Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
J Thorac Dis ; 16(9): 6182-6195, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39444885

RESUMEN

Background: Acute lung injury (ALI) and its most severe manifestation of acute respiratory distress syndrome (ARDS) is a disease with a clinical mortality rate of up to 40% and is one of the most dangerous and common complications of severe coronavirus disease 2019 (COVID-19). Sivelestat (SIV) is the only licensed therapeutic medicine in the world for ALI/ARDS treatment. The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor axis is critical in the prevention of ALI/ARDS. This study aims to investigate whether SIV alleviates lipopolysaccharides (LPS)-induced ALI by inhibiting the down-regulation of ACE2/Ang-(1-7)/Mas receptor axis expression. Methods: In vivo, 90 male Sprague-Dawley rats were randomized into 5 groups. Then, we pretreated different groups of rats with dexamethasone (DEX) or SIV. Rats were sacrificed at three different time points (3, 6, and 12 hours) following LPS instillation. In vitro, RAW264.7 cells were divided into 11 groups. Different groups of cells were pretreated with DEX or SIV. And then added with LPS for 3, 6, and 12 hours. Next, we introduced A779, a potent Ang-(1-7) receptor antagonist, and DX600 as the ACE2 antagonist in different groups. Then the protein and messenger RNA (mRNA) expression levels of ACE2 in rat lung tissue and the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and Ang-(1-7) in the rat serum and the cell culture supernatant were measured. And the data were statistically analyzed. Results: In vivo, the rats pretreated with SIV or DEX had significantly lower lung wet/dry (W/D) ratios and lung pathological alterations than those exposed to LPS only. Both in vivo and in vitro, we observed that SIV or DEX significantly attenuated the LPS-induced up-regulation of IL-6 and TNF-α levels, and the down-regulation of ACE2 and Ang-(1-7) levels. In vitro, the pretreatment of the RAW264.7 cells with DX600 and A779 significantly reduced and even abolished the protective effects of SIV. Conclusions: Therefore, it was concluded that SIV protected against LPS-induced ALI and decreased inflammatory cytokine release by up-regulating the ACE2/Ang-(1-7)/Mas receptor axis. Our results enrich the theoretical foundation for the clinical application of SIV and provide fresh ideas for the treatment of ALI/ARDS.

2.
Cell Signal ; 124: 111461, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39389180

RESUMEN

Perivascular adipose tissue (PVAT) is found locally around blood vessels. It has the ability to release vasoactive chemicals, such as factors that relax and contract blood vessels. PVAT is now recognized as an endocrine organ with metabolic activity and as a "protagonist" for maintaining vascular homeostasis. Angiotensin II, a powerful vasoconstrictor of the renin-angiotensin system (RAS) that can increase blood pressure and vascular tone, is produced locally by PVAT. To mitigate the multiple vascular effects of angiotensin II, PVAT also generates molecules such as angiotensin (1-7), adiponectin, and nitric oxide. Reactive oxygen species and proinflammatory cytokines are produced in greater amounts when PVAT-mediated angiotensin II is present, resulting in endothelial dysfunction, inflammation, atherosclerosis, and other vascular disorders. The anticontractile and procontractile nature of PVAT is frequently disrupted in obese individuals, which increases the production of angiotensin II and decreases the production of anti-inflammatory and vasodilatory factors. These changes in turn exacerbate vascular inflammation, hypertension, and atherosclerosis. PVAT, which is crucial for maintaining vascular homeostasis, loses its anticontractile effect in obesity due to adipocyte hypertrophy, inflammation, and oxidative stress, exacerbating endothelial dysfunction. Overactive RAS in PVAT facilitates the migration and proliferation of vascular smooth muscle cells and atherosclerotic plaques, both of which accelerate the development of atherosclerosis. Targeting PVAT and the local RAS can offer therapeutic benefits in treating hypertension, atherosclerosis, and other vascular diseases. This review highlights the scientific underpinnings of the function of PVAT in regulating the autocrine and paracrine activities of vascular RAS constituents.

3.
Crit Care Explor ; 6(10): e1163, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39403103

RESUMEN

OBJECTIVES: To analyze dynamic changes in the renin-angiotensin system (RAS) during septic shock, focusing on angiotensin-converting enzyme (ACE) activity and the balance between angiotensin peptides, using a mass spectrometry method. DESIGN: Experimental septic shock model induced by peritonitis in swine. SETTING: Experimental Laboratory, Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles. SUBJECTS: Forty time points from eight mechanically ventilated pigs. INTERVENTIONS: Septic shock was induced using intraperitoneal instillation of autologous feces, followed by standardized fluid resuscitation, norepinephrine infusion, antibiotic administration, and peritoneal lavage. MEASUREMENTS AND MAIN RESULTS: The induction of sepsis resulted in a significant increase in plasma renin activity and levels of angiotensin I and II, with a significant decrease in ACE activity observed from 4 hours post-resuscitation and a notable rise in the angiotensin I/angiotensin II ratio at 12 hours. Additionally, a shift toward the angiotensin-(1-7) axis was observed, evidenced by an increased angiotensin-(1-7)/angiotensin II ratio. CONCLUSIONS: The study highlighted dynamic shifts in the RAS during septic shock, characterized by reduced circulating ACE activity, elevated angiotensin I/II ratio, and a shift toward the angiotensin-(1-7) axis. These findings suggest an adaptive response within the RAS, potentially offering new insights into sepsis management and therapeutic targets.


