ (P > 0.05). Of IVCM-positive cases, 10 (56%) underwent surgery despite prior anti-amoebic treatment, and 14 (78%) had 3 or more IVCM examinations during follow-up, with cysts (100%), dendritic cells (89%) and inflammatory infiltrate (67%) as the most prevalent features. Longitudinal IVCM indicated improvement in cysts, dendritic cells and subbasal nerves with treatment, while clinical resolution was not always consistent with complete absence of cysts. CONCLUSIONS: In a real-world setting, IVCM has a high reliability in classifying AK-negative cases, while IVCM detects AK-positive cases more frequently than the gold-standard culture method, leading to its preferential use over the culture method where time or resources are limited. Despite this, a subset of cases are IVCM-inconclusive, the clinical course of referred patients is long requiring many hospital visits, and visual acuity in most cases does not improve with medical treatment alone. Information sharing across centers and standardization of referral and diagnostic routines is needed to exploit the full potential of IVCM in AK patient management.

5.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39237458

RESUMEN

AIMS: Evaluate the in vitro efficacy of the essential oils derived from Aloysia citrodora (Verbenaceae), Cymbopogon winterianus (Poaceae), and Ocimum gratissimum (Lamiaceae) against Acanthamoeba polyphaga trophozoites. Additionally, microemulsions formulated with these essential oils, along with their major components, were analyzed. METHODS AND RESULTS: The prepared microemulsions were characterized using polarized light microscopy and rheological techniques. The amoebicidal activity was determined by measuring the inhibitory concentration (IC50). Flow cytometry was employed to detect membrane damage and alterations in trophozoites size. The results revealed transparent and thermodynamically stable microemulsions. The essential oil from O. gratissimum exhibited a lower IC50, with values of 280.66 and 47.28 µg ml-1 after 24 and 48 h, respectively. When microemulsions containing essential oils were tested, the IC50 values exhibited a reduction of over 80% after 24 h. Particularly, eugenol, a constituent of the O. gratissimum essential oil, displayed higher amoebicidal activity. The essential oils also caused damage to the cell membrane, resulting in the subsequent death of the trophozoites. CONCLUSIONS: The EOs of A. citrodora, C. winterianus, and O. gratissimum and their microemulsions showed antiparasitic effect against A. polyphaga trophozoites, representing promising alternatives for the treatment of diseases caused by this protozoan.


Asunto(s)
Acanthamoeba , Cymbopogon , Emulsiones , Ocimum , Aceites Volátiles , Trofozoítos , Verbenaceae , Aceites Volátiles/farmacología , Aceites Volátiles/química , Cymbopogon/química , Ocimum/química , Emulsiones/farmacología , Trofozoítos/efectos de los fármacos , Acanthamoeba/efectos de los fármacos , Verbenaceae/química , Amebicidas/farmacología , Aceites de Plantas/farmacología , Extractos Vegetales/farmacología
6.
Microorganisms ; 12(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39338475

RESUMEN

BACKGROUND: Early therapeutic penetrating keratoplasty (TKP) for Acanthamoeba keratitis (AK) is thought to have a worse visual prognosis than the delayed optical penetrating keratoplasty (OKP) after successful conservative treatment of AK. This has led to a tendency to prolong conservative therapy and delay penetrating keratoplasty in patients with AK. This retrospective series presents the results of patients with AK that underwent early penetrating keratoplasty after reducing the corneal amoeba load through intensive conservative therapy, so-called "low load keratoplasty" (LLKP). PATIENTS AND METHODS: The medical records of our department were screened for patients with AK, confirmed by histological examination and/or PCR and/or in vivo confocal microscopy, which underwent ab LLKP and had a follow-up time of at least one year between 2009 and 2023. Demographic data, best corrected visual acuity (BCVA) and intraocular pressure at first and last visit, secondary glaucoma (SG), and recurrence and graft survival rates were assessed. RESULTS: 28 eyes of 28 patients were included. The average time from initiation of therapy to penetrating keratoplasty (PKP) was 68 ± 113 days. The mean follow-up time after LLKP was 53 ± 42 months. BCVA (logMAR) improved from 1.9 ± 1 pre-operatively to 0.5 ± 0.6 at last visit (p < 0.001). A total of 14% of patients were under medical therapy for SG at the last visit, and two of them underwent glaucoma surgery. The recurrence rate was 4%. The Kaplan-Meier graft survival rate of the first graft at four years was 70%. The second graft survival rate at four years was 87.5%. CONCLUSION: LLKP appears to achieve a good visual prognosis with an earlier visual and psychological habilitation, as well as low recurrence and SG rates. These results should encourage us to reconsider the optimal timing of PKP in therapy-resistant AK.

