Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.291
Filtrar
1.
J Ethnopharmacol ; 336: 118730, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181280

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) can lead to respiratory failure and even death. KAT2A is a key target to suppress the development of inflammation. A herb, perilla frutescens, is an effective treatment for pulmonary inflammatory diseases with anti-inflammatory effects; however, its mechanism of action remains unclear. AIM OF THE STUDY: The purpose of this study was to investigate the therapeutic effect and underlying mechanism of perilla frutescens leaf extracts (PLE), in the treatment of ALI by focusing on its ability to treat inflammation. MATERIALS AND METHODS: In vivo and in vitro models of ALI induced by LPS. Respiratory function, histopathological changes of lung, and BEAS-2B cells damage were assessed upon PLE. This effect is also tested under conditions of KAT2A over expression and KAT2A silencing. RESULTS: PLE significantly attenuated LPS-induced histopathological changes in the lungs, improved respiratory function, and increased survival rate from LPS stimuation background in mice. PLE remarkably suppressed the phosphorylation of STAT3, AKT, ERK (1/2) and the release of cytokines (IL-6, TNF-α, and IL-1ß) induced by LPS via inhibiting the expression of KAT2A. CONCLUSIONS: PLE has a dose-dependent anti-inflammatory effect by inhibiting KAT2A expression to suppress LPS-induced ALI n mice. Our study expands the clinical indications of the traditional medicine PLE and provide a theoretical basis for clinical use of acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Perilla frutescens , Extractos Vegetales , Hojas de la Planta , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Perilla frutescens/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Masculino , Ratones , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Línea Celular , Ratones Endogámicos C57BL , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Modelos Animales de Enfermedad
2.
J Ethnopharmacol ; 336: 118699, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181290

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a serious health-threatening syndrome of intense inflammatory response in the lungs, with progression leading to acute respiratory distress syndrome (ARDS). Dachengqi decoction dispensing granule (DDG) has a pulmonary protective role, but its potential modulatory mechanism to alleviate ALI needs further excavation. AIM OF THE STUDY: This study aims to investigate the effect and potential mechanism of DDG on lipopolysaccharide (LPS)-induced ALI models in vivo and in vitro. MATERIALS AND METHODS: LPS-treated Balb/c mice and BEAS-2B cells were used to construct in vivo and in vitro ALI models, respectively. Hematoxylin-eosin (HE), Wet weight/Dry weight (W/D) calculation of lung tissue, and total protein and Lactic dehydrogenase (LDH) assays in BALF were performed to assess the extent of lung tissue injury and pulmonary edema. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) in BALF, serum, and cell supernatant. The qRT-PCR was used to detect inflammatory factors, Z-DNA binding protein 1 (ZBP1), and receptor-interacting protein kinase 1 (RIPK1) expression in lung tissues and BEAS-2B cells. Double immunofluorescence staining and co-immunoprecipitation were used to detect the relative expression and co-localization of ZBP1 and RIPK1. The effects of LPS and DDG on BEAS-2B cell activity were detected by Cell Counting Kit-8 (CCK-8). Western blot (WB) was performed to analyze the expression of PANoptosis-related proteins in lung tissues and BEAS-2B cells. RESULTS: In vivo, DDG pretreatment could dose-dependently improve the pathological changes of lung tissue in ALI mice, and reduce the W/D ratio of lung, total protein concentration, and LDH content in BALF. In vitro, DDG reversed the inhibitory effect of LPS on BEAS-2B cell viability. Meanwhile, DDG significantly reduced the levels of inflammatory factors in vitro and in vivo. In addition, DDG could inhibit the expression levels of PANoptosis-related proteins, especially the upstream key regulatory molecules ZBP1 and RIPK1. CONCLUSION: DDG could inhibit excessive inflammation and PANoptosis to alleviate LPS-induced ALI, thus possessing good anti-inflammatory and lung-protective effects. This study establishes a theoretical basis for the further development of DDG and provides a new prospect for ALI treatment by targeting PANoptosis.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Ratones Endogámicos BALB C , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lipopolisacáridos/toxicidad , Humanos , Masculino , Ratones , Línea Celular , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Líquido del Lavado Bronquioalveolar/química , Extractos Vegetales/farmacología , Citocinas/metabolismo , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
3.
J Ethnopharmacol ; 336: 118661, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39159837

