RESUMEN
Significance: Head and neck squamous cell carcinoma (HNSCC) has the sixth highest incidence worldwide, with > 650,000 cases annually. Surgery is the primary treatment option for HNSCC, during which surgeons balance two main goals: (1) complete cancer resection and (2) preservation of normal tissues to ensure post-surgical quality of life. Unfortunately, these goals are not synergistic, where complete cancer resection is often limited by efforts to preserve normal tissues, particularly nerves, and reduce life-altering comorbidities. Aim: Currently, no clinically validated technology exists to enhance intraoperative cancer and nerve recognition. Fluorescence-guided surgery (FGS) has successfully integrated into clinical medicine, providing surgeons with real-time visualization of important tissues and complex anatomy, where FGS imaging systems operate almost exclusively in the near-infrared (NIR, 650 to 900 nm). Notably, this spectral range permits the detection of two NIR imaging channels for spectrally distinct detection. Approach: Herein, we evaluated the utility of spectrally distinct NIR nerve- and tumor-specific fluorophores for two-color FGS to guide HNSCC surgery. Using a human HNSCC xenograft murine model, we demonstrated that facial nerves and tumors could be readily differentiated using these nerve- and tumor-specific NIR fluorophores. Results: The selected nerve-specific fluorophore showed no significant difference in nerve specificity and off-target tissue fluorescence in the presence of xenograft head and neck tumors. Co-administration of two NIR fluorophores demonstrated successful tissue-specific labeling of nerves and tumors in spectrally distinct NIR imaging channels. Conclusions: We demonstrate a comprehensive FGS tool for cancer resection and nerve sparing during HNSCC procedures for future clinical translation.
Asunto(s)
Neoplasias de Cabeza y Cuello , Imagen Óptica , Cirugía Asistida por Computador , Cirugía Asistida por Computador/métodos , Animales , Ratones , Neoplasias de Cabeza y Cuello/cirugía , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Imagen Óptica/métodos , Línea Celular Tumoral , Colorantes Fluorescentes/química , Carcinoma de Células Escamosas de Cabeza y Cuello/cirugía , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Espectroscopía Infrarroja Corta/métodos , Ratones DesnudosRESUMEN
Kawasaki disease (KD) is a disease characterized by systemic immune vasculitis that often involves coronary arteries and can result in long-term cardiovascular sequelae. Different strategies for treatment of KD-and KD-induced coronary artery lesions are currently under investigation, including passive immunization with anti-TNFα monoclonal antibodies (mAbs). Herein, we examine the potential therapeutic capabilities of a novel type of TNFα-targeting agent based on an affibody molecule possessing fundamentally different properties than mAbs. Using phage display technology, we successfully screened and obtained three TNF-α binding affibody molecules and confirmed their high binding affinity and specificity for recombinant and native TNF-α by surface plasmon resonance (SPR), confocal double immunofluorescence and coimmunoprecipitation assays. Moreover, by binding to TNF-α, the affibody molecules could effectively neutralize TNFα-induced L929 cytotoxicity. To increase the targeting properties and serum half-life, one preferred affibody molecule ZTNF-α263 was redesigned to assemble drugs with bivalent TNFα binding with added specificity for serum albumin (ZTNF-α263-ABD035-ZTNF-α263, hereinafter denoted ZTAT). We further determined its binding ability, TNF-α signal blocking and neutralizing capacity, serum half-life and immunogenicity. Most importantly, our study provides strong evidence that the engineered ZTAT protein was therapeutically effective against KD induced-endothelial injury, as judged by both in vitro and in vivo assessments. These data suggested that because of the flexibility inherent, low-molecular weight anti-TNFα affibody construct ZTAT, can be developed into a potent therapeutic agent that can be produced and purified cost-effectively.