Asunto(s)
Angiotensina I , Sistema Renina-Angiotensina , Choque Séptico , Animales , Choque Séptico/metabolismo , Choque Séptico/fisiopatología , Choque Séptico/terapia , Sistema Renina-Angiotensina/fisiología , Porcinos , Angiotensina I/sangre , Angiotensina I/metabolismo , Modelos Animales de Enfermedad , Angiotensina II/metabolismo , Angiotensina II/sangre , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/sangre , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/metabolismo , Renina/sangre , Renina/metabolismo , Peritonitis/metabolismo
4.
Cardiovasc Diabetol ; 23(1): 373, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39438942

RESUMEN

BACKGROUND: The therapeutic effects of ertugliflozin, a sodium-glucose cotransporter 2 inhibitor, on cardiovascular outcome are not fully understood. This study aimed to evaluate the efficacy and safety of ertugliflozin on cardiac function in people with type 2 diabetes and pre-heart failure. METHODS: We conducted a 24-week randomized, double-blind, placebo-controlled trial involving individuals with type 2 diabetes inadequately controlled with antidiabetic medications. Participants with left ventricular hypertrophy, E/e' >15, or impaired left ventricular global longitudinal strain (LVGLS) were randomized 1:1 to receive either ertugliflozin (5 mg once daily) or a placebo. The primary outcome was the change in LVGLS. Secondary outcomes included changes in left ventricular mass index (LVMI) and left ventricular ejection fraction (LVEF). Prespecified exploratory outcomes, including angiotensin-converting enzyme 2 (ACE2) and angiotensin (1-7) levels, were also assessed. RESULTS: A total of 102 individuals (mean age, 63.9 ± 9.2 years; 38% women) were included. The ertugliflozin group showed a significant improvement in LVGLS (- 15.5 ± 3.1% to - 16.6 ± 2.8%, P = 0.004) compared to the placebo group (- 16.7 ± 2.7% to - 16.4 ± 2.6%, P = 0.509), with a significant between-group difference (P = 0.013). Improvements in LVMI and LVEF were also observed. Additionally, significant reductions in HbA1c, systolic blood pressure, whole-body and visceral fat, uric acid, proteinuria, N-terminal pro-B-type natriuretic peptide, and lipoprotein(a) were noted. ACE2 and angiotensin (1-7) levels significantly increased in the ertugliflozin group compared to the placebo group and correlated with changes in LVGLS [r = 0.456, P < 0.001 for ACE2; r = 0.541, P < 0.001 for angiotensin (1-7)]. Adverse events were similar between the two groups. CONCLUSIONS: This study demonstrated that ertugliflozin has beneficial effects on left ventricular function in individuals with type 2 diabetes and pre-heart failure, and it provided insights into potential underlying mechanisms. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03717194.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Volumen Sistólico , Función Ventricular Izquierda , Humanos , Masculino , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Persona de Mediana Edad , Anciano , Método Doble Ciego , Función Ventricular Izquierda/efectos de los fármacos , Resultado del Tratamiento , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Volumen Sistólico/efectos de los fármacos , Factores de Tiempo , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/diagnóstico , Biomarcadores/sangre , Recuperación de la Función , Enzima Convertidora de Angiotensina 2/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/diagnóstico , Glucemia/efectos de los fármacos , Glucemia/metabolismo
5.
Aging (Albany NY) ; 162024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39422618

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder, whose characteristic pathology involves progressive deficiency of dopaminergic neurons and generation of Lewy bodies (LBs). Aggregated and misfolded α-synuclein (α-syn) is the major constituent of LBs. As the newly discovered pathway of renin-angiotensin system (RAS), Angiotensin-(1-7) (Ang-(1-7)) and receptor Mas have attracted increasing attentions for their correlation with PD, but underlying mechanisms remain not fully clear. Based on above, this study established PD models of mice and primary dopaminergic neurons with AAV-hα-syn(A53T), then discussed the effects of Ang-(1-7)/Mas on α-syn level and neuronal apoptosis for these models combined with downstream long non-coding RNA (lncRNA) and microRNA (miRNA). Results showed that Ang-(1-7) alleviated behavioral impairments, rescued dopaminergic neurons loss and lowered α-syn expression in substantia nigra of hα-syn(A53T) overexpressed PD mice. We also discovered that Ang-(1-7) decreased level of α-syn and apoptosis in the hα-syn(A53T) overexpressed dopaminergic neurons through lncRNA NEAT1/miR-153-3p axis. Moreover, miR-153-3p level in peripheral blood is found negatively correlated with that of α-syn. In conclusion, our work not only showed neuroprotective effect and underlying mechanisms for Ang-(1-7) on α-syn in vivo and vitro, but also brought new hope on miR-153-3p and NEAT1 for diagnosis and treatment in PD.

