Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39008065

RESUMEN

PURPOSE: Fusion of Affibody molecules with an albumin-binding domain (ABD) provides targeting agents, which are suitable for radionuclide therapy. To facilitate clinical translation, the low immunogenic potential of such constructs with targeting properties conserved is required. METHODS: The HER2-targeting Affibody molecule ZHER2:2891 was fused with a deimmunized ABD variant and DOTA was conjugated to a unique C-terminal cysteine. The novel construct, PEP49989, was labelled with 177Lu. Affinity, specificity, and in vivo targeting properties of [177Lu]Lu-PEP49989 were characterised. Experimental therapy in mice with human HER2-expressing xenografts was evaluated. RESULTS: The maximum molar activity of 52 GBq/µmol [177Lu]Lu-PEP49989 was obtained. [177Lu]Lu-PEP49989 bound specifically to HER2-expressing cells in vitro and in vivo. The HER2 binding affinity of [177Lu]Lu-PEP49989 was similar to the affinity of [177Lu]Lu-ABY-027 containing the parental ABD035 variant. The renal uptake of [177Lu]Lu-PEP49989 was 1.4-fold higher, but hepatic and splenic uptake was 1.7-2-fold lower than the uptake of [177Lu]Lu-ABY-027. The median survival of xenograft-bearing mice treated with 21 MBq [177Lu]Lu-PEP49989 (> 90 days) was significantly longer than the survival of mice treated with vehicle (38 days) or trastuzumab (45 days). Treatment using a combination of [177Lu]Lu-PEP49989 and trastuzumab increased the number of complete tumour remissions. The renal and hepatic toxicity was minimal to mild. CONCLUSION: In preclinical studies, [177Lu]Lu-PEP49989 demonstrated favourable biodistribution and a strong antitumour effect, which was further enhanced by co-treatment with trastuzumab.

2.
Biomedicines ; 12(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791050

RESUMEN

Human epidermal growth factor receptor 2 (HER2) is a major prognostic and predictive marker overexpressed in 15-20% of breast cancers. The diagnostic reference standard for selecting patients for HER2-targeted therapy is based on the analysis of tumor biopsies. Previously patients were defined as HER2-positive or -negative; however, with the approval of novel treatment options, specifically the antibody-drug conjugate trastuzumab deruxtecan, many breast cancer patients with tumors expressing low levels of HER2 have become eligible for HER2-targeted therapy. Such patients will need to be reliably identified by suitable diagnostic methods. Biopsy-based diagnostics are invasive, and repeat biopsies are not always feasible. They cannot visualize the heterogeneity of HER2 expression, leading to a substantial number of misdiagnosed patients. An alternative and highly accurate diagnostic method is molecular imaging with radiotracers. In the case of HER2, various studies demonstrate the clinical utility and feasibility of such approaches. Radiotracers based on Affibody® molecules, small, engineered affinity proteins with a size of ~6.5 kDa, are clinically validated molecules with favorable characteristics for imaging. In this article, we summarize the HER2-targeted therapeutic landscape, describe our experience with imaging diagnostics for HER2, and review the currently available clinical data on HER2-Affibody-based molecular imaging as a novel diagnostic tool in breast cancer and beyond.

3.
J Infect Dis ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723186

RESUMEN

Targeted therapy is an attractive approach for treating infectious diseases. Affibody molecules have similar capability to antibodies that facilitate molecular recognition in both diagnostic and therapeutic applications. Targeting major outer membrane protein (MOMP) for treating infection of Chlamydia trachomatis, one of the most common sexually transmitted pathogens, is a promising therapeutic approach. Previously, we have reported a MOMP-specific affibody (ZMOMP:461) from phage display library. Here, we first fused it with modified Pseudomonas Exotoxin (PE38KDEL) and a cell-penetrating peptide (CPP) to develop an affitoxin, Z461X-CPP. We then verified the addition of both toxin and CPPs that did not affect the affinitive capability of ZMOMP:461 to MOMP. Upon uptake by C.trachomatis-infected cells, Z461X-CPP induced cell apoptosis in vitro. In animal model, Z461X significantly shortened the duration of C. trachomatis infection and prevented pathological damage in mouse reproductive system. These findings provide compelling evidence that the MOMP-specific affitoxin has great potential for targeting therapy of C. trachomatis infection.