7.
Pathogens ; 13(9)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39338910

RESUMEN

Recently, we published that the monoclonal antibody (D12 mAb) recognizes gp63 of L. mexicana, and it is responsible for COX activity. This D12 mAb exhibited cross-reactivity with Trypanosoma cruzi, Entamoeba histolytica, Acanthamoeba castellanii, and Naegleria fowleri. COX activity assays performed in these parasites suggested the potential presence of such enzymatic activity. In our investigation, we confirmed that wild-type recombinant gp63 exhibits COX-like activity, in contrast to a mutated recombinant gp63 variant. Consequently, our objective was to identify sequences orthologous to gp63 and subsequently analyze the binding of arachidonic acid (AA) to the putative active sites of these proteins. Given the absence of a crystallized structure for this protein in the Protein Data Bank (PDB), it was imperative to first obtain a three-dimensional structure by homology modeling, using leishmanolysin from Leishmania major (PDB ID: LML1) as a template in the Swiss model database. The results obtained through molecular docking simulations revealed the primary interactions of AA close to the Zinc atom present in the catalytic site of gp63-like molecules of several parasites, predominantly mediated by hydrogen bonds with HIS264, HIS268 and HIS334. Furthermore, COX activity was evaluated in commensal species such as E. dispar and during the encystment process of E. invadens.

8.
Vestn Oftalmol ; 140(4): 74-79, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39254393

RESUMEN

The problem of treating purulent scleral infections, rare but extremely severe complication of ophthalmic surgeries, remains unresolved. This article presents a case of successful surgical treatment of purulent scleritis - interlamellar scleral abscess - that developed in a patient after repeat penetrating keratoplasty performed due to infectious lysis of the transplant. Although the first keratoplasty was performed for acanthamoeba keratitis, there were no signs of acanthamoeba invasion in the transplant at the time of the second surgery. Scleritis manifested as an infiltrate with pus penetrating the anterior chamber and development of keratoiridocyclitis. During surgery, the abscess cavity was opened, irrigated with an antiseptic solution, and drained into the subconjunctival space; the anterior chamber was irrigated with balanced salt solution through a separate paracentesis. No infection recurrences were noted in the postoperative period and the corneal transplant remained clear.


Asunto(s)
Queratitis por Acanthamoeba , Queratoplastia Penetrante , Escleritis , Humanos , Queratoplastia Penetrante/métodos , Queratoplastia Penetrante/efectos adversos , Queratitis por Acanthamoeba/etiología , Queratitis por Acanthamoeba/diagnóstico , Queratitis por Acanthamoeba/cirugía , Escleritis/etiología , Escleritis/diagnóstico , Escleritis/cirugía , Resultado del Tratamiento , Complicaciones Posoperatorias/cirugía , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/etiología , Masculino , Reoperación/métodos , Esclerótica/cirugía , Adulto , Femenino
9.
Int J Parasitol Drugs Drug Resist ; 26: 100564, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39326195