6.
FASEB J ; 38(20): e70134, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39453737

RESUMEN

Acute pancreatitis (AP) is a serious health problem that dysregulates intestinal microbiota. Angiotensin (Ang)-(1-7) plays a protective role in the intestinal barrier in AP, but its effect on intestinal microbiota remains clear. To investigate the impact of Ang-(1-7) on AP-induced intestinal microbiota disorder and metabolites. We collected blood and fecal samples from 31 AP patients within 48 h after admission to the hospital, including 11 with mild AP (MAP), 14 with moderately severe AP (MSAP), six with severe AP (SAP). Mice were divided into four groups: control, AP, AP + Ang-(1-7) via tail vein injection, and AP + Ang-(1-7) via oral administration. The samples of mice were collected 12 h after AP. Pancreatic and intestinal histopathology scores were analyzed using the Schmidt and Chiu scores. Fecal microbiota and metabolites analysis was performed via 16S rDNA sequencing and nontargeted metabolomics analysis, respectively. In patients, the abundance of beneficial bacteria (Negativicutes) decreased and pathogenic bacteria (Clostridium bolteae and Ruminococcus gnavus) increased in SAP compared with MAP. Ang-(1-7) levels were associated with changes in the microbiota. There were differences in the intestinal microbiota between control and AP mice. Ang-(1-7) attenuated intestinal microbiota dysbiosis in AP mice, reflecting in the increase in beneficial bacteria (Odoribacter and Butyricimonas) than AP, as well as pancreatic and intestinal injuries. Oral administration of Ang-(1-7) reversing AP-induced decreases in metabolisms: secondary bile acids, emodin, and naringenin. Ang-(1-7) may improve intestinal microbiota dysbiosis and modulate fecal metabolites in AP, thereby reducing the damage of AP.


Asunto(s)
Angiotensina I , Heces , Microbioma Gastrointestinal , Pancreatitis , Fragmentos de Péptidos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Angiotensina I/metabolismo , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Pancreatitis/microbiología , Pancreatitis/patología , Heces/microbiología , Ratones , Masculino , Humanos , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Femenino , Persona de Mediana Edad , Ratones Endogámicos C57BL , Anciano , Adulto
7.
Antimicrob Agents Chemother ; : e0083524, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39470198

RESUMEN

To effectively reduce the health impact of coronavirus disease (COVID-19), it is essential to adopt comprehensive strategies to protect individuals from severe acute respiratory syndrome. In that sense, much effort has been devoted to the discovery and repurposing of effective antiviral and anti-inflammatory molecules. The endogenous peptide angiotensin-(1-7) [Ang-(1-7)] has been recently proposed as a promising anti-inflammatory agent to control respiratory infections. Liposomes also emerged as a safe and effective drug carrier system for local drug delivery to the lungs. In this context, the aim of this study was to develop a liposomal formulation of Ang-(1-7) [LAng (1-7)] and investigate its impact on animal survival as well as its antiviral and anti-inflammatory efficacies after intranasal administration in transgenic K18-hACE2 mice infected with SARS-CoV-2. The liposomal formulation was prepared by the ethanol injection method, exhibiting a mean diameter of 100 nm and a polydispersity index of 0.1. Following treatment of infected mice every 12 hours for 5 days, LAng (1-7) extended animal survival compared to the control groups that received either empty liposomes, free Ang-(1-7), or phosphate-buffered saline. Furthermore, the treatment with LAng (1-7) significantly decreased the viral load, as well as IL-6 and tumor necrosis factor levels in the lungs. Conventional treatment with remdesivir by parenteral route used as a positive control promoted similar effects, leading to improved survival rates and reduced viral load in the lungs without significant effects on IL-6 level. In conclusion, liposomal Ang-(1-7) emerges as a promising formulation to improve the treatment and decrease the severity of respiratory infections, such as COVID-19.