4.
Methods Mol Biol ; 2681: 99-112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405645

RESUMEN

This review describes the principles for generation of affibody molecules using bacterial display on the Gram-negative Escherichia coli and the Gram-positive Staphylococcus carnosus, respectively. Affibody molecules are small and robust alternative scaffold proteins that have been explored for therapeutic, diagnostic, and biotechnological applications. They typically exhibit high-stability, affinity, and specificity with high modularity of functional domains. Due to the small size of the scaffold, affibody molecules are rapidly excreted through renal filtration and can efficiently extravasate from blood and penetrate tissues. Preclinical and clinical studies have demonstrated that affibody molecules are promising and safe complements to antibodies for in vivo diagnostic imaging and therapy. Sorting of affibody libraries displayed on bacteria using fluorescence-activated cell sorting is an effective and straightforward methodology and has been used successfully to generate novel affibody molecules with high affinity for a diverse range of molecular targets.


Asunto(s)
Biotecnología , Proteínas Recombinantes de Fusión/genética
5.
J Nucl Med ; 64(9): 1364-1370, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37442602

RESUMEN

Imaging using the human epidermal growth factor receptor 2 (HER2)-binding tracer 68Ga-labeled ZHER2:2891-Cys-MMA-DOTA ([68Ga]Ga-ABY-025) was shown to reflect HER2 status determined by immunohistochemistry and in situ hybridization in metastatic breast cancer (MBC). This single-center open-label phase II study investigated how [68Ga]Ga-ABY-025 uptake corresponds to biopsy results and early treatment response in both primary breast cancer (PBC) planned for neoadjuvant chemotherapy and MBC. Methods: Forty patients with known positive HER2 status were included: 19 with PBC and 21 with MBC (median, 3 previous treatments). [68Ga]Ga-ABY-025 PET/CT, [18F]F-FDG PET/CT, and core-needle biopsies from targeted lesions were performed at baseline. [18F]F-FDG PET/CT was repeated after 2 cycles of therapy to calculate the directional change in tumor lesion glycolysis (Δ-TLG). The largest lesions (up to 5) were evaluated in all 3 scans per patient. SUVs from [68Ga]Ga-ABY-025 PET/CT were compared with the biopsied HER2 status and Δ-TLG by receiver operating characteristic analyses. Results: Trial biopsies were HER2-positive in 31 patients, HER2-negative in 6 patients, and borderline HER2-positive in 3 patients. The [68Ga]Ga-ABY-025 PET/CT cutoff SUVmax of 6.0 predicted a Δ-TLG lower than -25% with 86% sensitivity and 67% specificity in soft-tissue lesions (area under the curve, 0.74 [95% CI, 0.67-0.82]; P = 0.01). Compared with the HER2 status, this cutoff resulted in clinically relevant discordant findings in 12 of 40 patients. Metabolic response (Δ-TLG) was more pronounced in PBC (-71% [95% CI, -58% to -83%]; P < 0.0001) than in MBC (-27% [95% CI, -16% to -38%]; P < 0.0001), but [68Ga]Ga-ABY-025 SUVmax was similar in both with a mean SUVmax of 9.8 (95% CI, 6.3-13.3) and 13.9 (95% CI, 10.5-17.2), respectively (P = 0.10). In multivariate analysis, global Δ-TLG was positively associated with the number of previous treatments (P = 0.0004) and negatively associated with [68Ga]Ga-ABY-025 PET/CT SUVmax (P = 0.018) but not with HER2 status (P = 0.09). Conclusion: [68Ga]Ga-ABY-025 PET/CT predicted early metabolic response to HER2-targeted therapy in HER2-positive breast cancer. Metabolic response was attenuated in recurrent disease. [68Ga]Ga-ABY-025 PET/CT appears to provide an estimate of the HER2 expression required to induce tumor metabolic remission by targeted therapies and might be useful as an adjunct diagnostic tool.


Asunto(s)
Neoplasias de la Mama , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Femenino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias de la Mama/metabolismo , Radioisótopos de Galio/uso terapéutico , Fluorodesoxiglucosa F18/uso terapéutico , Receptor ErbB-2/metabolismo
6.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37513868

RESUMEN

The development of biologics for diseases affecting the central nervous system has been less successful compared to other disease areas, in part due to the challenge of delivering drugs to the brain. The most well-investigated and successful strategy for increasing brain uptake of biological drugs is using receptor-mediated transcytosis over the blood-brain barrier and, in particular, targeting the transferrin receptor-1 (TfR). Here, affibody molecules are selected for TfR using phage display technology. The two most interesting candidates demonstrated binding to human TfR, cross-reactivity to the murine orthologue, non-competitive binding with human transferrin, and binding to TfR-expressing brain endothelial cell lines. Single amino acid mutagenesis of the affibody molecules revealed the binding contribution of individual residues and was used to develop second-generation variants with improved properties. The second-generation variants were further analyzed and showed an ability for transcytosis in an in vitro transwell assay. The new TfR-specific affibody molecules have the potential for the development of small brain shuttles for increasing the uptake of various compounds to the central nervous system and thus warrant further investigations.