RESUMEN
Purpose: Affibodies are a class of versatile affinity proteins with a wide variety of therapeutic applications, ranging from contrast agents for imaging to cell-targeting therapeutics. We have identified several affibodies specific to bone morphogenetic protein-2 (BMP-2) with a range of binding affinities and demonstrated the ability to tune release rate of BMP-2 from affibody-conjugated poly(ethylene glycol) maleimide (PEG-mal) hydrogels based on affibody affinity strength. In this work, we compare the purity, structure, and activity of recombinant, bacterially-expressed BMP-2-specific affibodies with affibodies synthesized via solid-phase peptide synthesis. Methods: High- and low-affinity BMP-2-specific affibodies were recombinantly expressed using BL21(DE3) E. coli and chemically synthesized using microwave-assisted solid-phase peptide synthesis with Fmoc-Gly-Wang resin. The secondary structures of the affibodies and dissociation constants of affibody-BMP-2 binding were characterized by circular dichroism and biolayer interferometry, respectively. Endotoxin levels were measured using chromogenic limulus amebocyte lysate (LAL) assays. Affibody-conjugated PEG-mal hydrogels were fabricated and loaded with BMP-2 to evaluate hydrogel capacity for controlled release, quantified by enzyme-linked immunosorbent assays (ELISA). Results: Synthetic and recombinant affibodies were determined to be α-helical by circular dichroism. The synthetic high- and low-affinity BMP-2-specific affibodies demonstrated comparable BMP-2 binding dissociation constants to their recombinant counterparts. Recombinant affibodies retained some endotoxins after purification, while endotoxins were not detected in the synthetic affibodies above FDA permissible limits. High-affinity affibody-conjugated hydrogels reduced cumulative BMP-2 release compared to the low-affinity affibody-conjugated hydrogels and hydrogels without affibodies. Conclusions: Synthetic affibodies demonstrate comparable structure and function to recombinant affibodies while reducing endotoxin contamination and increasing product yield, indicating that solid-phase peptide synthesis is a viable method of producing affibodies for controlled protein release and other applications.
RESUMEN
Gastrointestinal cancer is a common malignant tumor with a high incidence worldwide. Despite continuous improvements in diagnosis and treatment strategies, the overall prognosis of gastrointestinal tumors remains poor. Carcinoembryonic antigen (CEA) is highly expressed in various types of cancers, especially in gastrointestinal cancers, making it a potential target for therapeutic intervention. Therefore, the expression of CEA can be used as an indication of the existence of tumors, chosen as a target for molecular imaging diagnosis, and effectively utilized in the targeted therapy of gastrointestinal cancers. In this study, we report the selection and characterization of affibody molecules (ZCEA539, ZCEA546, and ZCEA919) specific to the CEA protein. Their ability to bind to recombinant and native CEA protein has been confirmed by surface plasmon resonance (SPR), immunofluorescence, and immunohistochemistry assays. Furthermore, Dylight755-labeled ZCEA affibody showed accumulation within the tumor site 1 h post injection and was continuously enhanced for 4 h. The Dylight755-labeled ZCEA affibody exhibited high tumor-targeting specificity in CEA+ xenograft-bearing mice and possesses promising characteristics for tumor-targeting imaging. Overall, our results suggest the potential use of ZCEA affibodies as fluorescent molecular imaging probes for detecting CEA expression in gastrointestinal cancer.
RESUMEN
BACKGROUND: In recent years, the interest in Al[18F]F as a labeling agent for Positron Emission Tomography (PET) radiotracers has risen, as it allows for fast and efficient fluorine-18 labeling by harnessing chelation chemistry. The introduction of Restrained Complexing Agent (RESCA) as a chelator has also shown that chelator-based radiolabeling reactions can be performed in mild conditions, making the radiolabeling process attractively more facile than most conventional radiofluorination methods. The aim of the study was to establish optimized conditions for Al[18F]F labeling of Affibody molecules using RESCA as a complexing agent, using Z09591 and Z0185, two Affibody proteins targeting PDGFRß and TNFα, respectively, as model compounds. RESULTS: The Al[18F]F labeling of RESCA-conjugated Z09591 was tested at different temperatures (rt to 60 °C) and with varying reaction times (12 to 60 min), and optimal conditions were then implemented on RESCA-Z0185. The optimized synthesis method was: 1.5-2.5 GBq of cyclotron produced fluorine-18 were trapped on a QMA cartridge and eluted with saline solution to react with 12 nmol of AlCl3 and form Al[18F]F. The respective RESCA-conjugated Affibody molecule (14 nmol) in NaOAc solution was added to the Al[18F]F solution and left to react at 60 °C for 12 min. The mixture was purified on a NAP5 size exclusion column and then analyzed by HPLC. The entire process took approximately 35 min, was highly reproducible, indicating the efficiency and reliability of the method. The labeled compounds demonstrated retained biological function for their respective targets after purification. CONCLUSIONS: We present a general and optimized method for Al[18F]F labeling of RESCA-conjugated Affibody molecules, which can be widely applied to this class of peptide-based imaging agents. Moreover, radiochemical yields were improved when the labeling was conducted at 37 °C or above. In vitro and in vivo assessment of the respective tracers was promising, showing retained binding capacity as well as moderate defluorination, which is usually regarded as a potential downside for RESCA-conjugated tracers.
