Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 975
Filtrar
1.
Cancer Sci ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155589

RESUMEN

The fundamental role of cells in safeguarding the genome's integrity against DNA double-strand breaks (DSBs) is crucial for maintaining chromatin homeostasis and the overall genomic stability. Aberrant responses to DNA damage, known as DNA damage responses (DDRs), can result in genomic instability and contribute significantly to tumorigenesis. Unraveling the intricate mechanisms underlying DDRs following severe damage holds the key to identify therapeutic targets for cancer. Chromatin lysine acylation, encompassing diverse modifications such as acetylation, lactylation, crotonylation, succinylation, malonylation, glutarylation, propionylation, and butyrylation, has been extensively studied in the context of DDRs and chromatin homeostasis. Here, we delve into the modifying enzymes and the pivotal roles of lysine acylation and their crosstalk in maintaining chromatin homeostasis and genome integrity in response to DDRs. Moreover, we offer a comprehensive perspective and overview of the latest insights, driven primarily by chromatin acylation modification and associated regulators.

2.
Virology ; 599: 110198, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39116647

RESUMEN

Viral spike proteins mutate frequently, but conserved features within these proteins often have functional importance and can inform development of anti-viral therapies which circumvent the effects of viral sequence mutations. Through analysis of large numbers of viral spike protein sequences from several viral families, we found highly (>99%) conserved patterns within their intracellular domains. The patterns generally consist of one or more basic amino acids (arginine or lysine) adjacent to a cysteine, many of which are known to undergo acylation. These patterns were not enriched in cellular proteins in general. Molecular dynamics simulations show direct electrostatic and hydrophobic interactions between these conserved residues in hemagglutinin (HA) from influenza A and B and the phosphoinositide PIP2. Super-resolution microscopy shows nanoscale colocalization of PIP2 and several of the same viral proteins. We propose the hypothesis that these conserved viral spike protein features can interact with phosphoinositides such as PIP2.

3.
Carbohydr Polym ; 343: 122480, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174139

RESUMEN

Thin (ca. 340 nm) chitosan coatings were deposited onto glass substrates via dip-coating, then modified with the methanol solution of decanoic anhydride (0.17-56 mM). NMR, FTIR and XPS measurements confirmed that the acylation degree increased from 18 % to 45 %, and at the highest degree, the whole layer was acylated homogeneously by the reagent molecules. The coating thickness increased (up to 60 %), and the refractive index decreased (from 1.541 to 1.532) due to the acylation, that was determined by UV-visible spectroscopy. The AFM did not reveal morphological changes, but wetting tests showed that the acylation rendered the coating hydrophobic (water contact angle increased from ca. 75° to 100°). The contact angle, however, decreased to 85° due to the development of a second molecular layer of the decanoic acid by-product at the highest (over 25 mM) reagent concentrations. XRD studies showed a self-assembling structuring of the alkyl-chains in the bulk phase, which occurred in the case of the highest degree of acylation. This also manifested itself in a significant decrease of the layer hygroscopicity: the swelling degree decreased from 40 % to 8 % in a saturated water atmosphere monitored by spectroscopic ellipsometry.

4.
Chembiochem ; : e202400534, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166477

RESUMEN

Chemical modification of proteins is of growing importance to generate new molecular probes for chemical biology and for the development of new biopharmaceuticals. For example, two approved, long-acting insulin variants are lipidated at the LysB29 side-chain. Acylations of proteins have so far been performed in batch-mode. Here we describe the use of flow chemistry for site-selective acylation of a small protein, insulin. To the best of our knowledge this is the first report on flow chemistry for chemical modification of insulin. The first step was to develop reaction conditions for acylation of Lys B29 that gave a soluble mixture and thus was compatible with flow chemistry in a microreactor; this included selection of a soluble base. Secondly, the conditions, such as reagent ratios and flow rate were optimized. Third, the use of these conditions for the acylation with a wide range of acids was demonstrated. Finally, Boc-protected insulins were synthesized. Insulin remained stable towards these flow chemistry conditions. This use of flow chemistry for the chemical modification of insulin opens the prospect of producing chemically modified biopharmaceuticals by flow chemistry with fewer byproducts.