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shuangdan Jiedu Decoction (SJD) is a formula composed of six Chinese herbs with heat-removing and detoxifying, antibacterial, and anti-inflammatory effects, which is clinically used in the therapy of various inflammatory diseases of the lungs including COVID-19, but the therapeutic material basis of its action as well as its molecular mechanism are still unclear. AIM OF THE STUDY: The study attempted to determine the therapeutic effect of SJD on LPS-induced acute lung injury (ALI), as well as to investigate its mechanism of action and assess its therapeutic potential for the cure of inflammation-related diseases in the clinical setting. MATERIALS AND METHODS: We established an ALI model by tracheal drip LPS, and after the administration of SJD, we collected the bronchoalveolar lavage fluid (BALF) and lung tissues of mice and examined the expression of inflammatory factors in them. In addition, we evaluated the effects of SJD on the cyclic guanosine monophosphate-adenosine monophosphate synthase -stimulator of interferon genes (cGAS-STING) and inflammasome by immunoblotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: We demonstrated that SJD was effective in alleviating LPS-induced ALI by suppressing the levels of pro-inflammatory cytokines in the BALF, improving the level of lung histopathology and the number of neutrophils, as well as decreasing the inflammatory factor-associated gene expression. Importantly, we found that SJD could inhibit multiple stimulus-driven activation of cGAS-STING and inflammasome. Further studies showed that the Chinese herbal medicines in SJD had no influence on the cGAS-STING pathway and inflammasome alone at the formulated dose. By increasing the concentration of these herbs, we observed inhibitory effects on the cGAS-STING pathway and inflammasome, and the effect exerted was maximal when the six herbs were combined, indicating that the synergistic effects among these herbs plays a crucial role in the anti-inflammatory effects of SJD. CONCLUSIONS: Our research demonstrated that SJD has a favorable protective effect against ALI, and its mechanism of effect may be associated with the synergistic effect exerted between six Chinese medicines to inhibit the cGAS-STING and inflammasome abnormal activation. These results are favorable for the wide application of SJD in the clinic as well as for the development of drugs for ALI from herbal formulas.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , Inflamasomas , Lipopolisacáridos , Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lipopolisacáridos/toxicidad , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Nucleotidiltransferasas/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Masculino , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Líquido del Lavado Bronquioalveolar/citología
4.
Eur J Pharmacol ; 984: 177034, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369874

RESUMEN

Acute lung injury (ALI) is an inflammatory disorder accompanied by higher morbidity and mortality. The pathological mechanism of ALI has been reported to be associated with the release of inflammatory cytokines by macrophages. Sesquiterpene lactones (SLs) represent the principal anti-inflammatory components of many natural products. Tulipalin A is a natural small molecule and a conserved moiety in anti-inflammatory SLs. However, the anti-inflammatory potential of Tulipalin A has yet to be fully disclosed. The present study aims to investigate TulipalinA's anti-inflammatory activity and underlying mechanisms in vitro and in vivo. Tulipalin A suppressed inflammatory responses in lipopolysaccharide (LPS)-stimulated bone marrow-derived primary macrophages and ameliorated LPS-induced ALI in mice. Mechanistically, Tulipalin A directly targets the NF-κB p65 and disrupts its DNA binding activity, thereby impeding the activation of NF-κB. Inhibition of NF-κB attenuated M1 polarization of macrophages, consequently suppressing the production of pro-inflammatory mediators and ameliorating the onset and progression of ALI. These findings suggest Tulipalin A's potential to mitigate inflammatory disorders like ALI via targeting NF-κB p65 and disrupting its DNA binding activity.