RESUMEN
BACKGROUND: Affibody molecules represent a class of highly specific binders of particular interest for the development of highly affine target-specific radiopharmaceuticals. Their chemical synthesis is, however, intricate due to their considerable length of 58 amino acids; thus, approaches to optimize their preparation are constantly being sought. METHODS: As ultrasound assistance has recently been shown to increase the efficiency of amino acid conjugation during solid-phase peptide synthesis (SPPS), the influence of ultrasonication on the outcome of the SPPS-based preparation of the EGFR-specific affibody ZEGFR:1907 was compared to a common protocol relying on mechanical shaking. RESULTS: After the identification of a suitable solid support for the study, the execution of the systematic comparison of both approaches showed that conventional and ultrasound-assisted syntheses yielded equivalent results with analogous composition of the raw products. Further, both approaches produced the affibody in good isolated yields of >20% when applying the same optimal reagent excesses and coupling times for the conjugation of each amino acid. This indicates that, under optimal reaction conditions, the choice of solid support used has a much stronger influence on the outcome of the preparation of ZEGFR:1907 than the application of ultrasound, which did not further improve the synthesis results. CONCLUSIONS: Therefore, for the chemical synthesis of affibodies, great attention should be paid to the choice of a suitable solid support, enabling this highly interesting class of biomolecules to be obtained in good yields and to bring them more into the focus of radiopharmaceutical research.
RESUMEN
Purpose: This study aimed to assess the biodistribution and bioactivity of the affibody molecular probe 99mTc-(HE)3ZHER2:V2, prepared by genetic recombination, and to investigate its potential for targeted human epidermal growth factor receptor 2 (HER2) imaging in SKOV3 ovarian cancer and MDA-MB-361 breast cancer xenografts. Methods: Affibody molecules were generated through genetic recombination. The radiochemical purity of the 99mTc-labeled HER2 affibody was determined using reverse phase high performance liquid chromatography (RP-HPLC). Evaluation of HER2 affinity in SKOV3 ovarian cancer cells and MDA-MB-361 breast cancer cells (HER2-positive) was conducted by calculating equilibrium dissociation constants. Biodistribution of the 99mTc-labeled affibody molecular probe was assessed in Balb/c mice bearing SKOV3 tumors. Tumor targeting specificity was evaluated in Balb/c mice using SKOV3, MDA-MB-361, and AT-3 (HER2-negative) xenografts. Results: Affibody (HE)3ZHER2:V2, generated through recombinant gene expression, was successfully labeled with 99mTc, achieving a radiochemical purity of (96.0 ± 1.7)% (n = 3) as determined by RP-HPLC. This molecular probe exhibited specific binding to HER2-positive SKOV3 cells, demonstrating intense radioactive uptake. Biodistribution analysis showed rapid accumulation of 99mTc-(HE)3ZHER2:V2 in HER2-positive tumors post-administration, primarily clearing through the urinary system. Single-photon emission computed tomography imaging conducted 1-3 h after intravenous injection of 99mTc-(HE)3ZHER2:V2 into HER2-positive SKOV3 and MDA-MB-361 nude mouse models confirmed targeted uptake of the molecular probe by the tumors. Conclusions: The molecular probe 99mTc-(HE)3ZHER2:V2 developed in this study effectively targets HER2 for imaging HER2-positive SKOV3 and MDA-MB-361 xenografts in vivo. It exhibits rapid blood clearance without evident toxic effects, suggesting its potential as a valuable marker for detecting HER2 expression in tumor cells.