5.
Food Res Int ; 192: 114824, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147516

RESUMEN

Anthocyanins are water-soluble pigments, but they tend to be unstable in aqueous solutions. Modification of their molecular structure offers a viable approach to alter their intrinsic properties and enhance stability. Aromatic and aliphatic acid methyl esters were used as acyl donors in the enzymatic acylation of cyanidin-3-O-glucoside (C3G), and their analysis was conducted using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). The highest conversion rate achieved was 96.41 % for cyanidin-3-O-(6″-feruloyl) glucoside. Comparative evaluations of stability revealed that aromatic acyl group-conjugated C3G exhibited superior stability enhancement compared with aliphatic acyl group derivatives. The stability of aliphatic C3G decreased with increasing carbon chain length. The molecular geometries of different anthocyanins were optimized, and energy level calculations using density functional theory (DFT) identified their sites with antioxidant activities. Computational calculations aligned with the in vitro antioxidant assay results. This study provided theoretical support for stabilizing anthocyanins and broadened the application of acylated anthocyanins as food colorants and nutrient supplements.


Asunto(s)
Antocianinas , Glucósidos , Antocianinas/química , Acilación , Glucósidos/química , Antioxidantes/química , Ésteres/química , Espectrometría de Masas , Estructura Molecular , Cromatografía Líquida de Alta Presión
6.
Proteomics Clin Appl ; : e202300212, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082596

RESUMEN

BACKGROUND: Human macrophages generate antimicrobial reactive nitrogen species in response to infection by Mycobacterium tuberculosis (Mtb). Exposure to these redox-reactive compounds induces stress response in Mtb, which can affect posttranslational modifications (PTM). METHODS: Here, we present the global analysis of the PTM acylation of Mtb proteins in response to a sublethal dose of nitrosative stress in the form of nitric oxide (NO) using label free quantification. RESULTS: A total of 6437 acylation events were identified on 1496 Mtb proteins, and O-acylation accounted for 92.2% of the events identified, while 7.8% were N-acylation events. About 22% of the sites identified were found to be acylated by more than one acyl-group. Furthermore, the abundance of each acyl-group decreased as their molecular weight increased. Quantitative PTM analysis revealed differential abundance of acylation in proteins involved in stress response, iron ion homeostasis, growth, energy metabolism, and antimicrobial resistance (AMR) induced by nitrosative stress over time. CONCLUSIONS: The results reveal a potential role of Mtb protein acylation in the bacterial stress responses and AMR. To our knowledge, this is the first report on global O-acylation profile of Mtb in response to NO. This will significantly improve our understanding of the changes in Mtb acylation under nitrosative stress, highly relevant for global health.

7.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 777-782, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38974158

RESUMEN

In the title compound, C19H18BrFN2O, the pyrrolidine ring adopts an envelope conformation. In the crystal, mol-ecules are linked by inter-molecular N-H⋯O, C-H⋯O, C-H⋯F and C-H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, C-H⋯π inter-actions connect mol-ecules into ribbons along the b-axis direction, consolidating the mol-ecular packing. The inter-molecular inter-actions in the crystal structure were qu-anti-fied and analysed using Hirshfeld surface analysis.

8.
Molecules ; 29(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998927

RESUMEN

2-methylfuran is a significant organic chemical raw material which can be produced by hydrolysis, dehydration, and selective hydrogenation of biomass hemicellulose. 2-methylfuran can be converted into value-added chemicals and liquid fuels. This article reviews the latest progress in the synthesis of liquid fuel precursors through hydroxyalkylation/alkylation reactions of 2-methylfuran and biomass-derived carbonyl compounds in recent years. 2-methylfuran reacts with olefins through Diels-Alder reactions to produce chemicals, and 2-methylfuran reacts with anhydrides (or carboxylic acids) to produce acylated products. In the future application of 2-methylfuran, developing high value-added chemicals and high-density liquid fuels are two good research directions.

9.
Structure ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38964337

RESUMEN

Ceramide synthases (CerSs) play crucial roles in sphingolipid metabolism and have emerged as promising drug targets for metabolic diseases, cancers, and antifungal therapy. However, the therapeutic targeting of CerSs has been hindered by a limited understanding of their inhibition mechanisms by small molecules. Fumonisin B1 (FB1) has been extensively studied as a potent inhibitor of eukaryotic CerSs. In this study, we characterize the inhibition mechanism of FB1 on yeast CerS (yCerS) and determine the structures of both FB1-bound and N-acyl-FB1-bound yCerS. Through our structural analysis and the observation of N-acylation of FB1 by yCerS, we propose a potential ping-pong catalytic mechanism for FB1 N-acylation by yCerS. Lastly, we demonstrate that FB1 exhibits lower binding affinity for yCerS compared to the C26- coenzyme A (CoA) substrate, suggesting that the potent inhibitory effect of FB1 on yCerS may primarily result from the N-acyl-FB1 catalyzed by yCerS, rather than through direct binding of FB1.

10.
J Proteome Res ; 23(8): 3716-3725, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39008777

RESUMEN

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 µg of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g., H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 µg of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamline the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.