5.
J Thorac Dis ; 16(9): 6182-6195, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39444885

RESUMEN

Background: Acute lung injury (ALI) and its most severe manifestation of acute respiratory distress syndrome (ARDS) is a disease with a clinical mortality rate of up to 40% and is one of the most dangerous and common complications of severe coronavirus disease 2019 (COVID-19). Sivelestat (SIV) is the only licensed therapeutic medicine in the world for ALI/ARDS treatment. The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor axis is critical in the prevention of ALI/ARDS. This study aims to investigate whether SIV alleviates lipopolysaccharides (LPS)-induced ALI by inhibiting the down-regulation of ACE2/Ang-(1-7)/Mas receptor axis expression. Methods: In vivo, 90 male Sprague-Dawley rats were randomized into 5 groups. Then, we pretreated different groups of rats with dexamethasone (DEX) or SIV. Rats were sacrificed at three different time points (3, 6, and 12 hours) following LPS instillation. In vitro, RAW264.7 cells were divided into 11 groups. Different groups of cells were pretreated with DEX or SIV. And then added with LPS for 3, 6, and 12 hours. Next, we introduced A779, a potent Ang-(1-7) receptor antagonist, and DX600 as the ACE2 antagonist in different groups. Then the protein and messenger RNA (mRNA) expression levels of ACE2 in rat lung tissue and the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and Ang-(1-7) in the rat serum and the cell culture supernatant were measured. And the data were statistically analyzed. Results: In vivo, the rats pretreated with SIV or DEX had significantly lower lung wet/dry (W/D) ratios and lung pathological alterations than those exposed to LPS only. Both in vivo and in vitro, we observed that SIV or DEX significantly attenuated the LPS-induced up-regulation of IL-6 and TNF-α levels, and the down-regulation of ACE2 and Ang-(1-7) levels. In vitro, the pretreatment of the RAW264.7 cells with DX600 and A779 significantly reduced and even abolished the protective effects of SIV. Conclusions: Therefore, it was concluded that SIV protected against LPS-induced ALI and decreased inflammatory cytokine release by up-regulating the ACE2/Ang-(1-7)/Mas receptor axis. Our results enrich the theoretical foundation for the clinical application of SIV and provide fresh ideas for the treatment of ALI/ARDS.

6.
Clin Chest Med ; 45(4): 809-820, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39442999

RESUMEN

Biomarkers are an important tool aiding researchers in the study of acute respiratory distress syndrome (ARDS). Mechanisms involving injury to the alveolar-capillary membrane, endothelium and epithelium resulting in lung inflammation and alterations in coagulation pathways have been validated in human trials and have been used to discover promising phenotypes that share similar characteristics and differential treatment responses. The emergence of powerful point-of-care technologies will enable the prospective study of biomarkers for future enrichment trials with the goal of transforming biomarkers into the clinical realm to inform delivery of personalized medicine at the bedside.


Asunto(s)
Biomarcadores , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/fisiopatología , Biomarcadores/sangre
7.
Clin Chest Med ; 45(4): 877-884, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39443004

RESUMEN

Although current clinical practice guidelines have discordant conclusions, a judicious approach to using NMBA infusions may include reserving their use for patients with early severe ARDS who are already deeply sedated and for patients under light sedation who have significant ventilator dyssynchrony, despite attempts to adjust both ventilator settings and sedation requirements. Based on current evidence, the duration of NMBA use should be limited to 48 hours, whenever possible.


Asunto(s)
Bloqueo Neuromuscular , Bloqueantes Neuromusculares , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/fisiopatología , Bloqueo Neuromuscular/métodos , Bloqueantes Neuromusculares/uso terapéutico , Adulto , Respiración Artificial/métodos , Atracurio/análogos & derivados , Atracurio/uso terapéutico , Atracurio/administración & dosificación
8.
Mol Biomed ; 5(1): 50, 2024 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-39436561

RESUMEN

Septic lung injury is strongly associated with polarization of M1 macrophages and excessive cytokine release. Fibroblast growth factor (FGF) signaling plays a role in both processes. However, the impact of FGF2 deficiency on macrophage polarization and septic acute lung injury remains unclear. To investigate this, we obtained macrophages from FGF2 knockout mice and examined their polarization and inflammatory cytokine expression. We also eliminated endogenous macrophages using clodronate liposomes and administered FGF2 knockout or WT macrophages intravenously in conjunction with cecal ligation and puncture (CLP) surgery to induce sepsis. In vitro analysis by flow cytometry and real-time PCR analysis demonstrated that FGF2 deficiency resulted in increased expression of M1 markers (iNOS and CD86) and inflammatory cytokines (CXCL1, IL1ß, and IL6), especially after LPS stimulation. Additionally, immunofluorescence demonstrated increased nuclear translocation of p65 NF-κB in FGF2 knockout macrophages and RNA-seq analysis showed enrichment of differentially expressed genes in the IL17 and TNFα inflammatory signaling pathways. Furthermore, in vivo experiments revealed that depletion of FGF2 in macrophages worsened sepsis-induced lung inflammation, lung vascular leak, and lung histological injury, accompanied by an increase in CD86-positive cells and apoptosis. Our study suggests that FGF2 deficiency in macrophages plays a critical role in the pathogenesis of septic ALI, possibly because of the enhanced M1 macrophage polarization and production of proinflammatory cytokines. These findings provide empirical evidence for potential therapeutic interventions targeting FGF2 signaling to modulate the polarization of M1 and M2 macrophages in the management of sepsis-induced acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Citocinas , Factor 2 de Crecimiento de Fibroblastos , Macrófagos , Ratones Noqueados , Sepsis , Animales , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/inmunología , Citocinas/metabolismo , Ratones , Sepsis/inmunología , Sepsis/metabolismo , Sepsis/genética , Sepsis/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Transducción de Señal , Mediadores de Inflamación/metabolismo
9.
Microbiol Spectr ; : e0178124, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39440986