RESUMEN
Affibody molecules are 58-amino-acid peptides with a molecular weight of about 6.5 kDa, derived from the Z domain of Staphylococcal Protein A. Since they have been used as substitutes for antibodies in biomedicine, several therapeutic affibody molecules have been developed for clinical use. Additionally, affibody molecules have been designed for a range of different applications. This review focuses on the progress made in the last five years in the field of affibody molecules and their potential uses in medical imaging, especially in oncology and cancer treatment. It covers areas such as molecular imaging, targeted delivery of toxic drugs, and their use in combination with nanoparticles. We also highlight some current biomedical applications where affibody molecules are commonly used as a "guide." Due to their many advantages, affibody molecules offer significant potential for applications in both biochemical and medical fields.
Asunto(s)
Neoplasias , Animales , Humanos , Sistemas de Liberación de Medicamentos , Imagen Molecular , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Péptidos/química , Proteínas Recombinantes de Fusión/química , Proteína Estafilocócica A/químicaRESUMEN
Heterozygous loss-of-function mutations in the GRN gene are a common cause of frontotemporal dementia. Such mutations lead to decreased plasma and cerebrospinal fluid levels of progranulin (PGRN), a neurotrophic factor with lysosomal functions. Sortilin is a negative regulator of extracellular PGRN levels and has shown promise as a therapeutic target for frontotemporal dementia, enabling increased extracellular PGRN levels through inhibition of sortilin-mediated PGRN degradation. Here we report the development of a high-affinity sortilin-binding affibody-peptide fusion construct capable of increasing extracellular PGRN levels in vitro. By genetic fusion of a sortilin-binding affibody generated through phage display and a peptide derived from the progranulin C-terminus, an affinity protein (A3-PGRNC15*) with 185-pM affinity for sortilin was obtained. Treating PGRN-secreting and sortilin-expressing human glioblastoma U-251 cells with the fusion protein increased extracellular PGRN levels up to 2.5-fold, with an EC50 value of 1.3 nM. Our results introduce A3-PGRNC15* as a promising new agent with therapeutic potential for the treatment of frontotemporal dementia. Furthermore, the work highlights means to increase binding affinity through synergistic contribution from two orthogonal polypeptide units.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Progranulinas , Proteolisis , Proteínas Recombinantes de Fusión , Progranulinas/metabolismo , Progranulinas/genética , Humanos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Línea Celular Tumoral , Unión Proteica , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/genética , Péptidos/farmacología , Péptidos/metabolismoRESUMEN
Cancer is unquestionably a global healthcare challenge, spurring the exporation of novel treatment approaches. In recent years, nanomaterials have garnered significant interest with the greatest hopes for targeted nanoformulations due to their cell-specific delivery, improved therapeutic efficacy, and reduced systemic toxicity for the organism. The problem of successful clinical translation of nanoparticles may be related to the fact that most in vitro tests are performed at pH values of normal cells and tissues, ranging from 7.2 to 7.4. The extracellular pH values of tumors are characterized by a shift to a more acidic region in the range of 5.6-7.0 and represent a crucial target for enhancing nanoparticle delivery to cancer cells. Here we show the method of non-active protein incorporation into the surface of HER2-targeted nanoparticles to achieve optimal cellular uptake within the pH range of the tumor microenvironment. The method efficacy was confirmed in vitro and in vivo showing the maximum binding of nanoparticles to cells at a pH value 6.4. Namely, fluorescent magnetic nanoparticles, modified with HER2-recognising affibody ZHER2:342, with proven specificity in terms of HER2 recognition (with 62-fold higher cellular uptake compared to control nanoparticles) were designed for targeting cancer cells at slightly acidic pH values. The stabilizing protein, namely, bovine serum albumin, one of the major blood components with widespread availability and biocompatibility, was used for the decoration of the nanoparticle surface to alter the pH response of the targeting magnetic conjugates. The optimally designed nanoparticles showed a bell-shaped dependency of interaction with cancer cells in the pH range of 5.6-8.0 with maximum cellular uptake at pH value 6.4 close to that of the tumor microenvironment. In vivo experiments revealed that after i.v. administration, BSA-decorated nanoparticles exhibited 2 times higher accumulation in tumors compared to magnetic nanoparticles modified with affibody only. Thus, we demonstrated a valid method for enhancing the specificity of targeted nanoparticle delivery to cancer cells without changing the functional components of nanoparticles.