8.
Int Immunopharmacol ; 142(Pt B): 113177, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39298820

RESUMEN

BACKGROUND: Angiotensin 1-7 (Ang1-7) is the classical end product of angiotensin II, which has the effects of dilating blood vessels, protecting endothelial cells, anti-hypertension, improving cardiac function, and inhibiting atherosclerosis. We hypothesize that Ang1-7 inhibits human umbilical vein endothelial cells (HUVEC) ferroptosis through NF-κB/P53 signal pathway, and reduces extracorporeal membrane oxygenation (ECMO) vascular injury. METHODS: Cultured HUVEC were seeded into 15 wells and randomly divided into five groups: the control group and four experimental groups (erastin, erastin + Ang1-7, erastin + Ang1-7 + Betulinic acid, erastin + Betulinic acid). After stimulation, cell viability, lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) activity were measured. The effects of Ang1-7 on HUVEC microstructure, antioxidant enzymes (ferritin heavy chain 1 (FTH1), cystine/glutamic acid reverse transport solute carrier family 7 members 11 (SLC7A11 or XCT), superoxide dismutase-2 (SOD-2) and glutathione peroxidase 4 (GPX4)), NF-κB, P-NF-κB, P53, and P-P53). RESULTS: Erastin stimulation promoted HUVEC lipid peroxidation, decreased antioxidant enzyme expression, increased P-NF-κB, P53, and P-P53 expressions, and damaged HUVEC mitochondrial structure. Ang1-7 alleviated the effect of erastin on HUVEC, which was destroyed by Betulinic acid. CONCLUSION: Angiotensin1-7 pretreatment inhibited vascular endothelial cells' ferroptosis and alleviated ECMO vessel injury through NF-κB /P53 signal pathway.


Asunto(s)
Angiotensina I , Oxigenación por Membrana Extracorpórea , Ferroptosis , Fragmentos de Péptidos , Humanos , Angiotensina I/farmacología , Angiotensina I/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ferroptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Lesiones del Sistema Vascular/tratamiento farmacológico , Lesiones del Sistema Vascular/metabolismo
9.
FASEB J ; 38(18): e70051, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39269436

RESUMEN

Pseudomonas aeruginosa is a frequent cause of antimicrobial-resistant hospital-acquired pneumonia, especially in critically ill patients. Inflammation triggered by P. aeruginosa infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Emerging data have shed light on the pro-resolving actions of angiotensin-(1-7) [Ang-(1-7)] signaling through the G protein-coupled receptor Mas (MasR) during infections. Herein, we investigated the role of the Ang-(1-7)/Mas axis in pneumonia caused by P. aeruginosa by using genetic and pharmacological approach and found that Mas receptor-deficient animals developed a more severe form of pneumonia showing higher neutrophilic infiltration into the airways, bacterial load, cytokines, and chemokines production and more severe pulmonary damage. Conversely, treatment of pseudomonas-infected mice with Ang-(1-7) was able to decrease neutrophilic infiltration in airways and lungs, local and systemic levels of pro-inflammatory cytokines and chemokines, and increase the efferocytosis rates, mitigating lung damage/dysfunction caused by infection. Notably, the therapeutic association of Ang-(1-7) with antibiotics improved the survival rates of mice subjected to lethal inoculum of P. aeruginosa, extending the therapeutic window for imipenem. Mechanistically, Ang-(1-7) increased phagocytosis of bacteria by neutrophils and macrophages to accelerate pathogen clearance. Altogether, harnessing the Ang-(1-7) pathway during infection is a potential strategy for the development of host-directed therapies to promote mechanisms of resistance and resilience to pneumonia.


Asunto(s)
Angiotensina I , Antibacterianos , Ratones Endogámicos C57BL , Fragmentos de Péptidos , Proto-Oncogenes Mas , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Receptores Acoplados a Proteínas G , Animales , Angiotensina I/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Ratones , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Neumonía Bacteriana/metabolismo , Citocinas/metabolismo , Ratones Noqueados , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Neumonía/microbiología , Masculino , Pulmón/microbiología , Pulmón/metabolismo , Pulmón/patología , Transducción de Señal/efectos de los fármacos , Infiltración Neutrófila/efectos de los fármacos
10.
Inflamm Res ; 73(11): 2009-2022, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39292270

RESUMEN

OBJECTIVE: Pro-resolving molecules, including the peptide Angiotensin-(1-7) [Ang-(1-7)], have potential adjunctive therapy for infections. Here we evaluate the actions of Ang-(1-7) in betacoronavirus infection in mice. METHODS: C57BL/6J mice were infected intranasally with the murine betacoronavirus MHV-3 and K18-hACE2 mice were infected with SARS-CoV-2. Mice were treated with Ang-(1-7) (30 µg/mouse, i.p.) at 24-, 36-, and 48-hours post-infection (hpi) or at 24, 36, 48, 72, and 96 h. For lethality evaluation, one additional dose of Ang-(1-7) was given at 120 hpi. At 3- and 5-days post- infection (dpi) blood cells, inflammatory mediators, viral loads, and lung histopathology were evaluated. RESULTS: Ang-(1-7) rescued lymphopenia in MHV-infected mice, and decreased airways leukocyte infiltration and lung damage at 3- and 5-dpi. The levels of pro-inflammatory cytokines and virus titers in lung and plasma were decreased by Ang-(1-7) during MHV infection. Ang-(1-7) improved lung function and increased survival rates in MHV-infected mice. Notably, Ang-(1-7) treatment during SARS-CoV-2 infection restored blood lymphocytes to baseline, decreased weight loss, virus titters and levels of inflammatory cytokines, resulting in improvement of pulmonary damage, clinical scores and lethality rates. CONCLUSION: Ang-(1-7) protected mice from lung damage and death during betacoronavirus infections by modulating inflammation, hematological parameters and enhancing viral clearance.