RESUMEN

Acute lung injury caused by Pseudomonas aeruginosa is attributed to the translocation of cytotoxin into pulmonary epithelial cells via the P. aeruginosa type III secretion system. This virulence can be blocked with a specific antibody against PcrV in this secretion system. However, because anti-PcrV antibodies do not have bactericidal activity, the treatment of bacteria depends on the phagocytic system of the host. In this study, we investigated the therapeutic effect of combination therapy with an anti-PcrV antibody and bactericidal bacteriophages on acute lung injury and subsequent death in mice compared with a single treatment. After the mice intratracheally received a lethal dose of the cytotoxic P. aeruginosa strain, a second instillation was performed with saline, anti-PcrV IgG, bacteriophages, or a mixture of anti-PcrV and bacteriophages. The survival rates 24 h after infection were as follows: 7.1% in the saline group, 26.7% in the anti-PcrV group, 41.2% in the phage group, and 66.7% in the anti-PcrV + phage group (P < 0.001 vs saline-treated group). The activity of surviving mice in the anti-PcrV + phage group was significantly greater than that in the saline group. The lung weight in the anti-PcrV + phage group was significantly lower than that in the anti-PcrV group. In conclusion, combination therapy with an anti-PcrV antibody and a bacteriophage reduces acute lung injury and suggests improved survival compared with each treatment alone. This combination therapy, which does not rely on conventional antibiotics, could constitute a new strategy for treating multidrug-resistant P. aeruginosa infections.IMPORTANCECombination therapy with either bacteriophages alone or in combination with anti-PcrV antibodies in a mouse model of Pseudomonas aeruginosa pneumonia may reduce the acute lung injury and improve survival. This combination therapy, which does not rely on conventional antibiotics, may be a new strategy to treat multidrug-resistant Pseudomonas aeruginosa infections.

10.
Mil Med Res ; 11(1): 71, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39465383

RESUMEN

BACKGROUND: Sepsis is often accompanied by lactic acidemia and acute lung injury (ALI). Clinical studies have established that high serum lactate levels are associated with increased mortality rates in septic patients. We further observed a significant correlation between the levels of cold-inducible RNA-binding protein (CIRP) in plasma and bronchoalveolar lavage fluid (BALF), as well as lactate levels, and the severity of post-sepsis ALI. The underlying mechanism, however, remains elusive. METHODS: C57BL/6 wild type (WT), Casp8-/-, Ripk3-/-, and Zbp1-/- mice were subjected to the cecal ligation and puncture (CLP) sepsis model. In this model, we measured intra-macrophage CIRP lactylation and the subsequent release of CIRP. We also tracked the internalization of extracellular CIRP (eCIRP) in pulmonary vascular endothelial cells (PVECs) and its interaction with Z-DNA binding protein 1 (ZBP1). Furthermore, we monitored changes in ZBP1 levels in PVECs and the consequent activation of cell death pathways. RESULTS: In the current study, we demonstrate that lactate, accumulating during sepsis, promotes the lactylation of CIRP in macrophages, leading to the release of CIRP. Once eCIRP is internalized by PVEC through a Toll-like receptor 4 (TLR4)-mediated endocytosis pathway, it competitively binds to ZBP1 and effectively blocks the interaction between ZBP1 and tripartite motif containing 32 (TRIM32), an E3 ubiquitin ligase targeting ZBP1 for proteasomal degradation. This interference mechanism stabilizes ZBP1, thereby enhancing ZBP1-receptor-interacting protein kinase 3 (RIPK3)-dependent PVEC PANoptosis, a form of cell death involving the simultaneous activation of multiple cell death pathways, thereby exacerbating ALI. CONCLUSIONS: These findings unveil a novel pathway by which lactic acidemia promotes macrophage-derived eCIRP release, which, in turn, mediates ZBP1-dependent PVEC PANoptosis in sepsis-induced ALI. This finding offers new insights into the molecular mechanisms driving sepsis-related pulmonary complications and provides potential new therapeutic strategies.