RESUMEN
Epothilone B (Epo B), a promising antitumor compound effective against various types of cancer cells in vitro. However, its poor selectivity for tumor cells and inadequate therapeutic windows significantly limit its potential clinical application. Affibody is a class of non-immunoglobulin affinity proteins with precise targeting capability to overexpressed molecular receptors on cancer cells, has been intensively investigated due to its exceptional affinity properties. In this study, we present a targeted nanoagent self-assembled from the precursor of an affibody conjugated with Epo B via a linker containing the thioketal (tk) group that is sensitive to reactive oxygen species (ROS). The core-shell structure of the ZHER2:342-Epo B Affibody-Drug Conjugate Nanoagent (Z-E ADCN), with the cytotoxin Epo B encapsulated within the ZHER2:342 affibody corona, leads to significantly reduced side effects on normal organs. Moreover, the abundant presence of ZHER2:342 on the surface effectively enhances the targeting capacity and tumor accumulation of the drug. Z-E ADCN can be internalized by cancer cells via HER2 receptor-mediated endocytosis followed by Epo B release in response to high levels of ROS, resulting in excellent anticancer efficacy in HER2-positive tumor models.
Asunto(s)
Epotilonas , Receptor ErbB-2 , Proteínas Recombinantes de Fusión , Receptor ErbB-2/metabolismo , Animales , Humanos , Epotilonas/química , Epotilonas/farmacología , Epotilonas/uso terapéutico , Línea Celular Tumoral , Ratones , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológicoRESUMEN
PURPOSE: Fusion of Affibody molecules with an albumin-binding domain (ABD) provides targeting agents, which are suitable for radionuclide therapy. To facilitate clinical translation, the low immunogenic potential of such constructs with targeting properties conserved is required. METHODS: The HER2-targeting Affibody molecule ZHER2:2891 was fused with a deimmunized ABD variant and DOTA was conjugated to a unique C-terminal cysteine. The novel construct, PEP49989, was labelled with 177Lu. Affinity, specificity, and in vivo targeting properties of [177Lu]Lu-PEP49989 were characterised. Experimental therapy in mice with human HER2-expressing xenografts was evaluated. RESULTS: The maximum molar activity of 52 GBq/µmol [177Lu]Lu-PEP49989 was obtained. [177Lu]Lu-PEP49989 bound specifically to HER2-expressing cells in vitro and in vivo. The HER2 binding affinity of [177Lu]Lu-PEP49989 was similar to the affinity of [177Lu]Lu-ABY-027 containing the parental ABD035 variant. The renal uptake of [177Lu]Lu-PEP49989 was 1.4-fold higher, but hepatic and splenic uptake was 1.7-2-fold lower than the uptake of [177Lu]Lu-ABY-027. The median survival of xenograft-bearing mice treated with 21 MBq [177Lu]Lu-PEP49989 (> 90 days) was significantly longer than the survival of mice treated with vehicle (38 days) or trastuzumab (45 days). Treatment using a combination of [177Lu]Lu-PEP49989 and trastuzumab increased the number of complete tumour remissions. The renal and hepatic toxicity was minimal to mild. CONCLUSION: In preclinical studies, [177Lu]Lu-PEP49989 demonstrated favourable biodistribution and a strong antitumour effect, which was further enhanced by co-treatment with trastuzumab.
Asunto(s)
Lutecio , Radioisótopos , Receptor ErbB-2 , Animales , Ratones , Lutecio/uso terapéutico , Distribución Tisular , Humanos , Radioisótopos/uso terapéutico , Radioisótopos/química , Receptor ErbB-2/metabolismo , Receptor ErbB-2/inmunología , Línea Celular Tumoral , Femenino , Albúminas/química , Dominios Proteicos , Marcaje Isotópico , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/farmacología , Radiofármacos/uso terapéutico , Radiofármacos/farmacocinéticaRESUMEN
Renal fibrosis is a representative pathological feature of various chronic kidney diseases, and efficient treatment is needed. Interstitial myofibroblasts are a key driver of kidney fibrosis, which is dependent on the binding of TGF-ß1 to type I TGF-ß receptor (TßRI) and TGF-ß1-related signaling pathways. Therefore, attenuating TGF-ß1 activity by competing with TGF-ß1 in myofibroblasts is an ideal strategy for treating kidney fibrosis. Recently, a novel TßRI-mimicking peptide RIPΔ demonstrated a high affinity for TGF-ß1. Thus, it could be speculated that RIPΔ may be used for anti-fibrosis therapy. Platelet-derived growth factor ß receptor (PDGFßR) is highly expressed in fibrotic kidney. In this study, we found that target peptide Z-RIPΔ, which is RIPΔ modified with PDGFßR-specific affibody ZPDGFßR, was specifically and highly taken up by TGF-ß1-activated NIH3T3 fibroblasts. Moreover, Z-RIPΔ effectively inhibited the myofibroblast proliferation, migration and fibrosis response in vitro. In vivo and ex vivo experiments showed that Z-RIPΔ specifically targeted fibrotic kidney, improved the damaged renal function, and ameliorated kidney histopathology and renal fibrosis in UUO mice. Mechanistic studies showed that Z-RIPΔ hold the stronger inhibition of the TGF-ß1/Smad and TGF-ß1/p38 pathways than unmodified RIPΔ in vitro and in vivo. Furthermore, systemic administration of Z-RIPΔ to UUO mice led to minimal toxicity to major organs. Taken together, RIPΔ modified with ZPDGFßR increased its therapeutic efficacy and reduced its systemic toxicity, making it a potential candidate for targeted therapy for kidney fibrosis.