RESUMEN

The genus Acanthamoeba comprises facultative pathogens, causing Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). In both diseases, treatment options are limited, and drug development is challenging. This study aimed to investigate the role of the large thioredoxin reductase selenoprotein of Acanthamoeba (AcTrxR-L) as a potential drug target assessing the effects of the thioredoxin reductase inhibitors auranofin, TRi-1, and TRi-2 on AcTrxR-L activity and on the viability of Acanthamoeba trophozoites. Recombinant expression and purification of AcTrxR-L as a selenoprotein allowed assessments of its enzymatic activity, with reduction of various substrates, including different thioredoxin isoforms. Auranofin demonstrated potent inhibition towards AcTrxR-L, followed by TRi-1, and TRi-2 exhibiting lower effectiveness. The inhibitors showed variable activity against trophozoites in culture, with TRi-1 and TRi-2 resulting in strongly impaired trophozoite viability. Cytotoxicity tests with human corneal epithelial cells revealed lower susceptibility to all compounds compared to Acanthamoeba trophozoites, underscoring their potential as future amoebicidal agents. Altogether, this study highlights the druggability of AcTrxR-L and suggests it to be a promising drug target for the treatment of Acanthamoeba infections. Further research is warranted to elucidate the role of AcTrxR-L in Acanthamoeba pathogenesis and to develop effective therapeutic strategies targeting this redox enzyme.

10.
J Hosp Infect ; 153: 21-29, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218354

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is a growing concern in healthcare-associated infections and poses significant risk to those with serious underlying health conditions. The antimicrobial resistance traits of the pathogen and ability to form biofilms make effective mitigation and disinfection strategies difficult. Added to this challenge is the role that free-living amoebae such as Acanthamoeba play in the detection, disinfection and transmission of P. aeruginosa. P. aeruginosa can survive intracellularly within amoebae, which has the potential to limit detectability and permit transmission into high-risk areas. METHODS/FINDINGS: We screened for the presence of Acanthamoeba spp. and P. aeruginosa within a functioning general hospital in Scotland using a culture and molecular approach, noting their presence at several sites over a four-month period, particularly within floor drains connecting patient rooms. In addition, microbiome analysis revealed that amoebae harbour a unique microbial community comprised primarily of Pseudomonas spp. that were not readily detected using microbiome sequencing techniques on environmental swabs. Having demonstrated that both organisms were consistently present in hospital settings, we investigated the relationship between acanthamoeba and P. aeruginosa in the laboratory, showing that (i) acanthamoeba growth rate is increased in the presence of pseudomonas biofilms and viable pseudomonas persist within the amoebae and (ii) hydrogen peroxide-based disinfectants are significantly less effective against an isolate of P. aeruginosa in the presence of acanthamoeba than when the bacteria are incubated alone. CONCLUSIONS: These findings suggest that amoebae, and other protists, can influence the detection and persistence of P. aeruginosa in high-risk areas and should be considered when implementing mitigation strategies.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39271302

RESUMEN

Our review provides an update on the current landscape of contact lens-associated microbial keratitis (MK). We discuss the prevalence and risk factors associated with MK, emphasizing the role of overnight wear, poor hygiene, and contact lens type. CL-related MK is commonly caused by bacteria, though can also be caused by fungi or protozoa. Clinical presentation involves ocular pain, redness, and vision loss, with more specific presenting symptoms based on the culprit organism. Treatment strategies encompass prevention through proper hygiene and broad-spectrum antibiotic, antifungal, or antiprotozoal therapy, with surgical management reserved for severe recalcitrant cases.

12.
Int Microbiol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276173

RESUMEN

Free-living amoebae infections are on the rise while the prognosis remains poor. Current therapies are ineffective, and there is a need for novel effective drugs which can target Naegleria, Balamuthia, and Acanthamoeba species. In this study, we determined the effects of a nano-formulation based on flavonoid patuletin-loaded gallic acid functionalized zinc oxide nanoparticles (PA-GA-ZnO) against Acanthamoeba, Balamuthia, and Naegleria trophozoites. Characterization of the nano-formulation was accomplished utilizing analytical tools, namely Fourier-transform infrared spectroscopy, drug entrapment efficiency, polydispersity index, dimensions, and surface morphologies. Anti-amoebic effects were investigated using amoebicidal assay, cytopathogenicity assay, and cytotoxicity of the nano-formulation on human cells. The findings revealed that nano-formulation (PA-GA-ZnO) displayed significant anti-amoebic properties and augmented effects of patuletin alone against all three brain-eating amoebae. When tested alone, patuletin nano-formulations showed minimal toxicity effects against human cells. In summary, the nano-formulations evaluated herein depicts efficacy versus Acanthamoeba, Balamuthia, and Naegleria. Nonetheless, future studies are needed to comprehend the molecular mechanisms of patuletin nano-formulations versus free-living amoebae pathogens, in addition to animal studies to determine their potential value for clinical applications.