7.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373272

RESUMEN

Antibodies are considered highly specific therapeutic agents in cancer medicines, and numerous formats have been developed. Among them, bispecific antibodies (BsAbs) have gained a lot of attention as a next-generation strategy for cancer therapy. However, poor tumor penetration is a major challenge because of their large size and thus contributes to suboptimal responses within cancer cells. On the other hand, affibody molecules are a new class of engineered affinity proteins and have achieved several promising results with their applications in molecular imaging diagnostics and targeted tumor therapy. In this study, an alternative format for bispecific molecules was constructed and investigated, named ZLMP110-277 and ZLMP277-110, that targets Epstein-Barr virus latent membrane protein 1 (LMP1) and latent membrane protein 2 (LMP2). Surface plasmon resonance (SPR), indirect immunofluorescence assay, co-immunoprecipitation, and near-infrared (NIR) imaging clearly demonstrated that ZLMP110-277 and ZLMP277-110 have good binding affinity and specificity for both LMP1 and LMP2 in vitro and in vivo. Moreover, ZLMP110-277 and ZLMP277-110, especially ZLMP277-110, significantly reduced the cell viability of C666-1 and CNE-2Z as compared to their monospecific counterparts. ZLMP110-277 and ZLMP277-110 could inhibit phosphorylation of proteins modulated by the MEK/ERK/p90RSK signaling pathway, ultimately leading to suppression of oncogene nuclear translocations. Furthermore, ZLMP110-277 and ZLMP277-110 showed significant antitumor efficacy in nasopharyngeal carcinoma-bearing nude mice. Overall, our results demonstrated that ZLMP110-277 and ZLMP277-110, especially ZLMP277-110, are promising novel prognostic indicators for molecular imaging and targeted tumor therapy of EBV-associated nasopharyngeal carcinoma.


Asunto(s)
Carcinoma , Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Animales , Ratones , Carcinoma Nasofaríngeo , Herpesvirus Humano 4/fisiología , Carcinoma/patología , Neoplasias Nasofaríngeas/patología , Ratones Desnudos , Proteínas de la Matriz Viral/metabolismo
8.
Biochem Biophys Res Commun ; 655: 75-81, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36933310

RESUMEN

Within the field of combinatorial protein engineering there is a great demand for robust high-throughput selection platforms that allow for unbiased protein library display, affinity-based screening, and amplification of selected clones. We have previously described the development of a staphylococcal display system used for displaying both alternative-scaffolds and antibody-derived proteins. In this study, the objective was to generate an improved expression vector for displaying and screening a high-complexity naïve affibody library, and to facilitate downstream validation of isolated clones. A high-affinity normalization tag, consisting of two ABD-moieties, was introduced to simplify off-rate screening procedures. In addition, the vector was furnished with a TEV protease substrate recognition sequence upstream of the protein library which enables proteolytic processing of the displayed construct for improved binding signal. In the library design, 13 of the 58 surface-exposed amino acid positions were selected for full randomization (except proline and cysteine) using trinucleotide technology. The genetic library was successfully transformed to Staphylococcus carnosus cells, generating a protein library exceeding 109 members. De novo selections against three target proteins (CD14, MAPK9 and the affibody ZEGFR:2377) were successfully performed using magnetic bead-based capture followed by flow-cytometric sorting, yielding affibody molecules binding their respective target with nanomolar affinity. Taken together, the results demonstrate the feasibility of the staphylococcal display system and the proposed selection procedure to generate new affibody molecules with high affinity.