Asunto(s)
Células Endoteliales , Ratones Endogámicos C57BL , Proteínas de Unión al ARN , Sepsis , Animales , Ratones , Sepsis/complicaciones , Sepsis/fisiopatología , Proteínas de Unión al ARN/metabolismo , Células Endoteliales/metabolismo , Ácido Láctico/sangre , Ácido Láctico/metabolismo , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Masculino , Pulmón/fisiopatología
11.
Pharmaceutics ; 16(10)2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39458645

RESUMEN

Background: Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) have been proposed as an alternative to live-cell administration for Acute Respiratory Distress Syndrome (ARDS). MSC-EVs can be chiefly influenced by the environment to which the MSCs are exposed. Here, lipopolysaccharide (LPS) priming of MSCs was used as a strategy to boost the natural therapeutic potential of the EVs in acute lung injury (ALI). Methods: The regenerative and immunemodulatory effect of LPS-primed MSC-EVs (LPS-EVs) and non-primed MSC-EVs (C-EVs) were evaluated in vitro on alveolar epithelial cells and macrophage-like THP-1 cells. In vivo, ALI was induced in adult male rats by the intrapulmonary instillation of HCl and LPS. Rats (n = 8 to 22/group) were randomized to receive a single bolus (1 × 108 particles) of LPS-EVs, C-EVs, or saline. Lung injury severity was assessed at 72 h in lung tissue and bronchoalveolar lavage. Results: In vitro, LPS-EVs improved wound regeneration and attenuated the inflammatory response triggered by the P. aeruginosa infection, enhancing the M2 macrophage phenotype. In in vivo studies, LPS-EVs, but not C-EVs, significantly decreased the neutrophilic infiltration and myeloperoxidase (MPO) activity in lung tissue. Alveolar macrophages from LPS-EVs-treated animals exhibited a reduced expression of CXCL-1, a key neutrophil chemoattractant. However, both C-EVs and LPS-EVs reduced alveolar epithelial and endothelial permeability, mitigating lung damage. Conclusions: EVs from LPS-primed MSCs resulted in a better resolution of ALI, achieving a greater balance in neutrophil infiltration and activation, while avoiding the complete disruption of the alveolar barrier. This opens new avenues, paving the way for the clinical implementation of cell-based therapies.

12.
J Inflamm Res ; 17: 7503-7520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39464340

RESUMEN

Background: Acute lung injury (ALI) is a life-threatening clinical syndrome with high mortality. Currently, the safe and effective therapies for ALI patients are still limited. Qingfei Huoxue decoction (QFHXD) is a hospital agreement prescription for treating pulmonary diseases and displays a remarkable efficacy. However, the pharmacological effect of QFHXD on preventing lipopolysaccharide (LPS)-induced ALI has yet to be reported, let alone questions of potential molecular mechanisms and anti-ALI active substances. Methods: To answer the above-mentioned questions, histopathological observation and kit detection were performed to estimate the protective effect of QFHXD pretreatment against LPS-induced ALI. Based on comprehensive chemical profiling of QFHXD, a network pharmacology strategy and experimental validation were integrated to elucidate the underlying functional mechanisms. The potential anti-ALI active components were identified by molecular docking. The anti-ALI activity of narirutin and its anti-inflammatory mechanism were further validated using animal and molecular experiments. Results: Pretreatment with different doses of QFHXD effectively mitigated histopathological lesions and systemic inflammation caused by LPS stimulation. A detailed analysis of established compound-target-disease network revealed the strong correlation between anti-ALI action of QFHXD and inflammatory mechanisms. Compared with the model group, QFHXD intervention markedly restrained the abnormally increased transcription and protein levels of pro-inflammatory factors (TLR4, NF-κB, IL-6, IL-1ß, and TNF-α) in lung tissues of ALI mice. The results of molecular docking highlighted the anti-ALI potential of narirutin targeting to TLR4 and NF-κB p65. In addition to the protective effect of narirutin on suppressing LPS-induced pathological changes, we found that narirutin pretreatment effectively normalized the disordered protein levels of above pro-inflammatory factors of ALI mice. Conclusion: These interesting findings indicate the beneficial effects of QFHXD and its active component narirutin against ALI partly via regulating TLR4/NF-κB mediated inflammation. This work contributes to the development of novel medications for ALI patients.