Asunto(s)
Cisteína , Espectrometría de Masas en Tándem , Acilación , Animales , Cisteína/química , Cisteína/metabolismo , Ratones , Espectrometría de Masas en Tándem/métodos , Hidroxilamina/química , Cromatografía Liquida/métodos , Lipoilación , Procesamiento Proteico-Postraduccional , Compuestos de Sulfhidrilo/química , Proteínas/química , Proteínas/metabolismo , Encéfalo/metabolismo
11.
Bioorg Med Chem Lett ; 109: 129847, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857849

RESUMEN

2'-5'-Adenosine linked nucleic acids are crucial components in living cells that play significant roles, including participating in antiviral defense mechanisms by facilitating the breakdown of viral genetic material. In this report, we present a chemical derivatization method employing 5-fluoro-2-pyridinoyl-imidazole as the acylation agent, a strategy that can be effectively combined with advanced analytical tools, including Nuclear Magnetic Resonance spectroscopy and Liquid Chromatography-Mass Spectrometry, to enhance the characterization and detection capabilities. This marks the first instance of a simple method designed to detect 2'-5'-adenosine linked nucleic acids. The new method is characterized by its time-saving nature, simplicity, and relative accuracy compared to previous methods.


Asunto(s)
Adenosina , Acilación , Adenosina/química , Adenosina/análogos & derivados , Adenosina/análisis , Ácidos Nucleicos/química , Ácidos Nucleicos/análisis , Imidazoles/química , Estructura Molecular , Espectroscopía de Resonancia Magnética , Espectrometría de Masas
12.
J Biol Chem ; 300(7): 107428, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823638

RESUMEN

Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein's cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.


Asunto(s)
Sinapsis Inmunológicas , Linfocitos T , Sinapsis Inmunológicas/metabolismo , Sinapsis Inmunológicas/inmunología , Humanos , Animales , Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/citología , Fosfatidilinositoles/metabolismo , Lipoilación
13.
Artículo en Inglés | MEDLINE | ID: mdl-38862432

RESUMEN

Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.


Asunto(s)
Histonas , Lisina , Procesamiento Proteico-Postraduccional , Lisina/metabolismo , Humanos , Histonas/metabolismo , Animales , Proteómica/métodos
14.
J Asian Nat Prod Res ; : 1-9, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38859556

RESUMEN

Twenty 3-acyloxymaltol/ethyl maltol derivatives (7a-j and 8a-j) were synthesized and evaluated in vitro for their anti-oomycete activity against Phytophthora capsici, respectively. Among all of twenty derivatives, more than half of the compounds 7f, 7h, 8a-h and 8j had anti-oomycete activity higher than the positive control zoxamide (EC50 = 22.23 mg/L), and the EC50 values of 18.66, 20.32, 12.80, 16.18, 10.59, 14.98, 16.80, 10.36, 15.32, 12.64, and 13.59 mg/L, respectively. Especially, compounds 8c and 8f exhibited the best anti-oomycete activity against P. capsici with EC50 values of 10.59 and 10.36 mg/L, respectively. Overall, hydroxyl group of maltol/ethyl maltol is important active modification site.

15.
J Cell Sci ; 137(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38842578

RESUMEN

An important mechanism of gene expression regulation is the epigenetic modification of histones. The cofactors and substrates for these modifications are often intermediary metabolites, and it is becoming increasingly clear that the metabolic and nutritional state of cells can influence these marks. These connections between the balance of metabolites, histone modifications and downstream transcriptional changes comprise a metabolic signaling program that can enable cells to adapt to changes in nutrient availability. Beyond acetylation, there is evidence now that histones can be modified by other acyl groups. In this Cell Science at a Glance article and the accompanying poster, we focus on these histone acylation modifications and provide an overview of the players that govern these acylations and their connections with metabolism.


Asunto(s)
Histonas , Procesamiento Proteico-Postraduccional , Animales , Humanos , Acilación , Epigénesis Genética , Histonas/metabolismo
16.
Med Chem ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38840400