Asunto(s)
Fibrosis , Riñón , Ratones Endogámicos C57BL , Proteínas Smad , Factor de Crecimiento Transformador beta1 , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Fibrosis/tratamiento farmacológico , Ratones , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Células 3T3 NIH , Masculino , Proteínas Smad/metabolismo , Transducción de Señal/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Péptidos/uso terapéutico , Péptidos/farmacología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Humanos , Modelos Animales de Enfermedad , Proliferación Celular/efectos de los fármacosRESUMEN
Protein developability is requisite for use in therapeutic, diagnostic, or industrial applications. Many developability assays are low throughput, which limits their utility to the later stages of protein discovery and evolution. Recent approaches enable experimental or computational assessment of many more variants, yet the breadth of applicability across protein families and developability metrics is uncertain. Here, three library-scale assays-on-yeast protease, split green fluorescent protein (GFP), and non-specific binding-were evaluated for their ability to predict two key developability outcomes (thermal stability and recombinant expression) for the small protein scaffolds affibody and fibronectin. The assays' predictive capabilities were assessed via both linear correlation and machine learning models trained on the library-scale assay data. The on-yeast protease assay is highly predictive of thermal stability for both scaffolds, and the split-GFP assay is informative of affibody thermal stability and expression. The library-scale data was used to map sequence-developability landscapes for affibody and fibronectin binding paratopes, which guides future design of variants and libraries.
Asunto(s)
Fibronectinas , Proteínas Recombinantes de Fusión , Fibronectinas/química , Fibronectinas/genética , Fibronectinas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Ingeniería de Proteínas/métodos , Biblioteca de Péptidos , Estabilidad Proteica , Unión Proteica , HumanosRESUMEN
In clinical practice, tumor-targeting diagnosis and immunotherapy against programmed death ligand 1 (PD-L1) have a significant impact. In this research, a PD-L1-antagonistic affibody dimer (ZPD-L1) was successfully prepared through Escherichia coli expression system, and conjugated with the photosensitizer of ICG via N-hydroxysuccinimide (NHS) ester to develop a novel tumor-targeting agent (ICG-ZPD-L1) for both tumor imaging diagnosis and photothermal-immunotherapy simultaneously. In vitro, ZPD-L1 could specifically bind to PD-L1-positive LLC and MC38 tumor cells, and ICG-ZPD-L1-mediated photothermal therapy (PTT) also showed excellent phototoxicity to these tumor cells. In vivo, ICG-ZPD-L1 selectively enriched into the PD-L1-positive MC38 tumor tissues, and the high-contrast optical imaging of tumors was obtained. ICG-ZPD-L1-mediated PTT exhibited a potent anti-tumor effect in vivo due to its remarkable photothermal properties. Furthermore, ICG-ZPD-L1-mediated PTT significantly induced the immunogenic cell death (ICD) of primary tumors, promoted maturation of dendritic cells (DCs), up-regulated anti-tumor immune response, enhanced immunotherapy, and superiorly inhibited the growth of metastatic tumors. In addition, ICG-ZPD-L1 showed favorable biosafety throughout the brief duration of treatment. In summary, these results suggest that ICG-ZPD-L1 is a multifunctional tumor-targeting drug integrating tumor imaging diagnosis and photothermal-immunotherapy, and has great guiding significance for the diagnosis and treatment of clinical PD-L1-positive tumor patients.