13.
Colloids Surf B Biointerfaces ; 245: 114305, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39383581

RESUMEN

Forsythin, currently in phase II clinical trials in China for the treatment of the common cold and influenza, faces challenges in achieving adequate lung drug exposure due to its limited dissolution and permeability, thereby restricting its therapeutic efficacy. The objective of this work was to formulate a forsythin-phospholipid complex (FPC) to enhance its dissolution properties and lung affinity with a particular view to improving pulmonary drug exposure and anti-inflammatory response. The results revealed that forsythin reacted with dipalmitoyl-phosphatidylcholine to form a stable, nanosized FPC suspension. This formulation significantly improved the in vitro drug's dissolution, cellular uptake, and lung affinity compared to its uncomplexed form. Intratracheal administration of FPC in a mouse model of acute lung injury induced by lipopolysaccharide (LPS) resulted in a substantial increase in drug exposure to lung tissues (39.6-fold) and immune cells in the epithelial lining fluid (198-fold) compared to intraperitoneal injection. In addition, FPC instillation exhibited superior local anti-inflammatory effects, leading to improved survival rates among mice with LPS-induced acute respiratory distress syndrome, outperforming both instilled forsythin and injected FPC. Overall, this work demonstrated the potential of phospholipid complexes as a viable option for developing inhalation products for drugs with limited solubility and permeability properties.

14.
Inflamm Res ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377802

RESUMEN

OBJECTIVE: This study sought to investigate the cellular and molecular alterations during the injury and recovery periods of ALI and develop effective treatments for ALI. METHODS: Pulmonary histology at 1, 3, 6, and 9 days after lipopolysaccharide administration mice were assessed. An unbiased single-cell RNA sequencing was performed in alveoli tissues from injury (day 3) and recovery (day 6) mice after lipopolysaccharide administration. The roles of Fpr2 and Dpp4 in ALI were assessed. RESULTS: The most severe lung injury occurred on day 3, followed by recovery entirely on day 9 after lipopolysaccharide administration. The numbers of Il1a+ neutrophils, monocytes/macrophages, and Cd4+ and Cd8+ T cells significantly increased at day 3 after LPS administration; subsequently, the number of Il1a+ neutrophils greatly decreased, the numbers of monocytes/macrophages and Cd4+ and Cd8+ T cells continuously increased, and the number of resident alveolar macrophages significantly increased at day 6. The interactions between monocytes/macrophages and pneumocytes during the injury period were enhanced by the Cxcl10/Dpp4 pair, and inhibiting Dpp4 improved ALI significantly, while inhibiting Fpr2 did not. CONCLUSIONS: Our results offer valuable insights into the cellular and molecular mechanisms underlying its progression and identify Dpp4 as an effective therapeutic target for ALI.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39388641

RESUMEN

RATIONALE: Due to effects of aging on the respiratory system, it is conceivable that the association between driving pressure and mortality depends on age. OBJECTIVE: We endeavored to evaluate whether the association between driving pressure and mortality of patients with acute respiratory distress syndrome (ARDS) varies across the adult lifespan, hypothesizing that it is stronger in older, including very old (≥80 years), patients. METHODS: We performed a secondary analysis of individual patient-level data from seven ARDS Network and PETAL Network randomized controlled trials ("ARDSNet cohort"). We tested our hypothesis in a second, independent, national cohort ("Hellenic cohort"). We performed both binary logistic and Cox regression analyses including the interaction term between age (as a continuous variable) and driving pressure at baseline (i.e., the day of trial enrollment) as the predictor, and 90-day mortality as the dependent variable. FINDINGS: Based on data from 4567 patients with ARDS included in the ARDSNet cohort, we found that the effect of driving pressure on mortality depended on age (p=0.01 for the interaction between age as a continuous variable and driving pressure). The difference in driving pressure between survivors and non-survivors significantly changed across the adult lifespan (p<0.01). In both cohorts, a driving pressure threshold of 11 cmH2O was associated with mortality in very old patients. INTERPRETATION: Data from randomized controlled trials with strict inclusion criteria suggest that the effect of driving pressure on mortality of patients with ARDS may depend on age. These results may advocate for a personalized age-dependent mechanical ventilation approach.