Asunto(s)
Angiotensina I , COVID-19 , Infecciones por Coronavirus , Citocinas , Pulmón , Ratones Endogámicos C57BL , Fragmentos de Péptidos , Animales , Angiotensina I/uso terapéutico , Angiotensina I/farmacología , Fragmentos de Péptidos/uso terapéutico , Fragmentos de Péptidos/farmacología , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/virología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/patología , Citocinas/sangre , Ratones , SARS-CoV-2/efectos de los fármacos , Inflamación/tratamiento farmacológico , Carga Viral/efectos de los fármacos , Femenino , Virus de la Hepatitis Murina/efectos de los fármacos , Linfopenia/tratamiento farmacológico , Masculino
11.
Front Biosci (Landmark Ed) ; 29(9): 334, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39344337

RESUMEN

BACKGROUND: Ventilator-induced lung injury (VILI) is a consequence of inflammation and increased alveolar-capillary membrane permeability due to alveolar hyperdistention or elevated intrapulmonary pressure, but the precise mechanisms remain unclear. The aim of the study was to analyze the mechanism by which angiotensin converting enzyme 2 (ACE2) alleviates endoplasmic reticulum stress (ERS) and protects alveolar cells from pyroptosis in VILI by regulating angiotensin (Ang)1-7/Mas. METHODS: VILI was induced in mice by mechanical ventilation by regulating the tidal volume. The alveolar cell line, A549, mimics VILI in vitro by cyclic stretch (CS). Ang (1-7) (100 nmol/L) was added to the medium. ERS was induced in cells by stimulating with tunicamycin (TM, 2 µg/mL). ERS was inhibited by tracheal instillation of 4-phenylbutyric acid (4-PBA) (1 mg/kg). ACE2's enzymatic function was activated or inhibited by subcutaneous injection of resorcinolnaphthalein (RES, 20 µg/kg) or MLN-4760 (20 µg/kg). pGLV-EF1a-GFP-ACE2 was instilled into the trachea to increase the protein expression of ACE2. The Ang (1-7) receptor, Mas, was antagonized by injecting A779 subcutaneously (80 µg/kg). RESULTS: ACE2 protein levels decreased after modeling. Ang (1-7) level was decreased and Ang II was accumulated. ERS was significantly induced in VILI mice, and pyroptosis was observed in cells. When ERS was inhibited, pyroptosis under the VILI condition was significantly inhibited. Ang (1-7) alleviated ERS and pyroptosis under CS. When ERS was continuously activated, the function of Ang (1-7) in inhibiting pyroptosis was blocked. Resorcinolnaphthalein (RES) effectively promoted Ang II conversion, alleviated the Ang (1-7) level in VILI, ameliorated lung injury, and inhibited ERS and cell pyroptosis. Inhibiting ACE2's function in VILI hindered the production of Ang (1-7), promoted the accumulation of Ang II, and exacerbated ERS and pyroptosis, along with lung injury. The Mas antagonist significantly blocked the inhibitory effects of ACE2 on ERS and pyroptosis in VILI. CONCLUSIONS: Reduced ACE2 expression in VILI is involved in ERS and pyroptosis-related injury. ACE2 can alleviate ERS in alveolar cells by catalyzing the production of Ang (1-7), thus inhibiting pyroptosis in VILI.


Asunto(s)
Angiotensina I , Enzima Convertidora de Angiotensina 2 , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , Fragmentos de Péptidos , Proto-Oncogenes Mas , Piroptosis , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Piroptosis/efectos de los fármacos , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Estrés del Retículo Endoplásmico/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Angiotensina I/metabolismo , Angiotensina I/farmacología , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Masculino , Ratones , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos
12.
Biochem Pharmacol ; 229: 116480, 2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128587

