Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2404103, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120472

RESUMEN

The activity and durability of chemical/electrochemical catalysts are significantly influenced by their surface environments, highlighting the importance of thoroughly examining the catalyst surface. Here, Cu-substituted La0.6Sr0.4Co0.2Fe0.8O3-δ is selected, a state-of-the-art material for oxygen reduction reaction (ORR), to explore the real-time evolution of surface morphology and chemistry under a reducing atmosphere at elevated temperatures. Remarkably, in a pioneering observation, it is discovered that the perovskite surface starts to amorphize at an unusually low temperature of approximately 100 °C and multicomponent metal nanocatalysts additionally form on the amorphous surface as the temperature raises to 400 °C. Moreover, this investigation into the stability of the resulting amorphous layer under oxidizing conditions reveals that the amorphous structure can withstand a high-temperature oxidizing atmosphere (≥650 °C) only when it has undergone sufficient reduction for an extended period. Therefore, the coexistence of the active nanocatalysts and defective amorphous surface leads to a nearly 100% enhancement in the electrode resistance for the ORR over 200 h without significant degradation. These observations provide a new catalytic design strategy for using redox-dynamic perovskite oxide host materials.

2.
Angew Chem Int Ed Engl ; : e202412811, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073271

RESUMEN

Ferromagnetism in the two-dimensional limit has become an intriguing topic for exploring new physical phenomena and potential applications. To induce ferromagnetism in 2D materials, intercalation has been proposed to be an effective strategy, which could introduce lattice distortion and unpaired spin into the material to modulate the magnetocrystalline anisotropy and magnetic exchange interactions. To strengthen the understanding of the magnetic origin of 2D material, Cu was introduced into a 2D WO3 through chemical intercalation in this work (2D Cu/WO3). In contrast to the diamagnetic nature of the Cu and the WO3, room-temperature ferromagnetism was characterized for 2D Cu/WO3. Experimental and theoretical results attribute the ferromagnetism to the bound magnetic polaron in 2D Cu/WO3, which is consist of unpaired spins from W5+/W4+ with localized carriers from oxygen vacancies. Overall, this work provides a novel approach to introduce ferromagnetism into diamagnetic WO3, which could be applied for a wider scope of 2D materials.

3.
ACS Appl Mater Interfaces ; 16(27): 35013-35023, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38937140

RESUMEN

Electrochemical water splitting (EWS) is a promising way to attain H2, which has been deemed an ideal substitution for fossil fuels because of renewable and eco-friendly benefits. Developing an amorphous-based simple and structurally flexible non-noble catalyst to offer high performance for commercial applications has become a current interest. Amorphous cobalt-anchored nitrogen-doped carbon nanoparticles (Co@NC-NPs) were designed to have a low overpotential and Tafel as a bifunctional electrocatalyst (HER - 142 mV/80 mV dec-1 and OER - 250 mV/72 mV dec-1) to achieve 10 mA cm-2 in 1.0 KOH. FE-SEM and HR-TEM described the interconnected nanochain morphology and purity of Co@NC-NPs electrocatalyst, which were confirmed by EDX and elemental mapping. In a full cell water electrolyzer, Co@NC-NPs(+,-) may act as an anode and cathode electrode material to achieve 1.60 V @ 10 mA cm-2 in a wide pH. The efficient Co@NC-NPs are stable for 100 h without obvious recession. In solar cell applications, Co@NC-NPs(+,-) catalyst was employed as both positive and negative terminals and evolved enormous bubbles of O2 and H2. As previously mentioned, we covered the amorphization strategy with the optimistic role of structural flexibility and defects to enrich the active sites to improve the electrocatalytic stability. As a promising opinion, the amorphous electrocatalyst provides ultraefficiency for forthcoming developments in EWS.

4.
Angew Chem Int Ed Engl ; : e202405307, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874082

RESUMEN

Metal-organic framework (MOF) glasses, known for their potential in gas separation, optics, and solid-state electrolytes, benefit from the processability of their (supercooled) liquid state. Traditionally, MOF glasses are produced by heating MOF crystals to their melting point and then cooling the liquid MOF to room temperature under an inert atmosphere. While effective, this melt-quenching technique requires high energy due to the high temperatures involved. It also limits the scope of new material development by restricting the compositional range to only those combinations of metal ions and linkers that are highly thermally stable. An alternative, mechanical milling at room temperature, has demonstrated its capability to transform MOF crystals into amorphous phases. However, the specific conditions under which these amorphous phases exhibit glass-like behavior remain uncharted. In this study, we explore the mechanochemical amorphization and vitrification of a variety of zeolitic imidazolate frameworks (ZIFs) with diverse linkers and different metal ions (Zn2+, Co2+ and Cu2+) at room temperature. Our findings demonstrate that ZIFs capable of melting can be successfully converted into glasses through ball-milling. Remarkably, some non-meltable ZIFs can also be vitrified using the ball-milling technique, as highlighted by the preparation of the first Cu2+-based ZIF glass.