16.
Int J Biol Macromol ; 280(Pt 1): 136149, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39353517

RESUMEN

Acute lung injury (ALI), a critical complication of COVID-19, is characterized by widespread inflammation and severe pulmonary damage, necessitating intensive care for those affected. Although glucocorticoids (GCs), such as dexamethasone (Dex), have been employed clinically to lower mortality, their nonspecific systemic distribution has led to significant side effects, limiting their use in ALI treatment. In this study, we explored the conjugation of Dex to hyaluronic acid (HA) to achieve targeted delivery to inflamed lung tissues. We achieved a conjugation efficiency exceeding 98 % using a cosolvent system, with subsequent ester bond cleavage releasing the active Dex, as verified by liquid chromatography. Biodistribution and cellular uptake studies indicated the potential of the HA conjugate for cluster of differentiation 44 (CD44)-mediated targeting and accumulation. In a lipopolysaccharide-induced ALI mouse model, intravenous (IV) HA-Dex administration showed superior anti-inflammatory effects compared to free Dex administration. Flow cytometry analysis suggested that the HA conjugate preferentially accumulated in lung macrophages, suggesting the possibility of reducing clinical Dex dosages through this targeted delivery approach.

17.
J Cardiothorac Surg ; 19(1): 568, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354500

RESUMEN

BACKGROUND: Numerous diseases-related acute lung injury (ALI) contributed to high mortality. Currently, the therapeutic effect of ALI was still poor. The detailed mechanism of ALI remained elusive and this study aimed to elucidate the mechanism of ALI. METHOD: This study was performed to expose the molecular mechanisms of AMPK/Nrf2 pathway regulating oxidative stress in LPS-induced AMI mice. The mouse ALI model was established via intraperitoneal injection of LPS, then the lung tissue and blood samples were obtained, followed by injection with Dimethyl fumarate (DMF). Finally, Western blot, HE staining, injury score, lung wet/dry ratio, reactive oxygen species (ROS) and ELISA were used to elucidate the mechanism of AMPK/Nrf2 pathway in LPS -induced acute lung injury by mediating oxidative stress. RESULTS: The lung tissue injury score was evaluated, showing higher scores in the model group compared to the AMPK activator and control groups. DCFH-DA indicated that LPS increased ROS production, while AMPK activator DMF reduced it, with the model group exhibiting higher ROS levels than the control and AMPK activator groups. The lung wet/dry ratio was also higher in the model group. Western blot analysis revealed LPS reduced AMPK and Nrf2 protein levels, but DMF reversed this effect. ELISA results showed elevated IL-6 and IL-1ß levels in the model group compared to the AMPK activator and control groups. CONCLUSION: CONCLUSION: Activating the AMPK/Nrf2 pathway can improve LPS-induced acute lung injury by down-regulation of the oxidative stress and corresponding inflammatory factor level.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Lesión Pulmonar Aguda , Modelos Animales de Enfermedad , Inflamación , Lipopolisacáridos , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Animales , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/prevención & control , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL
18.
Am J Transl Res ; 16(9): 4653-4661, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39398612

RESUMEN

OBJECTIVE: To construct and validate a nomogram model for predicting sepsis complicated by acute lung injury (ALI). METHODS: The healthcare records of 193 sepsis patients hospitalized at The Affiliated Tai'an City Central Hospital of Qingdao University from January 2022 to December 2023 were retrospectively reviewed. Among these patients, 69 were in the ALI group and 124 in the non-ALI group. A nomogram prediction model was constructed using logistic regression analysis. Its predictive performance was evaluated through various measures, including the area under the curve (AUC), calibration curve, decision curve, sensitivity, specificity, accuracy, recall rate, and precision rate. RESULTS: The predictive factors included the neutrophil/lymphocyte ratio (NLR), oxygenation index (PaO2/FiO2), tumor necrosis factor-α (TNF-α), and acute physiology and chronic health evaluation II (APACHE II). The nomogram training set achieved an AUC of 0.959 (95% CI: 0.924-0.995), an accuracy of 92.59%, a recall of 96.70%, and a precision of 92.63%. In the validation set, the AUC was 0.938 (95% CI: 0.880-0.996), with an accuracy of 89.66%, a recall of 93.94%, and a precision of 88.57%. The calibration curve demonstrated that the prediction results were consistent with the actual findings. The decision curve indicated that the model has clinical applicability. CONCLUSION: NLR, PaO2/FiO2, TNF-α, and APACHE II are closely associated with ALI in sepsis patients. A nomogram model based on these four variables shows strong predictive performance and may be used as a clinical decision-support tool to help physicians better identify high-risk groups.