RESUMEN

Alamandine (ALA) exerts protective effects similar to angiotensin (Ang) (1-7) through Mas-related G protein-coupled receptor type D receptor (MrgDR) activation, distinct from Mas receptor (MasR). ALA induces anti-inflammatory effects in mice but its impact in human macrophages remains unclear. We aimed to investigate the anti-inflammatory effects of ALA in human macrophages. Interleukin (IL)-6 and IL-1ß were measured by ELISA in human THP-1 macrophages and human monocyte-derived macrophages exposed to lipopolysaccharide (LPS). Consequences of MasR-MrgDR heteromerization were investigated in transfected HEK293T cells. ALA decreased IL-6 and IL-1ß secretion in LPS-activated THP-1 macrophages. The ALA-induced decrease in IL-6 but not in IL-1ß was prevented by MasR blockade and MasR downregulation, suggesting MasR-MrgDR interaction. In human monocyte-derived M1 macrophages, ALA decreased IL-1ß secretion independently of MasR. MasR-MrgDR interaction was confirmed in THP-1 macrophages, human monocyte-derived macrophages, and transfected HEK293T cells. MasR and MrgDR formed a constitutive heteromer that was not influenced by ALA. ALA promoted Akt and ERK1/2 activation only in cells expressing MasR-MrgDR heteromers, and this effect was prevented by MasR blockade. While Ang-(1-7) reduced cellular proliferation in MasR -but not MrgDR- expressing cells, ALA antiproliferative effect was elicited in cells expressing MasR-MrgDR heteromers. ALA also induced an antiproliferative response in THP-1 cells and this effect was abolished by MasR blockade, reinforcing MasR-MrgDR interaction. MasR-MrgDR heteromerization is crucial for ALA-induced anti-inflammatory and antiproliferative responses in human macrophages. This study broaden our knowledge of the protective axis of the RAS, thus enabling novel therapeutic approaches in inflammatory-associated diseases.


Asunto(s)
Proliferación Celular , Interleucina-6 , Macrófagos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas , Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proliferación Celular/efectos de los fármacos , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Células THP-1 , Multimerización de Proteína/efectos de los fármacos , Oligopéptidos
13.
Calcif Tissue Int ; 115(4): 432-444, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39030433

RESUMEN

Renin-angiotensin-aldosterone system plays a crucial role in the regulation of blood pressure and fluid homeostasis. It is reported to be involved in mediating osteoclastogenesis and bone loss in diseases of inflammatory bone resorption such as osteoporosis. Angiotensin-(1-7), a product of Angiotensin I and II (Ang I, II), is cleaved by Angiotensin-converting enzyme 2 and then binds to Mas receptor to counteract inflammatory effects produced by Ang II. However, the mechanism by which Ang-(1-7) reduces bone resorption remains unclear. Therefore, we aim to elucidate the effects of Ang-(1-7) on lipopolysaccharide (LPS)-induced osteoclastogenesis. In vivo, mice were supracalvarial injected with Ang-(1-7) or LPS ± Ang-(1-7) subcutaneously. Bone resorption and osteoclast formation were compared using micro-computed tomography, tartrate-resistant acid phosphatase (TRAP) stain, and real-time PCR. We found that Ang-(1-7) attenuated tumor necrosis factor (TNF)-α, TRAP, and Cathepsin K expression from calvaria and decreased osteoclast number along with bone resorption at the suture mesenchyme. In vitro, RANKL/TNF-α ± Ang-(1-7) was added to cultures of bone marrow-derived macrophages (BMMs) and osteoclast formation was measured via TRAP staining. The effect of Ang-(1-7) on LPS-induced osteoblasts RANKL expression and peritoneal macrophages TNF-α expression was also investigated. The effect of Ang-(1-7) on the MAPK and NF-κB pathway was studied by Western blotting. As a result, Ang-(1-7) reduced LPS-stimulated macrophages TNF-α expression and inhibited the MAPK and NF-κB pathway activation. However, Ang-(1-7) did not affect osteoclastogenesis induced by RANKL/TNF-α nor reduce osteoblasts RANKL expression in vitro. In conclusion, Ang-(1-7) alleviated LPS-induced osteoclastogenesis and bone resorption in vivo via inhibiting TNF-α expression in macrophages.


Asunto(s)
Angiotensina I , Resorción Ósea , Macrófagos , Ratones Endogámicos C57BL , Osteoclastos , Fragmentos de Péptidos , Factor de Necrosis Tumoral alfa , Animales , Angiotensina I/farmacología , Angiotensina I/metabolismo , Resorción Ósea/metabolismo , Resorción Ósea/prevención & control , Factor de Necrosis Tumoral alfa/metabolismo , Fragmentos de Péptidos/farmacología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Osteogénesis/efectos de los fármacos , Lipopolisacáridos/farmacología , Inflamación/metabolismo
14.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000106

RESUMEN

The Renin-Angiotensin-Aldosterone System (RAAS) has been implicated in systemic and neurogenic hypertension. The infusion of RAAS inhibitors blunted arterial pressure and efficacy of use-dependent synaptic transmission in sympathetic ganglia. The current investigation aims to elucidate the impact of RAAS-mediated receptors on left ventricular cardiomyocytes and the role of the sarcolemma-bound carrier system in the heart of the hypertensive transgene model. A significant increase in mRNA and the protein expression for angiotensin II (AngII) receptor subtype-1 (AT1R) was observed in (mREN2)27 transgenic compared to the normotensive rodents. Concurrently, there was an upregulation in AT1R and a downregulation in the MAS1 proto-oncogene protein receptor as well as the AngII subtype-2 receptor in hypertensive rodents. There were modifications in the expressions of sarcolemma Na+-K+-ATPase, Na+-Ca2+ exchanger, and Sarcoendoplasmic Reticulum Calcium ATPase in the transgenic hypertensive model. These observations suggest chronic RAAS activation led to a shift in receptor balance favoring augmented cardiac contractility and disruption in calcium handling through modifications of membrane-bound carrier proteins and blood pressure. The study provides insight into mechanisms underlying RAAS-mediated cardiac dysfunction and highlights the potential value of targeting the protective arm of AngII in hypertension.