Asunto(s)
Antígeno B7-H1 , Inmunoterapia , Verde de Indocianina , Animales , Antígeno B7-H1/metabolismo , Ratones , Inmunoterapia/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacología , Línea Celular Tumoral , Terapia Fototérmica/métodos , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Fototerapia/métodosRESUMEN
Surface proteins on the membrane of nano-sized extracellular vesicles (EVs) not only play crucial roles in cell-to-cell communication, but also are specific binding targets for EV detection, isolation and tracking. The low abundance of protein biomarkers on EV surface, the formation of clusters and the complex EV surface network impose significant challenges to the study of EVs. Employing bulky sized affinity ligands, such as antibodies, in the detection and characterization of these vesicles often result in reduced sensitivity of detection or poor quantification of proteins on the EV surface. By virtue of their small size and high specificity, Affibody molecules emerge as a potential alternative to their monoclonal antibody counterparts as robust affinity ligands in EV research. In this study, we present a theoretical framework on the superiority of anti-HER2 Affibodies over anti-HER2 antibodies in labeling and detecting HER2-positive EVs, followed by the demonstration of the advantages of HER2 Affibodies in accessing EV surface and the detection of EVs through multiple types of approaches including fluorescence intensity, colorimetry, and fluorescence polarization. HER2 Affibodies outperformed by 10-fold over three HER2 antibody clones in accessing HER2-positive EVs derived from different human cancer cell lines. Furthermore, HRP-Affibody molecules could detect EVs from cancer cells spiked into human serum with at least a 2-fold higher sensitivity compared with that of their antibody counterparts. In addition, in fluorescence polarization assays in which no separation of free from bound ligand is required, FITC-labeled HER2 Affibodies could sensitively detect HER2-positive EVs with a clinically relevant limit of detection, whilst HER2 antibodies failed to detect EVs in the same conditions. With the demonstrated superiority in accessing and detecting surface targets over bulky-sized antibodies in EVs, Affibodies may become the next-generation of affinity ligands in the precise characterization and quantification of molecular architecture on the surface of EVs.
Asunto(s)
Técnicas Biosensibles , Vesículas Extracelulares , Receptor ErbB-2 , Vesículas Extracelulares/química , Humanos , Ligandos , Técnicas Biosensibles/métodos , Línea Celular Tumoral , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunologíaRESUMEN
A critical parameter during the development of protein therapeutics is to endow them with suitable pharmacokinetic and pharmacodynamic properties. Small protein drugs are quickly eliminated by kidney filtration, and in vivo half-life extension is therefore often desired. Here, different half-life extension technologies were studied where PAS polypeptides (PAS300, PAS600), XTEN polypeptides (XTEN288, XTEN576), and an albumin binding domain (ABD) were compared for half-life extension of an anti-human epidermal growth factor receptor 2 (HER2) affibody-drug conjugate. The results showed that extension with the PAS or XTEN polypeptides or the addition of the ABD lowered the affinity for HER2 to some extent but did not negatively affect the cytotoxic potential. The half-lives in mice ranged from 7.3 h for the construct including PAS300 to 11.6 h for the construct including PAS600. The highest absolute tumor uptake was found for the construct including the ABD, which was 60 to 160% higher than the PASylated or XTENylated constructs, even though it did not have the longest half-life (9.0 h). A comparison of the tumor-to-normal-organ ratios showed the best overall performance of the ABD-fused construct. In conclusion, PASylation, XTENylation, and the addition of an ABD are viable strategies for half-life extension of affibody-drug conjugates, with the best performance observed for the construct including the ABD.