19.
Phytomedicine ; 135: 156043, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39366155

RESUMEN

BACKGROUND: Macrophages play a pivotal role in the development and recovery of acute lung injury (ALI), wherein their phenotypic differentiation and metabolic programming are orchestrated by mitochondria. Specifically, the mitochondrial calcium uniporter (MCU) regulates mitochondrial Ca2+ (mCa2+) uptake and may bridge the metabolic reprogramming and functional regulation of immune cells. However, the precise mechanism on macrophages remains elusive. Shikonin, a natural naphthoquinone, has demonstrated efficacy in mitigating ALI and suppressing glycolysis in macrophages, yet which mechanism remains to be fully elucidated. PURPOSE: This study explored whether Shikonin ameliorated ALI via modulating MCU-mediated mCa2+ and macrophage polarization. METHODS: This study firstly examined the protective effects of Shikonin on LPS-induced ALI mice, and investigated whether it is depends on macrophage by depleting macrophage using clodronate liposomes. The regulatory effect of Shikonin on macrophage polarization and mitochondrial MCU/Ca2+ signal was testified on RAW264.7 cells, and further validated by knocking-down MCU expression or by using RU360, an MCU inhibitor. Additionally, the crucial role of MCU in the therapeutic effect of Shikonin, along with its regulation on macrophage polarization was validated in mice with LPS-induced ALI under the intervention of RU360. RESULTS: Shikonin alleviated LPS-induced mice ALI, down-regulated inflammatory cytokines and inhibited the pro-inflammatory polarization of macrophages. Intravenous injection of clodronate liposomes on mice abolished the protective effects of Shikonin on ALI. On RAW264.7 cells, LPS&IFN decreased the protein expression of MCU, while induced pro-inflammatory polarization and glycolytic metabolism. In contrast, Shikonin increased MCU expression, activated MCU-mediated mCa2+ signal, promoted the polarization of macrophages to anti-inflammatory M2 phenotype, and driven a metabolic shift from glycolysis to oxidative phosphorylation. Either knocking-down MCU expression or pharmacological inhibiting MCU by using RU360 mitigated the effects of Shikonin on Raw 264.7 cells. Furthermore, RU360 counteracted the ameliorative effect of Shikonin on ALI mice. CONCLUSION: The current data showed that Shikonin alleviated LPS-induced mice ALI by activating mitochondrial MCU/mCa2+ signal and regulating macrophage metabolism.

20.
Phytomedicine ; 135: 156089, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39366158

RESUMEN

BACKGROUND: Acute lung injury (ALI)-induced acute respiratory syndromes is a critical pathological sequala of sepsis. Araloside A (ARA), extracted from Aralia taibaiensis, possesses anti-oxidative and pro-apoptotic effects, as well as a protective effect against inflammatory diseases such as gastric ulcers. However, its impact on progression of ALI remains unknown. This study seeks to assess the therapeutic effect of ARA in sepsis-induced ALI, and to elucidate the underlying mechanism. METHODS: Sepsis-induced ALI was induced in C57BL/6 mice using lipopolysaccharide (LPS) or cecal ligation and puncture (CLP) along with simultaneous administration of ARA. In vitro, bone marrow-derived macrophages (BMDMs) and RAW264.7 cells were exposed to LPS to activate proinflammatory macrophages in the presence/absence of ARA. RNA sequencing of BMDMs was then conducted to elucidate the detailed mechanism. RESULTS: Treatment of mice with ARA led to a significant reduction in serum level of inflammatory cytokines, ameliorated sepsis-induced ALI (i.e., impaired barrier integrity, cell apoptosis), and increased survival of septic mice. In vitro, ARA effectively inhibited activation of proinflammatory BMDMs. In addition, RNA sequencing revealed that the PHD2/HIF-1α signaling played a critical role in the anti-inflammatory effects of ARA. ARA suppressed proinflammatory macrophages to ameliorate lung inflammation in septic mice by restoring PHD2/HIF-1α signaling. CONCLUSIONS: ARA prevented mice from the fatal effects of sepsis by restoring PHD2/HIF-1α signaling, thereby inhibiting activation of proinflammatory macrophages. These findings suggest that ARA could be a promising therapy for sepsis-induced ALI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...