Asunto(s)
Biblioteca de Péptidos , Ingeniería de Proteínas , Citometría de Flujo/métodos , Ingeniería de Proteínas/métodos , Unión Proteica
9.
Pharmaceutics ; 14(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890370

RESUMEN

The Insulin-like growth factor-1 receptor (IGF-1R) is a molecular target for several monoclonal antibodies undergoing clinical evaluation as anticancer therapeutics. The non-invasive detection of IGF-1R expression in tumors might enable stratification of patients for specific treatment and improve the outcome of both clinical trials and routine treatment. The affibody molecule ZIGF-1R:4551 binds specifically to IGF-1R with subnanomolar affinity. The goal of this study was to evaluate the 68Ga and 111In-labeled affibody construct NODAGA-(HE)3-ZIGF-1R:4551 for the imaging of IGF-1R expression, using PET and SPECT. The labeling was efficient and provided stable coupling of both radionuclides. The two imaging probes, [68Ga]Ga-NODAGA-(HE)3-ZIGF-1R:4551 and [111In]In-NODAGA-(HE)3-ZIGF-1R:4551, demonstrated specific binding to IGF-1R-expressing human cancer cell lines in vitro and to IGF-1R-expressing xenografts in mice. Preclinical PET and SPECT/CT imaging demonstrated visualization of IGF-1R-expressing xenografts already one hour after injection. The tumor-to-blood ratios at 3 h after injection were 7.8 ± 0.2 and 8.0 ± 0.6 for [68Ga]Ga-NODAGA-(HE)3-ZIGF-1R:4551 and [111In]In-NODAGA-(HE)3-ZIGF-1R:4551, respectively. In conclusion, a molecular design of the ZIGF-1R:4551 affibody molecule, including placement of a (HE)3-tag on the N-terminus and site-specific coupling of a NODAGA chelator on the C-terminus, provides a tracer with improved imaging properties for visualization of IGF-1R in malignant tumors, using PET and SPECT.

10.
BMC Med ; 20(1): 16, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35057796

RESUMEN

BACKGROUND: Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients' outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response. METHODS: EGFR-specific affibody molecule (ZEGFR:03115) was conjugated to IR700. The response to ZEGFR:03115-IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used. RESULTS: In vitro findings confirmed the ability of ZEGFR:03115-IR700 to produce reactive oxygen species upon light irradiation. ZEGFR:03115-IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T2*w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours. CONCLUSIONS: Our data underline the potential of ZEGFR:03115-IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.


Asunto(s)
Glioblastoma , Animales , Autoanticuerpos , Línea Celular Tumoral , Receptores ErbB , Glioblastoma/terapia , Humanos , Inmunidad , Inmunoterapia , Ratones , Recurrencia Local de Neoplasia , Fármacos Fotosensibilizantes , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Front Cell Infect Microbiol ; 12: 1078504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36683690

RESUMEN

Nasopharyngeal carcinoma (NPC), is an Epstein-Barr virus (EBV) associated malignancy most common in Southern China and Southeast Asia. In southern China, it is one of the major causes of cancer-related death. Despite improvement in radiotherapy and chemotherapy techniques, locoregional recurrence and distant metastasis remains the major causes for failure of treatment in NPC patients. Therefore, finding new specific drug targets for treatment interventions are urgently needed. Here, we report three potential ZLMP1-C affibody molecules (ZLMP1-C15, ZLMP1-C114 and ZLMP1-C277) that showed specific binding interactions for recombinant and native EBV LMP1 as determined by epitope mapping, co-localization and co-immunoprecipitation assays. The ZLMP1-C affibody molecules exhibited high antitumor effects on EBV-positive NPC cell lines and displayed minimal cytotoxicity towards EBV-negative NPC cell line. Moreover, ZLMP1-C277 showed higher antitumor efficacy than ZLMP1-C15 and ZLMP1-C114 affibody molecules. The ability of ZLMP1-C277 decrease the phosphorylation levels of up-stream activator phospho-Raf-1(Ser338), phospho-MEK1/2(Ser217/Ser221), phospho-ERK1/2(Thr202/Thr204), thereby leading to downstream suppression of phospho-p90RSK(Ser380) and transcription factor c-Fos. Importantly, tumor growth was reduced in tumor-bearing mice treated with ZLMP1-C277 and caused no apparent toxicity. Taken together, our findings provide evidence that ZLMP1-C277 as a promising therapeutic agent in EBV-associated NPC.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Herpesvirus Humano 4/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/virología , Recurrencia Local de Neoplasia , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Nucl Med ; 63(7): 1046-1051, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34711617