13.
J Parasitol ; 110(5): 423-427, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39245448

RESUMEN

Chlorocresol has antibacterial and antifungal properties, yet its effectiveness in eradicating Acanthamoeba spp. remains unexplored. Acanthamoeba species trophozoites are usually sensitive to biocides, whereas cysts tend to be more resistant. This study aimed to evaluate the cysticidal activity of chlorocresol against Acanthamoeba polyphaga. Chlorocresol concentrations of 0.02, 0.04, and 0.08% were prepared and A. polyphaga cysts were incubated at room temperature (28-37 C) for 1, 24, 48, and 72 hr at each concentration. Cyst viability was evaluated using trypan blue staining and the percentage of nonviable cysts was calculated. For qualification assays, treated cysts were cultured on nonnutrient agar medium coated with Escherichia coli, incubated at 30 C, observed under a stereomicroscope for 30 days, and inoculated into peptone-yeast extract-glucose medium at 30 C for 72 hr. The results revealed that the A. polyphaga cysts were susceptible to 0.02, 0.04, and 0.08% chlorocresol. Chlorocresol made a significant difference in viability (P < 0.001) compared with the nontreated control for the same incubation time. This is the first study to examine the efficacy of chlorocresol against A. polyphaga cysts and it was highly effective. Chlorocresol could thus serve as an alternative chemical disinfectant for the eradication of A. polyphaga cysts as well as a prophylactic against transmission of other pathogenic microorganisms for which Acanthamoeba species can act as a carrier.


Asunto(s)
Acanthamoeba , Acanthamoeba/efectos de los fármacos , Desinfectantes/farmacología , Amebicidas/farmacología , Animales
14.
Mar Drugs ; 22(9)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39330304

RESUMEN

Acanthamoeba is a ubiquitous genus of amoebae that can trigger a severe and progressive ocular disease known as Acanthamoeba Keratitis (AK). Furthermore, current treatment protocols are based on the combination of different compounds that are not fully effective. Therefore, an urgent need to find new compounds to treat Acanthamoeba infections is clear. In the present study, we evaluated staurosporine as a potential treatment for Acanthamoeba keratitis using mouse cornea as an ex vivo model, and a comparative proteomic analysis was conducted to elucidate a mechanism of action. The obtained results indicate that staurosporine altered the conformation of actin and tubulin in treated trophozoites of A. castellanii. In addition, proteomic analysis of treated trophozoites revealed that this molecule induced overexpression and a downregulation of proteins related to key functions for Acanthamoeba infection pathways. Additionally, the ex vivo assay used validated this model for the study of the pathogenesis and therapies of AK. Finally, staurosporine eliminated the entire amoebic population and prevented the adhesion and infection of amoebae to the epithelium of treated mouse corneas.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Córnea , Modelos Animales de Enfermedad , Proteómica , Estaurosporina , Animales , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/parasitología , Estaurosporina/farmacología , Ratones , Córnea/efectos de los fármacos , Córnea/parasitología , Acanthamoeba castellanii/efectos de los fármacos , Proteómica/métodos , Trofozoítos/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Actinas/metabolismo
15.
J Water Health ; 22(9): 1677-1682, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39340380

