Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Am J Transplant ; 24(6): 944-953, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403187

RESUMEN

Chronic lung allograft dysfunction (CLAD) remains one of the major limitations to long-term survival after lung transplantation. We modified a murine model of CLAD and transplanted left lungs from BALB/c donors into B6 recipients that were treated with intermittent cyclosporine and methylprednisolone postoperatively. In this model, the lung allograft developed acute cellular rejection on day 15 which, by day 30 after transplantation, progressed to severe pleural and peribronchovascular fibrosis, reminiscent of changes observed in restrictive allograft syndrome. Lung transplantation into splenectomized B6 alymphoplastic (aly/aly) or splenectomized B6 lymphotoxin-ß receptor-deficient mice demonstrated that recipient secondary lymphoid organs, such as spleen and lymph nodes, are necessary for progression from acute cellular rejection to allograft fibrosis in this model. Our work uncovered a critical role for recipient secondary lymphoid organs in the development of CLAD after pulmonary transplantation and may provide mechanistic insights into the pathogenesis of this complication.


Asunto(s)
Modelos Animales de Enfermedad , Rechazo de Injerto , Trasplante de Pulmón , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Animales , Ratones , Rechazo de Injerto/etiología , Rechazo de Injerto/patología , Trasplante de Pulmón/efectos adversos , Aloinjertos , Progresión de la Enfermedad , Fibrosis , Enfermedad Crónica , Supervivencia de Injerto , Masculino , Tejido Linfoide/patología
2.
Am J Transplant ; 23(2): 202-213, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36804130

RESUMEN

Heart transplant and recipient survival are limited by immune cell-mediated injury of the graft vasculature. We examined the role of the phosphoinositide 3-kinase-ß (PI3Kß) isoform in endothelial cells (EC) during coronary vascular immune injury and repair in mice. In minor histocompatibility-antigen mismatched allogeneic heart grafts, a robust immune response was mounted to each wild-type, PI3Kß inhibitor-treated, or endothelial-selective PI3Kß knockout (ECßKO) graft transplanted to wild-type recipients. However, microvascular EC loss and progressive occlusive vasculopathy only developed in control, but not PI3Kß-inactivated hearts. We observed a delay in inflammatory cell infiltration of the ECßKO grafts, particularly in the coronary arteries. Surprisingly, this was accompanied by an impaired display of proinflammatory chemokine and adhesion molecules by the ECßKO ECs. In vitro, tumor necrosis factor α-stimulated endothelial ICAM1 and VCAM1 expression was blocked by PI3Kß inhibition or RNA interference. Selective PI3Kß inhibition also blocked tumor necrosis factor α-stimulated degradation of inhibitor of nuclear factor kappa Bα and nuclear translocation of nuclear factor kappa B p65 in EC. These data identify PI3Kß as a therapeutic target to reduce vascular inflammation and injury.


Asunto(s)
Células Endoteliales , Lesiones del Sistema Vascular , Ratones , Animales , Células Endoteliales/patología , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Lesiones del Sistema Vascular/patología , Factor de Necrosis Tumoral alfa
3.
Am J Transplant ; 22(12): 3061-3068, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36031344

RESUMEN

Clinical trials utilizing regulatory T cell (Treg) therapy in organ transplantation have shown promising results, however, the choice of a standard immunosuppressive regimen is still controversial. Calcineurin inhibitors (CNIs) are one of the most common immunosuppressants for organ transplantation, although they may negatively affect Tregs by inhibiting IL-2 production by conventional T cells. As a strategy to replace IL-2 signaling selectively in Tregs, we have introduced an engineered orthogonal IL-2 (ortho IL-2) cytokine/cytokine receptor (R) pair that specifically binds with each other but does not bind with their wild-type counterparts. Murine Tregs were isolated from recipients and retrovirally transduced with ortho IL-2Rß during ex vivo expansion. Transduced Tregs (ortho Tregs) were transferred into recipient mice in a mixed hematopoietic chimerism model with tacrolimus administration. Ortho IL-2 treatment significantly increased the ortho IL-2Rß(+) Treg population in the presence of tacrolimus without stimulating other T cell subsets. All the mice treated with tacrolimus plus ortho IL-2 achieved heart allograft tolerance, even after tacrolimus cessation, whereas those receiving tacrolimus treatment alone did not. These data demonstrate that Treg therapy can be adopted into a CNI-based regimen by utilizing cytokine receptor engineering.