RESUMEN

Treatment of patients with human epidermal growth factor receptor 2 (HER2)-expressing tumors using the monoclonal antibody trastuzumab increases survival. The Affibody-based peptide nucleic acid (PNA)-mediated pretargeted radionuclide therapy has demonstrated efficacy against HER2-expressing xenografts in mice. Structural studies suggest that Affibody molecules and trastuzumab bind to different epitopes on HER2. The aim of this study was to test the hypothesis that a combination of PNA-mediated pretargeted radionuclide therapy and trastuzumab treatment of HER2-expressing xenografts can extend survival compared with monotherapies. Methods: Mutual interference of the primary pretargeting probe ZHER2:342-SR-HP1 and trastuzumab in binding to HER2-expressing cell lines was investigated in vitro. Experimental therapy evaluated the survival of mice bearing HER2-expressing SKOV-3 xenografts after treatment with vehicle, trastuzumab only, pretargeting using Affibody-PNA chimera ZHER2:342-SR-HP1 and complementary probe 177Lu-HP2, and combination of trastuzumab and pretargeting. The ethical permit limited the study to 90 d. The animals' weights were monitored during the study. After study termination, samples of liver and kidneys were evaluated by a veterinary pathologist for toxicity signs. Results: The presence of a large molar excess of trastuzumab had no influence on the affinity of ZHER2:342-SR-HP1 binding to HER2-expressing cells in vitro. The affinity of trastuzumab was not affected by a large excess of ZHER2:342-SR-HP1 The median survival of mice treated with trastuzumab (75.5 d) was significantly longer than the survival of mice treated with a vehicle (59.5 d). Median survival of mice treated with pretargeting was not reached by day 90. Six mice of 10 in this group survived, and 2 had complete remission. All mice in the combination treatment group survived, and tumors in 7 mice had disappeared at study termination. There was no significant difference between animal weights in the different treatment groups. No significant pathologic alterations were detected in livers and kidneys of treated animals. Conclusion: Treatment of mice bearing HER2-expressing xenografts with the combination of trastuzumab and Affibody-mediated PNA-based radionuclide pretargeting significantly increased survival compared with monotherapies. Cotreatment was not toxic for normal tissues.


Asunto(s)
Neoplasias , Ácidos Nucleicos de Péptidos , Trastuzumab , Animales , Proteínas Cromosómicas no Histona , Humanos , Ratones , Ácidos Nucleicos de Péptidos/farmacología , Radioisótopos , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancers (Basel) ; 13(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638277

RESUMEN

HER3 (human epidermal growth factor receptor type 3) is a challenging target for diagnostic radionuclide molecular imaging due to the relatively modest overexpression in tumors and substantial expression in healthy organs. In this study, we compared four HER3-targeting PET tracers based on different types of targeting molecules in a preclinical model: the 89Zr-labeled therapeutic antibody seribantumab, a seribantumab-derived F(ab)2-fragment labeled with 89Zr and 68Ga, and the 68Ga-labeled affibody molecule [68Ga]Ga-ZHER3. The novel conjugates were radiolabeled and characterized in vitro using HER3-expressing BxPC-3 and DU145 human cancer cells. Biodistribution was studied using Balb/c nu/nu mice bearing BxPC-3 xenografts. HER3-negative RAMOS xenografts were used to demonstrate binding specificity in vivo. Autoradiography was conducted on the excised tumors. nanoPET/CT imaging was performed. New conjugates specifically bound to HER3 in vitro and in vivo. [68Ga]Ga-DFO-seribantumab-F(ab')2 was considered unsuitable for imaging due to the low stability and high uptake in normal organs. The highest tumor-to-non-tumor contrast with [89Zr]Zr-DFO-seribantumab and [89Zr]Zr-DFO-seribantumab-F(ab')2 was achieved at 96 h and 48 h pi, respectively. Despite lower tumor uptake, [68Ga]Ga-ZHER3 provided the best imaging contrast due to the fastest clearance from blood and normal organs. The results of our study suggest that affibody-based tracers are more suitable for PET imaging of HER3 expression than antibody- and antibody-fragment-based tracers.