RESUMEN

BACKGROUND: The approval of Sucrose Fatty Acid Esters (SFAEs) as food additives/ preservatives with antimicrobial potential has triggered enormous interest in discovering new biological applications. Accordingly, many researchers reported that SFAEs consist of various sugar moieties, and hydrophobic side chains are highly active against certain fungal species. OBJECTIVE: This study aimed to conduct aregioselective synthesis of SAFE and check the effect of chain length and site of acylation (i.e., C-6 vs. C-2, C-3, C-4, and long-chain vs. short-chain) on antimicrobial potency. METHODS: A direct acylation method maintaining several conditions was used for esterification. In vitro tests, molecular docking, and in silico studies were conducted using standard procedures. RESULTS: In vitro tests revealed that the fatty acid chain length in mannopyranoside esters significantly affects the antifungal activity, where C12 chains are more potent against Aspergillus species. In terms of acylation site, mannopyranoside esters with a C8 chain substituted at the C-6 position are more active in antifungal inhibition. Molecular docking also revealed that these mannopyranoside esters had comparatively better stable binding energy and hence better inhibition, with the fungal enzymes lanosterol 14-alpha-demethylase (3LD6), urate oxidase (1R51), and glucoamylase (1KUL) than the standard antifungal drug fluconazole. Additionally, the thermodynamic, orbital, drug-likeness, and safety profiles of these mannopyranoside esters were calculated and discussed, along with the Structure-Activity Relationships (SAR). CONCLUSION: This study thus highlights the importance of the acylation site and lipid-like fatty acid chain length that govern the antimicrobial activity of mannopyranoside-based SFAE.

17.
Immunology ; 173(1): 53-75, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38866391

RESUMEN

The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, ß-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.


Asunto(s)
Procesamiento Proteico-Postraduccional , Humanos , Acilación , Animales , Inmunidad , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/metabolismo , Lisina/metabolismo
18.
Front Aging Neurosci ; 16: 1335122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715962

RESUMEN

The expanding geriatric population, whose predisposition toward disabling morbidities and age-related diseases (ARD) is well-documented, has become a paramount social issue, exerting an onerous burden on both the healthcare industry and wider society. ARD manifest as the progressive deterioration of bodily tissues and organs, eventually resulting in the failure of these vital components. At present, no efficacious measures exist to hinder the onset of ARD. Copper, an essential trace element, is involved in a wide range of physiological processes across different cell types. In recent research, a novel variant of copper-dependent cell death, termed cuproptosis, has been identified. This mode of cellular demise stands apart from previously recognized types of cell death. Cuproptosis occurs when copper binds with acyl-CoA synthetase in the tricarboxylic acid (TCA) cycle, resulting in protein aggregation and protein toxicity stress, ultimately leading to cell death. In this paper, we provide a concise overview of the current understanding concerning the metabolism of copper, copper-related diseases, the hallmarks of copper toxicity, and the mechanisms that regulate copper toxicity. Additionally, we discuss the implications of cuproptosis mutations in the development of ARD, as well as the potential for targeting cuproptosis as a treatment for ARD.

19.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 5): 537-542, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38721417

RESUMEN

In the title compound, C24H21NO3S, the cyclopentene ring adopts an envelope conformation. In the crystal, mol-ecules are linked by C-H⋯π inter-actions, forming ribbons along the a axis. Inter-molecular C-H⋯O hydrogen bonds connect these ribbons to each other, forming layers parallel to the (01) plane. The mol-ecular packing is strengthened by van der Waals inter-actions between the layers. The inter-molecular contacts were qu-anti-fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 46.0%, C⋯H/H⋯C 21.1%, O⋯H/H⋯O 20.6% and S⋯H/H⋯S 9.0%.

20.
Food Res Int ; 186: 114382, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729736

RESUMEN

Black carrot anthocyanins have gained increasing attention as natural coloring agent, owing to their higher stability than anthocyanins from berries. The stability has been attributed to their higher degree of acylation. This study investigated the impact of acylation on the stability of individual anthocyanins during storage in light and darkness. We hypothesized that the acylated anthocyanins would be more stable than the non-acylated ones. The major five anthocyanins were fractioned by semi-preparative HPLC and stored at pH 4.5 in light and darkness to investigate how acylation affected the stability. The stability was evaluated by absorption spectroscopy and mass spectrometry (MS). Two of the anthocyanins were non-acylated; 3-xylosyl(glucosyl)galactoside and cyanidin 3-xylosylgalactoside, and three were acylated; cyanidin 3-xylosyl(sinapolyglucosyl)galacto-side, cyanidin 3-xylosyl(feruloylglu-cosyl)galactoside, and cyanidin 3-xylosyl(coumaroyl-glucosyl)galactoside. Both methods (spectroscopy and MS) showed a clear effect of acylation when stored in light, but surprisingly the two non-acylated anthocyanins, showed higher stability than the three acylated ones.


Asunto(s)
Antocianinas , Daucus carota , Luz , Antocianinas/química , Antocianinas/análisis , Acilación , Daucus carota/química , Daucus carota/efectos de la radiación , Cromatografía Líquida de Alta Presión , Oscuridad , Almacenamiento de Alimentos/métodos , Espectrometría de Masas , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...