5.
ACS Appl Mater Interfaces ; 16(22): 28655-28663, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38776450

RESUMEN

Amorphous metal-organic frameworks (aMOFs) are highly attractive for electrocatalytic applications due to their exceptional conductivity and abundant defect sites, but harsh preparation conditions of "top-down" strategy have hindered their widespread use. Herein, the scalable production of aMIL-68(In)-NH2 was successfully achieved through a facile "bottom-up" strategy involving ligand competition with 2-methylimidazole. Multiple in situ and ex situ characterizations reveal that aMIL-68(In)-NH2 evolutes into In/In2O3-x as the genuine active sites during the CO2 electrocatalytic reduction (CO2RR) process. Moreover, the retained amino groups could enhance the CO2 adsorption. As expected, the reconstructed catalyst demonstrates high formate Faradaic efficiency values (>90%) over a wide potential range of 800 mV in a flow cell, surpassing most top-ranking electrocatalysts. Density functional theory calculations reveal that the abundant oxygen vacancies in aMIL-68(In)-NH2 induce more local charges around electroactive sites, thereby promoting the formation of HCOO* intermediates. Furthermore, 16 g of samples can be readily prepared in one batch and exhibit almost identical CO2RR performances. This work offers a feasible batch-scale strategy to design amorphous MOFs for the highly efficient electrolytic CO2RR.

6.
J Colloid Interface Sci ; 668: 492-501, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691959

RESUMEN

The improvement of surface reactivity in noble-metal-free cocatalysts is crucial for the development of efficient and cost-effective photocatalytic systems. However, the influence of crystallinity on catalytic efficacy has received limited attention. Herein, we report the utilization of structurally disordered MoSe2 with abundant 1T phase as a versatile cocatalyst for photocatalytic hydrogen evolution. Using MoSe2/carbon nitride (CN) hybrids as a case study, it is demonstrated that amorphous MoSe2 significantly enhances the hydrogen evolution rate of CN, achieving up to 11.37 µmol h-1, surpassing both low crystallinity (8.24 µmol h-1) and high crystallinity MoSe2 (3.86 µmol h-1). Experimental analysis indicates that the disordered structure of amorphous MoSe2, characterized by coordination-unsaturated surface sites and a rich 1T phase with abundant active sites at the basal plane, predominantly facilitates the conversion of surface-bound protons to hydrogen. Conversely, the heightened charge transfer capacity of the highly crystalline counterpart plays a minor role in enhancing practical catalytic performance. This approach is applicable for enhancing the photocatalytic hydrogen evolution performance of various semiconducting photocatalysts, including CdS, TiO2, and ZnIn2S4, thereby offering novel insights into the advancement of high-performance non-precious catalysts through phase engineering.

7.
Chemistry ; 30(43): e202401768, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38818940

RESUMEN

Room temperature phosphorescence rarely occurs from pure organic molecules, especially in the solid-state. A strategy for the design of highly emissive organic phosphors is still hard to predict, thus impeding the development of new functional materials with the desired optical properties. Herein, we analyze a family of alkyl and aryl-substituted persulfurated benzenes, the latter representing a class of organic solid-state triplet emitters able to show very high emission quantum yield at room temperature. In this work, we correlate structural parameters with the photophysical properties observed in different experimental conditions (diluted solution, crystalline and amorphous phase at RT and low temperature). Our results, corroborated by a detailed computational analysis, indicate a close relationship between the luminescence properties and i) the nature of the substituents on the persulfurated core, ii) the adopted conformations in the solid state, both in crystalline and amorphous phases. These factors contribute to characterize the lowest-energy lying excited-state, its deactivation pathways, the phosphorescence lifetime and quantum yield. These findings provide a useful roadmap for the development of highly performing purely organic solid-state emitters based on the persulfurated benzene platform.