RESUMEN

Natural hot springs are ideal places and environmental matrices that offer relaxation to people and microorganisms of different types. A total of 40 surface water samples were collected from the five identified collection sites, eight water samples for each site. Collection sites are designated 200 m apart to cover the entire study site. Surface water samples were collected approximately 10-20 cm from the surface. Water samples were filtered, cultured, and microscopically observed for 14 days. After 14 days of cultivation, eight (20%) water samples revealed cystic and trophozoite stages. Polymerase chain reaction using JDP1 and JDP2 specific primers confirmed the presence of Acanthamoeba spp. from two of our isolates in the hot spring, isolates 1.1 and 5.1. Further sequencing revealed that the isolates are Acanthamoeba T20 and Acanthamoeba genotype T7. Sequences were deposited to GenBank and were assigned accession numbers PP741726 and PP741727, respectively. The isolation of Acanthamoeba spp. in hot springs has significant health implications, especially for those who use it for recreational activity. Private resort owners are highly encouraged to regularly monitor and maintain hot spring resorts to avoid future infections.


Asunto(s)
Acanthamoeba , Manantiales de Aguas Termales , Manantiales de Aguas Termales/parasitología , Acanthamoeba/aislamiento & purificación , Acanthamoeba/genética , Acanthamoeba/clasificación , Filipinas , Reacción en Cadena de la Polimerasa , Recreación
16.
J Water Health ; 22(9): 1695-1703, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39340382

RESUMEN

Acanthamoebae spp. are considered the most commonly occurring free-living amoebae (FLA) in the environment. Their high resilience enables them to thrive in different types of environments. Using purposive sampling, 80 surface water samples were collected from identified coastal sites in Mariveles, Bataan, and Lingayen Gulf (40 water samples for each). Nineteen (23.75%) of the 80 water samples yielded positive amoebic growth during the 14-day culture and microscopic examination. The polymerase chain reaction confirmed Acanthamoeba spp. DNA in isolates MB1, A3, A4, A7, C5, and D3 using JDP1 and JDP2 primer sets. Further sequencing revealed that the isolates belonged to Acanthamoeba sp., Acanthamoeba culbertsoni, Acanthamoeba castellani, and Acanthamoeba genotype T4. The sequences were deposited in GenBank and registered under accession numbers PP741651, PP767364, PP741728, PP741729, PP767365, and PP767366, respectively. Potential risk factors such as waste disposal, expansion of human settlements to coastal locations, and soil runoffs in these environments should be controlled to mitigate the proliferation of potentially pathogenic strains of FLAs.


Asunto(s)
Acanthamoeba , Acanthamoeba/aislamiento & purificación , Acanthamoeba/clasificación , Acanthamoeba/genética , Filipinas , Agua de Mar/parasitología , Filogenia
17.
Cureus ; 16(8): e67803, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39328676

RESUMEN

Acanthamoeba keratitis (AK) is a rare but severe corneal infection caused by the free-living amoeba, Acanthamoeba, which is ubiquitously present in the environment. This condition predominantly affects contact lens wearers but can also occur in non-lens users, particularly those exposed to contaminated water or with compromised immune systems. AK is characterized by progressive corneal inflammation, epithelial defects, and ulceration, which can lead to significant visual impairment or blindness if not promptly diagnosed and treated. This review aims to provide a comprehensive overview of AK by synthesizing current knowledge on its epidemiology, risk factors, pathophysiology, clinical manifestations, diagnostic approaches, and therapeutic strategies. The review also highlights preventive measures and public health strategies to reduce the incidence of this debilitating condition. A detailed examination of existing literature was conducted, focusing on the global incidence of AK, demographic trends, and various risk factors such as contact lens use, environmental exposures, and immunity status. The review also delves into the pathophysiology of Acanthamoeba infection, the host immune response, and the challenges in distinguishing AK from other forms of infectious keratitis. Therapeutic strategies, including medical and surgical interventions, are analyzed, along with emerging treatments. The global incidence of AK has increased, particularly among contact lens users, due to poor hygiene practices and environmental exposures. Early diagnosis remains challenging, often leading to delayed treatment and poorer outcomes. Biguanides and diamidines are the mainstays of medical therapy, with surgical options considered in advanced cases. Emerging therapies, such as photodynamic therapy and antimicrobial peptides, show promise in enhancing treatment outcomes. AK poses a significant threat to ocular health due to its potential for severe visual impairment and the complexities associated with its diagnosis and treatment. Early recognition, appropriate management, and public health initiatives focused on prevention are crucial for improving patient outcomes. Ongoing research and a collaborative approach among healthcare providers are essential to advancing the understanding and management of AK.