Asunto(s)
Ventrículos Cardíacos , Hipertensión , Sistema Renina-Angiotensina , Animales , Hipertensión/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 1/genética , Ratas , Proto-Oncogenes Mas , Presión Sanguínea , Masculino , Ratones , Receptor de Angiotensina Tipo 2/metabolismo , Receptor de Angiotensina Tipo 2/genética , Sarcolema/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Intercambiador de Sodio-Calcio/metabolismo , Intercambiador de Sodio-Calcio/genética , Ratones Transgénicos
15.
Biochem Biophys Rep ; 38: 101738, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831897

RESUMEN

The renin-angiotensin system (RAS) is best known for playing a major role in maintaining the physiology of the cardiovascular system. Dysregulation of the RAS pathway has been proposed as a link to some malignancies and contributes to cancer metastasis. Breast cancer is considered as one of the leading causes of cancer death in women and its prevention remains yet a challenge. Elements of RAS are expressed in both normal breast tissue and cancerous cells, signifying the essential role of RAS in breast cancer pathology. Sertraline, a widely used antidepressant, has shown anti-proliferative properties on a variety of malignancies. This study aimed to investigate the effect of sertraline and its combination with agonists and antagonists of RAS (A779, Ang 1-7 and losartan) on viability of MCF-7 cells along with their effect on apoptosis and distribution of cell cycle. Our results indicated that sertraline, losartan and Ang 1-7 significantly decreased cell viability, induced apoptosis and cell cycle arrest. A779 blunted the effect of sertraline on cell viability, ROS generation and cell cycle arrest. Combination treatment of sertraline with losartan as well as Ang 1-7 caused a remarkable decline in cell viability. In conclusion, results of the present study support the anti-cancer properties of sertraline, losartan and Ang 1-7 via induction of apoptosis and cell cycle arrest.

16.
Mol Biol Rep ; 51(1): 775, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904729

RESUMEN

Acute leukemias (ALs) are the most common cancers in pediatric population. There are two types of ALs: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Some studies suggest that the Renin Angiotensin System (RAS) has a role in ALs. RAS signaling modulates, directly and indirectly, cellular activity in different cancers, affecting tumor cells and angiogenesis. Our review aimed to summarize the role of RAS in ALs and to explore future perspectives for the treatment of these hematological malignancies by modulating RAS molecules. The database including Pubmed, Scopus, Cochrane Library, and Scielo were searched to find articles about RAS molecules in ALL and in pediatric patients. The search terms were "RAS", "Acute Leukemia", "ALL", "Angiotensin-(1-7)", "Pediatric", "Cancer", "Angiotensin II", "AML". In the bone marrow, RAS has been found to play a key role in blood cell formation, affecting several processes including apoptosis, cell proliferation, mobilization, intracellular signaling, angiogenesis, fibrosis, and inflammation. Local tissue RAS modulates tumor growth and metastasis through autocrine and paracrine actions. RAS mainly acts via two molecules, Angiotensin II (Ang II) and Angiotensin (1-7) [Ang-(1-7)]. While Ang II promotes tumor cell growth and stimulates angiogenesis, Ang-(1-7) inhibits the proliferation of neoplastic cells and the angiogenesis, suggesting a potential therapeutic role of this molecule in ALL. The interaction between ALs and RAS reveals a complex network of molecules that can affect the hematopoiesis and the development of hematological cancers. Understanding these interactions could pave the way for innovative therapeutic approaches targeting RAS components.


Asunto(s)
Angiotensina II , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Angiotensina II/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Transducción de Señal , Angiotensina I/metabolismo , Neovascularización Patológica/metabolismo , Animales , Fragmentos de Péptidos/metabolismo
17.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891995

RESUMEN

The renin-angiotensin system (RAS) is a complex homeostatic entity with multiorgan systemic and local effects. Traditionally, RAS works in conjunction with the kidney to control effective arterial circulation, systemic vascular resistance, and electrolyte balance. However, chronic hepatic injury and resulting splanchnic dilation may disrupt this delicate balance. The role of RAS in liver disease, however, is even more extensive, modulating hepatic fibrosis and portal hypertension. Recognition of an alternative RAS pathway in the past few decades has changed our understanding of RAS in liver disease, and the concept of opposing vs. "rebalanced" forces is an ongoing focus of research. Whether RAS inhibition is beneficial in patients with chronic liver disease appears to be context-dependent, but further study is needed to optimize clinical management and reduce organ-specific morbidity and mortality. This review presents the current understanding of RAS in liver disease, acknowledges areas of uncertainty, and describes potential areas of future investigation.