8.
Nanomaterials (Basel) ; 14(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38668215

RESUMEN

We report a joint high-pressure experimental and theoretical study of the structural, vibrational, and photoluminescent properties of pure and Eu3+-doped cubic Y2O3 nanoparticles with two very different average particle sizes. We compare the results of synchrotron X-ray diffraction, Raman scattering, and photoluminescence measurements in nanoparticles with ab initio density-functional simulations in bulk material with the aim to understand the influence of the average particle size on the properties of pure and doped Y2O3 nanoparticles under compression. We observe that the high-pressure phase behavior of Y2O3 nanoparticles depends on the average particle size, but in a different way to that previously reported. Nanoparticles with an average particle size of ~37 nm show the same pressure-induced phase transition sequence on upstroke and downstroke as the bulk sample; however, nanoparticles with an average particle size of ~6 nm undergo an irreversible pressure-induced amorphization above 16 GPa that is completed above 24 GPa. On downstroke, 6 nm nanoparticles likely consist of an amorphous phase.

9.
Nano Lett ; 24(17): 5324-5331, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38624236

RESUMEN

Phase transformation offers an alternative strategy for the synthesis of nanomaterials with unconventional phases, allowing us to further explore their unique properties and promising applications. Herein, we first observed the amorphization of Pt nanoparticles on the RuO2 surface by in situ scanning transmission electron microscopy. Density functional theory calculations demonstrate the low energy barrier and thermodynamic driving force for Pt atoms transferring from the Pt cluster to the RuO2 surface to form amorphous Pt. Remarkably, the as-synthesized amorphous Pt/RuO2 exhibits 14.2 times enhanced mass activity compared to commercial RuO2 catalysts for the oxygen evolution reaction (OER). Water electrolyzer with amorphous Pt/RuO2 achieves 1.0 A cm-2 at 1.70 V and remains stable at 200 mA cm-2 for over 80 h. The amorphous Pt layer not only optimized the *O binding but also enhanced the antioxidation ability of amorphous Pt/RuO2, thereby boosting the activity and stability for the OER.

10.
Nanotechnology ; 35(31)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38688256

RESUMEN

Herein a series of size-selected TaN(N = 147, 309, 561, 923, 1415, 2057, 6525, 10 000, 20 000) clusters are generated using a gas-phase condensation cluster beam source equipped with a lateral time-of-flight mass-selector. Aberration-corrected scanning transmission electron microscopy (AC-STEM) imaging reveals good thermal stability of TaNclusters in this study. The oxidation-induced amorphization is observed from AC-STEM imaging and further demonstrated through x-ray photoelectron spectroscopy and energy-dispersive spectroscopy. The oxidized Ta predominantly exists in the +5 oxidation state and the maximum spontaneous oxidation depth of the Ta cluster is observed to be 5 nm under prolonged atmosphere exposure. Furthermore, the size-dependent sintering and crystallization processes of oxidized TaNclusters are observed with anin situheating technique, and eventually, ordered structures are restored. As the temperature reaches 1300 °C, a fraction of oxidized Ta309clusters exhibit decahedral and icosahedral structures. However, the five-fold symmetry structures are absent in larger clusters, instead, these clusters exhibit ordered structures resembling those of the crystalline Ta2O5films. Notably, the sintering and crystallization process occurs at temperatures significantly lower than the melting point of Ta and Ta2O5, and the ordered structures resulting from annealing remain well-preserved after six months of exposure to ambient conditions.

11.
Angew Chem Int Ed Engl ; 63(27): e202403521, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38654696

RESUMEN

Lithium-oxygen batteries possess an extremely high theoretical energy density, rendering them a prime candidate for next-generation secondary batteries. However, they still face multiple problems such as huge charge polarization and poor life, which lay a significant gap between laboratory research and commercial applications. In this work, we adopt 15-crown-5 ether (C15) as solvent to regulate the generation of discharge products in lithium-oxygen batteries. The coronal structure endows C15 with strong affinity to Li+, firmly stabilizes the intermediate LiO2 and discharge product Li2O2. Thus, the crystalline Li2O2 is amorphized into easily decomposable amorphous products. The lithium-oxygen batteries assembled with 0.5 M C15 electrolyte show an increased discharge capacity from 4.0 mAh cm-2 to 5.7 mAh cm-2 and a low charge overpotential of 0.88 V during the whole lifespan at 0.05 mA cm-2. The batteries with 1 M C15 electrolyte can cycle stably for 140 cycles. Furthermore, the amorphous characteristic of Li2O2 product is preserved when matched with redox mediators such as LiI, with the charge polarization further decreasing to 0.74 V over a cycle life of 190 cycles. This provides new possibilities for electrolyte design to promote Li2O2 amorphization and reduce charge overpotential in lithium-oxygen batteries.