14.
Appl Microbiol Biotechnol ; 105(19): 7283-7293, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34505914

RESUMEN

Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) latent infection and is common in Southern China and Southeast Asia. The viral latent membrane proteins LMP1 and LMP2 are persistently expressed in NPC tissues; the cytoplasmic domain of LMP1 (LMP1 C-terminal) and LMP2A (LMP2A N-terminal) proteins is essential for maintenance of latency and can alter host cell signaling to facilitate tumor growth and progression. Thus, targeting LMP1 or LMP2 oncoprotein has been an increasing interest for diagnosis and targeted therapy of NPC. Affibody molecules, a new class of small-affinity engineered scaffold proteins, have demonstrated high potential for therapeutics, diagnostics, and biotechnological applications. More recently, radiolabelled HER2-specific affibody molecules have demonstrated to be useful in imaging of HER2 expressing tumor. In this study, we report three novel EBV LMP1 C-terminal (EBV LMP1-C) domain affibody molecules (ZLMP1-C15, ZLMP1-C114, and ZLMP1-C277) were selected by biopanning from a random-peptide displayed phage library and used for molecular imaging in tumor-bearing nude mice. Surface plasmon resonance (SPR), indirect immunofluorescence, and immunohistochemistry (IHC) clearly showed that all three selected affibody molecules have high affinity and specificity in binding to EBV LMP1 protein. Moreover, in vivo tumor imaging revealed that Dylight-755-labeled affibody molecules accumulated rapidly in tumor site after injection (1 h) and then were continuously maintained for 24 h in EBV-positive NPC xenograft mice model. In conclusion, our findings highlight the potential use of ZLMP1-C affibody molecules as tumor-specific molecular imaging agents of EBV-associated NPC.Key points• We screened three novel affibody molecules (ZLMP1-C15, ZLMP1-C114, and ZLMP1-C277) targeting EBV LMP1-C terminal domain• ZLMP1-C recognize the recombinant and native LMP1-C with high affinity and specificity• ZLMP1-C can be used for molecular imaging.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Animales , Infecciones por Virus de Epstein-Barr/diagnóstico por imagen , Herpesvirus Humano 4 , Ratones , Ratones Desnudos , Imagen Molecular , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico por imagen
15.
Front Cell Dev Biol ; 9: 677867, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34109181

RESUMEN

Despite prophylactic vaccination campaigns, high-risk human papillomavirus (HPV)-induced cervical cancer remains a significant health threat among women, especially in developing countries. The initial occurrence and consequent progression of this cancer type primarily rely on, E6 and E7, two key viral oncogenes expressed constitutively, inducing carcinogenesis. Thus, E6/E7 have been proposed as ideal targets for HPV-related cancer diagnosis and treatment. In this study, three novel HPV16 E6-binding affibody molecules (ZHPV16E61115, ZHPV16E61171, and ZHPV16E61235) were isolated from a randomized phage display library and cloned for bacterial production. These affibody molecules showed high binding affinity and specificity for recombinant and native HPV16 E6 as determined by surface plasmon resonance, indirect immunofluorescence, immunohistochemistry, and near-infrared small animal optical imaging in vitro and in vivo. Moreover, by binding to HPV16 E6 protein, ZHPV16E61235 blocked E6-mediated p53 degradation, which increased the expression of some key p53 target genes, including BAX, PUMA and p21, and thereby selectively reduced the viability and proliferation of HPV16-positive cells. Importantly, ZHPV16E61235 was applied in combination with HPV16 E7-binding affibody ZHPV16E7384 to simultaneously target the HPV16 E6/E7 oncoproteins, and this combination inhibited cell proliferation more potently than either modality alone. Mechanistic studies revealed that the synergistic antiproliferative activity depends primarily on the induction of cell apoptosis and senescence but not cell cycle arrest. Our findings provide strong evidence that three novel HPV16 E6-binding affibody molecules could form a novel basis for the development of rational strategies for molecular imaging and targeted therapy in HPV16-positive preneoplastic and neoplastic lesions.

16.
Cancers (Basel) ; 13(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525578

RESUMEN

Affibody-mediated PNA-based pretargeting is a promising approach to radionuclide therapy of HER2-expressing tumors. In this study, we test the hypothesis that shortening the PNA pretargeting probes would increase the tumor-to-kidney dose ratio. The primary probe ZHER2:342-SR-HP15 and the complementary secondary probes HP16, HP17, and HP18, containing 9, 12, and 15 nucleobases, respectively, and carrying a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator were designed, synthesized, characterized in vitro, and labeled with 177Lu. In vitro pretargeting was studied in HER2-expressing SKOV3 and BT474 cell lines. The biodistribution of these novel probes was evaluated in immunodeficient mice bearing SKOV3 xenografts and compared to the previously studied [177Lu]Lu-HP2. Characterization confirmed the formation of high-affinity duplexes between HP15 and the secondary probes, with the affinity correlating with the length of the complementary PNA sequences. All the PNA-based probes were bound specifically to HER2-expressing cells in vitro. In vivo studies demonstrated HER2-specific uptake of all 177Lu-labeled probes in xenografts in a pretargeting setting. The ratio of cumulated radioactivity in the tumor to the radioactivity in kidneys was dependent on the secondary probe's size and decreased with an increased number of nucleobases. The shortest PNA probe, [177Lu]Lu-HP16, showed the highest tumor-to-kidney ratio. [177Lu]Lu-HP16 is the most promising secondary probe for affibody-mediated tumor pretargeting.