Asunto(s)
Hepatopatías , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiología , Hepatopatías/metabolismo , Hepatopatías/patología , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología
18.
Clin Cosmet Investig Dermatol ; 17: 1049-1058, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737946

RESUMEN

Introduction: Angiotensin (1-7) (Ang-(1-7)) is an emerging component of the renin-angiotensin system (RAS) with effective anti-fibrosis properties and has been shown to interfere with epithelial-mesenchymal transition (EMT) by numerous studies. In recent years, EMT has been proposed as a new therapeutic target for skin fibrotic diseases such as keloids. However, the effect of Ang-(1-7) on EMT in skin is still unclear. Hence, the purpose of this study was to explore the effect of Ang-(1-7) on Transforming growth factor-ß1(TGF-ß1)-induced EMT of human immortalized keratinocytes HaCaT in vitro. Methods: The study involved the use of the human immortalized keratinocyte cell line (HaCaT). The cells were cultured in high-glucose DMEM medium with 10% fetal bovine serum and 1% penicillin-streptomycin. Four groups were created for experimentation: control group (Group C), TGF-ß1-treated group (Group T), Ang-(1-7)-treated group (Group A), and a group treated with both TGF-ß1 and Ang-(1-7) (Group A + T). Various assays were conducted, including a cell proliferation assay using CCK-8 solution, a scratch wound healing assay to evaluate cell migration, and Western blotting to detect protein expressions related to cell characteristics. Additionally, quantitative real-time polymerase chain reaction (PCR) was performed to analyze epithelial-mesenchymal transition (EMT) related gene expression levels. The study aimed to investigate the effects of TGF-ß1 and Ang-(1-7) on HaCaT cells. Results: We found that Ang-(1-7) not only reduced the migration of HaCaT cells induced by TGF-ß1 in vitro but also reduced the expression of α-SMA and vimentin, and restored the protein expression of E-cadherin and claudin-1. Mechanistically, Ang-(1-7) inhibits the phosphorylation levels of Smad2 and Smad3 in the TGF-ß1 canonical pathway, and suppresses the expression of EMT-related transcription factors (EMT-TFs) such as SNAI2, TWIST1, and ZEB1. Discussion: Taken together, our findings suggest that Ang-(1-7) inhibits TGF-ß1-induced EMT in HaCaT cells in vitro by disrupting the TGF-ß1-Smad canonical signaling pathway. These results may be helpful in the treatment of EMT in skin fibrotic diseases such as keloids.

19.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791603

RESUMEN

In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.


Asunto(s)
Dopamina , Mucosa Intestinal , Permeabilidad , Sistema Renina-Angiotensina , Uniones Estrechas , Humanos , Sistema Renina-Angiotensina/fisiología , Dopamina/metabolismo , Animales , Uniones Estrechas/metabolismo , Mucosa Intestinal/metabolismo , Tracto Gastrointestinal/metabolismo , Funcion de la Barrera Intestinal
20.
Heliyon ; 10(10): e31405, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38807880

RESUMEN

Background: The pathogenesis of diabetes and its microvascular complications are intimately associated with renin angiotensin system dysregulation. Evidence suggests the angiotensin converting enzyme 2 (ACE2)/angiotensin 1-7 (Ang 1-7)/Mas receptor (MasR) axis regulates metabolic imbalances, inflammatory responses, reduces oxidative stress, and sustains microvascular integrity, thereby strengthening defences against diabetic conditions. This study aims to conduct a comprehensive analysis of the ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications over the past two decades, focusing on key contributors, research hotspots, and thematic trends. Methods: This cross-sectional bibliometric analysis of 349 English-language publications was performed using HistCite, VOSviewer, CiteSpace, and Bibliometrix R for visualization and metric analysis. Primary analytical metrics included publication count and keyword trend dynamics. Results: The United States, contributing 105 articles, emerged as the most productive country, with the University of Florida leading institutions with 18 publications. Benter IF was the most prolific author with 14 publications, and Clinical Science was the leading journal with 13 articles. A total of 151 of the 527 author's keywords with two or more occurrences clustered into four major clusters: diabetic microvascular pathogenesis, metabolic systems, type 2 diabetes, and coronavirus infections. Keywords such as "SARS", "ACE2", "coronavirus", "receptor" and "infection" displayed the strongest citation bursts. The thematic evolution in this field expanded from focusing on the renin angiotensin system (2002-2009) to incorporating ACE2 and diabetes metabolism (2010-2016). The latter period (2017-2023) witnessed a significant surge in diabetes research, reflecting the impact of COVID-19 and associated conditions such as diabetic retinopathy and cardiomyopathy. Conclusions: This scientometric study offers a detailed analysis of the ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications, providing valuable insights for future research directions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...