12.
Adv Mater ; 36(27): e2401118, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38641859

RESUMEN

As an empirical tool in materials science and engineering, the iconic phase diagram owes its robustness and practicality to the topological characteristics rooted in the celebrated Gibbs phase law free variables (F) = components (C) - phases (P) + 2. When crossing the phase diagram boundary, the structure transition occurs abruptly, bringing about an instantaneous change in physical properties and limited controllability on the boundaries (F = 1). Here, the sharp phase boundary is expanded to an amorphous transition region (F = 2) by partially disrupting the long-range translational symmetry, leading to a sequential crystalline-amorphous-crystalline (CAC) transition in a pressurized In2Te5 single crystal. Through detailed in situ synchrotron diffraction, it is elucidated that the phase transition stems from the rotation of immobile blocks [In2Te2]2+, linked by hinge-like [Te3]2- trimers. Remarkably, within the amorphous region, the amorphous phase demonstrates a notable 25% increase of the superconducting transition temperature (Tc), while the carrier concentration remains relatively constant. Furthermore, a theoretical framework is proposed revealing that the unconventional boost in amorphous superconductivity might be attributed to an intensified electron correlation, triggered by a disorder-augmented multifractal behavior. These findings underscore the potential of disorder and prompt further exploration of unforeseen phenomena on the phase boundaries.

13.
ACS Appl Mater Interfaces ; 16(14): 18090-18098, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38533722

RESUMEN

Multilayer coatings offer significant advantages in protecting materials' surfaces by shielding the underlying materials hierarchically from damage and wear. The layering morphology and structure of multilayer coatings directly affect their wear resistance capacity. Using a systematic set of experiments and molecular dynamics (MD) simulations, we studied the effect of layering thickness on the macroscale wear response of DLC/WC multinanolayer coatings. Our study revealed the existence of a critical bilayer thickness where maximum scratch hardness and wear resistance can be achieved. Our large-scale MD simulations showed that reducing the WC layer thickness to a certain limit increases the scratch hardness due to the confinement of dislocation motion. However, when the thickness of the WC layers falls below 2 nm, the deformation mechanism transitions from the interface-induced dislocation confinement to the interface-mediated amorphization of WC layers, reducing the scratch hardness of the coating. This finding offers a procedure for optimizing the macroscale wear performance of multinanolayer coatings.

14.
Drug Dev Ind Pharm ; 50(4): 306-319, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38400841

RESUMEN

BACKGROUND: Triamterene is an oral antihypertensive drug with dissolution-limited poor bioavailability. It can be used as monotherapy or in fixed dose combination with hydrochlorothiazide which also suffers from poor dissolution. Moreover, co-processing of drugs in fixed dose combination can alter their properties. Accordingly, pre-formulation studies should investigate the effect of co-processing and optimize the dissolution of drugs before and after fixed dose combination. This is expected to avoid deleterious interaction (if any) and to hasten the biopharmaceutical properties. OBJECTIVE: Accordingly, the aim of this work was to optimize the dissolution rate of triamterene alone and after fixed dose combination with hydrochlorothiazide. METHODOLOGY: Triamterene was subjected to dry co-grinding with xylitol, HPMC-E5 or their combination. The effect of co-grinding with hydrochlorothiazide was also tested in absence and presence of xylitol and HPMC-E5. The products were assessed using Fourier-transform infrared (FTIR), differential scanning calorimetry, X-ray powder diffraction (XRPD), in addition to dissolution studies. Optimum formulations were fabricated as oral disintegrating tablets (ODT).Results: Co-processing of triamterene with xylitol formed eutectic system which hastened dissolution rate. HPMC-E5 resulted in partial amorphization and improved triamterene dissolution. Co-grinding with both materials combined their effects. Co-processing of triamterene with hydrochlorothiazide resulted in eutexia but the product was slowly dissolving due to aggregation. This problem was vanished in presence of HPMC-E5 and xylitol. Compression of the optimum formulation into ODT underwent fast disintegration and liberated acceptable amounts of both drugs. CONCLUSION: The study introduced simple co-processing with traditional excipients for development of ODT of triamterene and hydrochlorothiazide.