Asunto(s)
Péptidos , Receptor ErbB-2 , Animales , Semivida , Receptor ErbB-2/metabolismo , Humanos , Línea Celular Tumoral , Péptidos/química , Péptidos/farmacocinética , Péptidos/administración & dosificación , Femenino , Ratones Desnudos , Albúminas/química , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/administración & dosificación , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/química , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inmunoconjugados/farmacocinética , Inmunoconjugados/química , Inmunoconjugados/administración & dosificación , Ratones Endogámicos BALB C , Distribución TisularRESUMEN
Human epidermal growth factor receptor 2 (HER2) is a major prognostic and predictive marker overexpressed in 15-20% of breast cancers. The diagnostic reference standard for selecting patients for HER2-targeted therapy is based on the analysis of tumor biopsies. Previously patients were defined as HER2-positive or -negative; however, with the approval of novel treatment options, specifically the antibody-drug conjugate trastuzumab deruxtecan, many breast cancer patients with tumors expressing low levels of HER2 have become eligible for HER2-targeted therapy. Such patients will need to be reliably identified by suitable diagnostic methods. Biopsy-based diagnostics are invasive, and repeat biopsies are not always feasible. They cannot visualize the heterogeneity of HER2 expression, leading to a substantial number of misdiagnosed patients. An alternative and highly accurate diagnostic method is molecular imaging with radiotracers. In the case of HER2, various studies demonstrate the clinical utility and feasibility of such approaches. Radiotracers based on Affibody® molecules, small, engineered affinity proteins with a size of ~6.5 kDa, are clinically validated molecules with favorable characteristics for imaging. In this article, we summarize the HER2-targeted therapeutic landscape, describe our experience with imaging diagnostics for HER2, and review the currently available clinical data on HER2-Affibody-based molecular imaging as a novel diagnostic tool in breast cancer and beyond.
RESUMEN
Targeted therapy is an attractive approach for treating infectious diseases. Affibody molecules have similar capability to antibodies that facilitate molecular recognition in both diagnostic and therapeutic applications. Targeting major outer membrane protein (MOMP) for treating infection of Chlamydia trachomatis, one of the most common sexually transmitted pathogens, is a promising therapeutic approach. Previously, we have reported a MOMP-specific affibody (ZMOMP:461) from phage display library. Here, we first fused it with modified Pseudomonas Exotoxin (PE38KDEL) and a cell-penetrating peptide (CPP) to develop an affitoxin, Z461X-CPP. We then verified the addition of both toxin and CPPs that did not affect the affinitive capability of ZMOMP:461 to MOMP. Upon uptake by C.trachomatis-infected cells, Z461X-CPP induced cell apoptosis in vitro. In animal model, Z461X significantly shortened the duration of C. trachomatis infection and prevented pathological damage in mouse reproductive system. These findings provide compelling evidence that the MOMP-specific affitoxin has great potential for targeting therapy of C. trachomatis infection.
RESUMEN
BACKGROUND: Radionuclide molecular imaging can be used to visualize the expression levels of molecular targets. Affibody molecules, small and high affinity non-immunoglobulin scaffold-based proteins, have demonstrated promising properties as targeting vectors for radionuclide tumour imaging of different molecular targets. B7-H3 (CD276), an immune checkpoint protein belonging to the B7 family, is overexpressed in different types of human malignancies. Visualization of overexpression of B7-H3 in malignancies enables stratification of patients for personalized therapies. Affinity maturation of anti-B7-H3 Affibody molecules as an approach to improve the binding affinity and targeting properties was recently investigated. In this study, we tested the hypothesis that a dimeric format may be an alternative option to increase the apparent affinity of Affibody molecules to B7-H3 and accordingly improve imaging contrast. RESULTS: Two dimeric variants of anti-B7-H3 Affibody molecules were produced (designated ZAC12*-ZAC12*-GGGC and ZAC12*-ZTaq_3-GGGC). Both variants were labelled with Tc-99m (99mTc) and demonstrated specific binding to B7-H3-expressing cells in vitro. [99mTc]Tc-ZAC12*-ZAC12*-GGGC showed subnanomolar affinity (KD1=0.28 ± 0.10 nM, weight = 68%), which was 7.6-fold higher than for [99mTc]Tc-ZAC12*-ZTaq_3-GGGC (KD=2.1 ± 0.9 nM). Head-to-head biodistribution of both dimeric variants of Affibody molecules compared with monomeric affinity matured SYNT-179 (all labelled with 99mTc) in mice bearing B7-H3-expressing SKOV-3 xenografts demonstrates that both dimers have lower tumour uptake and lower tumour-to-organ ratios compared to the SYNT-179 Affibody molecule. CONCLUSION: The improved functional affinity by dimerization does not compensate the disadvantage of increased molecular size for imaging purposes.