17.
Appl Microbiol Biotechnol ; 105(4): 1477-1487, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33521848

RESUMEN

Chlamydia trachomatis (C. trachomatis) is the leading cause of preventable blindness worldwide and the most prevalent cause of bacterial sexually transmitted diseases. At present, there is no available vaccine, and recurrences after antibiotics treatment are substantial problems. Major outer membrane protein (MOMP) accounts for 60% of the outer mass of C. trachomatis, functioning as trimeric porin, and it is highly antigenic. Therefore, MOMP is the most promising candidate for vaccine developing and target therapy of Chlamydia. Affibody, a new class of affinity ligands derived from the Z-domain in the binding region of Staphylococcus aureus protein A, has been the focus of researchers as a viable alternative to antibodies. In this study, the MOMP-targeted affibody molecule (ZMOMP:461) was screened by phage-displayed peptide library. Further, the affinity and specificity were characterized by surface plasmon resonance (SPR) and Western blot. Immunofluorescence assay (IFA) indicated that the MOMP-binding affibody could recognize native MOMP in HeLa229 cells infected C. trachomatis. Immunoprecipitation assay confirmed further that ZMOMP:461 molecule specifically recognizes the epitope on relaxed trimer MOMP. Our findings provide strong evidence that affibody molecule (ZMOMP:461) serves as substitute for MOMP antibody for biological applications and has a great potential for delivering drugs for target therapy. KEY POINTS : • We screened a novel affibody molecule ZMOMP:461 targeting Chlamydia trachomatis MOMP. • ZMOMP:461 recognizes the recombinant and native MOMP with high affinity and specificity. • ZMOMP:461 could be internalized into live target cells.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Anticuerpos Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Epítopos , Humanos , Porinas
18.
Mol Imaging Biol ; 23(2): 241-249, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33098025

RESUMEN

PURPOSE: In vivo imaging of programmed death ligand 1 (PD-L1) during immunotherapy could potentially monitor changing PD-L1 expression and PD-L1 expression heterogeneity within and across tumors. Some protein constructs can be used for same-day positron emission tomography (PET) imaging. Previously, we evaluated the PD-L1-targeting Affibody molecule [18F]AlF-NOTA-ZPD-L1_1 as a PET tracer in a mouse tumor model of human PD-L1 expression. In this study, we evaluated the affinity-matured Affibody molecule ZPD-L1_4, to determine if improved affinity for PD-L1 resulted in increased in vivo targeting of PD-L1. PROCEDURES: ZPD-L1_4 was conjugated with NOTA and radiolabeled with either [18F]AlF or 68Ga. [18F]AlF-NOTA-ZPD-L1_4 and [68Ga]NOTA-ZPD-L1_4 were evaluated in immunocompromised mice with LOX (PD-L1+) and SUDHL6 (PD-L1-) tumors with PET and ex vivo biodistribution measurements. In addition, whole-body PET studies were performed in rhesus monkeys to predict human biodistribution in a model with tracer binding to endogenous PD-L1, and to calculate absorbed radiation doses. RESULTS: Ex vivo biodistribution measurements showed that both tracers had > 25 fold higher accumulation in LOX tumors than SUDHL6 ([18F]AlF-NOTA-ZPD-L1_4: LOX: 8.7 ± 0.7 %ID/g (N = 4) SUDHL6: 0.2 ± 0.01 %ID/g (N = 6), [68Ga]NOTA-ZPD-L1_4: LOX: 15.8 ± 1.0 %ID/g (N = 6) SUDHL6: 0.6 ± 0.1 %ID/g (N = 6)), considerably higher than ZPD-L1_1. In rhesus monkeys, both PET tracers showed fast clearance through kidneys and low background signal in the liver ([18F]AlF-NOTA-ZPD-L1_4: 1.26 ± 0.13 SUV, [68Ga]NOTA-ZPD-L1_4: 1.11 ± 0.06 SUV). PD-L1-expressing lymph nodes were visible in PET images, indicating in vivo PD-L1 targeting. Dosimetry estimates suggest that both PET tracers can be used for repeated clinical studies, although high kidney accumulation may limit allowable radioactive doses. CONCLUSIONS: [18F]AlF-NOTA-ZPD-L1_4 and [68Ga]NOTA-ZPD-L1_4 are promising candidates for same-day clinical PD-L1 PET imaging, warranting clinical evaluation. The ability to use either [18F] or [68Ga] may expand access to clinical sites.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Antígeno B7-H1/metabolismo , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiometría/métodos , Radiofármacos/farmacocinética , Animales , Anticuerpos Monoclonales/administración & dosificación , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Radioisótopos de Flúor , Radioisótopos de Galio , Humanos , Inmunoterapia/métodos , Macaca mulatta , Ratones , Imagen Molecular/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Radiofármacos/administración & dosificación , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Molecules ; 25(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526905