Asunto(s)
Hidroclorotiazida , Triantereno , Hidroclorotiazida/química , Xilitol , Antihipertensivos/química , Comprimidos/química , Solubilidad
15.
Nano Lett ; 24(4): 1205-1213, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38214250

RESUMEN

Amorphous nanomaterials have drawn extensive attention owing to their unique features, while amorphization on noble metal nanomaterials still remains formidably challenging. Herein, we demonstrate a universal strategy to synthesize amorphous Pd-based nanomaterials from unary to quinary metals through the introduction of phosphorus (P). The amorphous Pd-based nanoparticles (NPs) exhibit generally promoted oxygen reduction reaction (ORR) activity and durability compared with their crystalline counterparts. Significantly, the quinary P-PdCuNiInSn NPs, benefiting from the amorphous structure and multimetallic component effect, exhibit mass activities as high as 1.04 A mgPd-1 and negligible activity decays of 1.8% among the stability tests, which are much better than values for original Pd NPs (0.134 A mgPd-1 and 28.4%). Experimental and theoretical analyses collectively reveal that the synergy of P-induced amorphization and the expansion of metallic components can considerably lower the free energy changes in the rate-determined step, thereby explaining the positive correlation with the catalytic activity.

16.
Adv Mater ; 36(19): e2312797, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38288643

RESUMEN

The integration of graphene and metal-organic frameworks (MOFs) has numerous implications across various domains, but fabricating such assemblies is often complicated and time-consuming. Herein, a one-step preparation of graphene-MOF assembly is presented by directly impregnating vertical graphene (VG) arrays into the zeolitic imidazolate framework (ZIF) precursors under ambient conditions. This approach can effectively assemble multiple ZIFs, including ZIF-7, ZIF-8, and ZIF-67, resulting in their uniform dispersion on the VG with adjustable sizes and shapes. Hydrogen defects on the VG surface are critical in inducing such high-efficiency ZIF assembly, acting as the reactive sites to interact with the ZIF precursors and facilitate their crystallisation. The versatility of VG-ZIF-67 assembly is further demonstrated by exploring the process of MOF amorphization. Surprisingly, this process leads to an amorphous thin-film coating formed on VG (named VG-IL-amZIF-67), which preserves the short-range molecular bonds of crystalline ZIF-67 while sacrificing the long-range order. Such a unique film-on-graphene architecture maintains the essential characteristics and functionalities of ZIF-67 within a disordered arrangement, making it well-suited for electrocatalysis. In electrochemical oxygen reduction, VG-IL-amZIF-67 exhibits exceptional activity, selectivity, and stability to produce H2O2 in acid media.

17.
Int J Pharm ; 651: 123791, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38195031

RESUMEN

Moisture was frequently used as dielectric heating source in classical microwave-able systems to facilitate microwave-induced in situ amorphization, however such systems may face the potential of drug hydrolysis. In this study, solid thermolytic salts were proposed to function as moisture substitutes and their feasibility and impacts on microwave-induced in situ amorphization were investigated. It was found that NH4HCO3 was a promising solid alkaline salt to facilitate both microwave-induced in situ amorphization and in situ salt formation of acidic indomethacin (IND). Moreover, it could improve the chemical stability of the drug and the dissolution performance of compacts relative to classical moisture-based compacts upon microwaving. Further mechanistic study suggested that the in situ amorphization occurred prior to the in situ salt formation, especially in formulations with low drug loadings and high solid salt mass ratios. For compacts with low polymer ratios, in situ salt formation took place subsequently, where the previously amorphized IND within compacts could interact with the NH3 gas produced in situ by the decomposition of NH4HCO3 and form the ammonium IND salt. Microwaving time showed great impacts on the decomposition of NH4HCO3 and the in situ generation of water and NH3, which indirectly affected the amorphization and salt formation of IND. In comparison to the moisture-based systems, the NH4HCO3-based system showed a number of advantages, including the reduced potential of IND hydrolysis due to the absence of absorbed moisture, a wider category of applicable polymeric carriers other than hygroscopic polymers, and an increase in drug loading up to 50% (w/w).


Asunto(s)
Microondas , Sales (Química) , Estabilidad de Medicamentos , Cristalización , Polímeros/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...