18.
Clin Interv Aging ; 19: 1393-1405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099749

RESUMEN

Infectious keratitis (IK) represents a significant global health concern, ranking as the fifth leading cause of blindness worldwide despite being largely preventable and treatable. Elderly populations are particularly susceptible due to age-related changes in immune response and corneal structure. However, research on IK in this demographic remains scarce. Age-related alterations such as increased permeability and reduced endothelial cell density further compound susceptibility to infection and hinder healing mechanisms. Additionally, inflammaging, characterized by chronic inflammation that develops with advanced age, disrupts the ocular immune balance, potentially exacerbating IK and other age-related eye diseases. Understanding these mechanisms is paramount for enhancing IK management, especially in elderly patients. This review comprehensively assesses risk factors, clinical characteristics, and management strategies for bacterial, viral, fungal, and acanthamoeba keratitis in the elderly population, offering crucial insights for effective intervention.


Asunto(s)
Queratitis , Humanos , Queratitis/tratamiento farmacológico , Anciano , Factores de Riesgo , Envejecimiento , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/terapia , Córnea
19.
Access Microbiol ; 6(8)2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100885

RESUMEN

Protists are important key players in the microbial loop and influence their environment by grazing, which leads to the return of nutrients into the soil and reduces pathogen pressure on plants. Specifically, protists on and around plant roots are important for plants' development and growth. For this study, the fourth most important crop in the world, Hordeum vulgare, was selected. Seeds of H. vulgare were inoculated with Acanthamoeba castellanii alone or with additional soil bacteria at the beginning and during the experiment. The germination of the seeds and the growth of the plants in pouches were monitored over 3 weeks. No differences were found in leaf growth, root growth, root and leaf nitrogen content or ammonia content of the liquid from the pouches. In contrast, the relative increase in root and leaf dry weight showed a small difference compared to the controls. The results of this experiment demonstrated that seed inoculation with A. castellanii alone or with additional unidentified soil bacteria did not have a major effect on the growth and development of barley. Nevertheless, small changes in plant development were detected, indicating that A. castellanii should be considered for further investigation of co-inoculations with plant growth-promoting bacteria and additional nutrients.

20.
Microorganisms ; 12(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39203500

RESUMEN

Acanthamoeba keratitis (AK) is a sight-threatening and difficult-to-treat ocular infection. The significant side effects of current AK treatments highlight the urgent need to develop a safe and effective AK medication. In this study, the amoebicidal activity of Iris setosa Pall. ex Link extract (ISE) against Acanthamoeba was examined and its specific amoebicidal mechanism was explored. ISE induced significant morphological changes in Acanthamoeba trophozoites and exhibited amoebicidal activity against A. castellanii and A. polyphaga. ISE was further fractionated into five subfractions by sequential extraction with n-hexane, chloroform, ethyl acetate, n-butanol, and water, and their amoebicidal activities and underlying amoebicidal mechanisms were investigated. The n-butanol subfraction of ISE (ISE-BuOH) displayed selective amoebicidal activity against the Acanthamoeba species with minimal cytotoxicity in human corneal cells (HCE-2). ISE-BuOH triggered apoptosis-like programmed cell death (PCD) in amoebae, characterized by DNA fragmentation, increased ROS production, and caspase-3 activity elevation. ISE-BuOH also demonstrated a partial cysticidal effect against the amoeba species. ISE-BuOH could be a promising candidate in the development of therapeutic drugs for AK.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...