RESUMEN

Affibody molecules are the most studied class of engineered scaffold proteins (ESPs) in radionuclide molecular imaging. Attempts to use affibody molecules directly labelled with radiometals for targeted radionuclide therapy were hampered by the high uptake and retention of radioactivity in kidneys. Several promising strategies have been implemented to circumvent this problem. Here, we investigated whether a pharmacological approach targeting different components of the reabsorption system could be used to lower the uptake of [99mTc]Tc-ZHER:2395 affibody molecule in kidneys. Pre-injection of probenecid, furosemide, mannitol or colchicine had no influence on activity uptake in kidneys compared to the control group. Mice pre-injected with maleate and fructose had 33% and 51% reduction in the kidney-associated activity, respectively, compared to the control group. Autoradiography images showed that the accumulation of activity after [99mTc]Tc-ZHER2:2395 injection was in the renal cortex and that both maleate and fructose could significantly reduce it. Results from this study demonstrate that pharmacological intervention with maleate and fructose was effective in reducing the kidney uptake of affibody molecules. A presumable mechanism is the disruption of ATP-mediated cellular uptake and endocytosis processes of affibody molecules by tubular cells.


Asunto(s)
Quelantes/química , Fructosa/farmacología , Riñón/metabolismo , Maleatos/farmacología , Compuestos de Organotecnecio/farmacocinética , Radiofármacos/farmacocinética , Proteínas Recombinantes de Fusión/farmacocinética , Animales , Inhibidores Enzimáticos/farmacología , Femenino , Riñón/diagnóstico por imagen , Riñón/efectos de los fármacos , Ratones , Imagen Molecular , Compuestos de Organotecnecio/química , Cintigrafía , Radiofármacos/química , Proteínas Recombinantes de Fusión/química , Edulcorantes/farmacología , Distribución Tisular
20.
Pharmaceutics ; 12(6)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545760

RESUMEN

Human epidermal growth factor receptor 3 (HER3) has been increasingly scrutinized as a potential drug target since the elucidation of its role in mediating tumor growth and acquired therapy resistance. Affibody molecules are so-called scaffold proteins with favorable biophysical properties, such as a small size for improved tissue penetration and extravasation, thermal and chemical stability, and a high tolerance to modifications. Additionally, affibody molecules are efficiently produced in prokaryotic hosts or by chemical peptide synthesis. We have previously evaluated the biodistribution profiles of five mono- and bivalent anti-HER3 affibody molecules (designated as 3) fused to an albumin-binding domain (designated as A), 3A, 33A, 3A3, A33, and A3, that inhibit ligand-dependent phosphorylation. In the present study, we examined the therapeutic efficacy of the three most promising variants, 3A, 33A, and 3A3, in a direct comparison with the HER3-targeting monoclonal antibody seribantumab (MM-121) in a preclinical BxPC-3 pancreatic cancer model. Xenografted mice were treated with either an affibody construct or MM-121 and the tumor growth was compared to a vehicle group. Receptor occupancy was estimated by positron emission tomography/computed tomography (PET/CT) imaging using a HER3-targeting affibody imaging agent [68Ga]Ga-(HE)3-Z08698-NODAGA. The affibody molecules could inhibit ligand-dependent phosphorylation and cell proliferation in vitro and demonstrated tumor growth inhibition in vivo comparable to that of MM-121. PET/CT imaging showed full receptor occupancy for all tested drug candidates. Treatment with 3A and 3A3 affibody constructs was more efficient than with 33A and similar to the anti-HER3 antibody seribantumab, showing that the molecular design of affibody-based therapeutics targeting HER3 in terms of the relative position of functional domains and valency has an impact on therapeutic effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...