Asunto(s)
Inhibidores de la Calcineurina , Tacrolimus , Ratones , Animales , Inhibidores de la Calcineurina/farmacología , Tacrolimus/uso terapéutico , Linfocitos T Reguladores , Interleucina-2/metabolismo , Receptores de Interleucina-2 , Supervivencia de Injerto , Inmunosupresores/uso terapéutico
4.
Am J Transplant ; 22(9): 2180-2194, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35603986

RESUMEN

To determine the effects and immunological mechanisms of low-dose interleukin-2 (IL-2) in a murine model of chronic cardiac allograft rejection (BALB/c to C57BL/6) after costimulatory blockade consisting of MR1 (250 µg/ip day 0) and CTLA4-Ig (200 µg/ip day 2), we administered low-dose IL-2 (2000 IU/day) starting on posttransplant day 14 for 3 weeks. T regulatory (Treg) cell infiltration of the grafts was determined by immunohistochemistry; circulating exosomes by western blot and aldehyde bead flow cytometry; antibodies to donor MHC by immunofluorescent staining of donor cells; and antibodies to cardiac self-antigens (myosin, vimentin) by ELISA. We demonstrated that costimulation blockade after allogeneic heart transplantation induced circulating exosomes containing cardiac self-antigens and antibodies to both donor MHC and self-antigens, leading to chronic rejection by day 45. Treatment with low-dose IL-2 prolonged allograft survival (>100 days), prevented chronic rejection, and induced splenic and graft-infiltrating CD4+ CD25+ Foxp3 Treg cells by day 45 and circulating exosomes (Foxp3+) with PD-L1 and CD73. MicroRNA 142, associated with the TGFß pathway, was significantly downregulated in exosomes from IL-2-treated mice. In conclusion, low-dose IL-2 delays rejection in a murine model of chronic cardiac allograft rejection and also induces graft-infiltrating Tregs and circulating exosomes with immunoregulatory molecules.


Asunto(s)
Exosomas , Trasplante de Corazón , MicroARNs , Aloinjertos , Animales , Autoantígenos/metabolismo , Antígeno B7-H1/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Trasplante de Corazón/efectos adversos , Interleucina-2/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Reguladores
5.
Am J Transplant ; 22(9): 2237-2245, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35434896

RESUMEN

Alloantigen-specific regulatory T cell (Treg) therapy is a promising approach for suppressing alloimmune responses and minimizing immunosuppression after solid organ transplantation. Chimeric antigen receptor (CAR) targeting donor alloantigens can confer donor reactivity to Tregs. However, CAR Treg therapy has not been evaluated in vascularized transplant or multi-MHC mismatched models. Here, we evaluated the ability of CAR Tregs targeting HLA-A2 (A2-CAR) to prolong the survival of heterotopic heart transplants in mice. After verifying the in vitro activation, proliferation, and enhanced suppressive function of A2-CAR Tregs in the presence of A2-antigen, we analyzed the in vivo function of Tregs in C57BL/6 (B6) mice receiving A2-expressing heart allografts. A2-CAR Treg infusion increased the median survival of grafts from B6.HLA-A2 transgenic donors from 23 to 99 days, whereas median survival with polyclonal Treg infusion was 35 days. In a more stringent model of haplo-mismatched hearts from BALB/cxB6.HLA-A2 F1 donors, A2-CAR Tregs slightly increased median graft survival from 11 to 14 days, which was further extended to >100 days when combined with a 9-day course of rapamycin treatment. These findings demonstrate the efficacy of CAR Tregs, alone or in combination with immunosuppressive agents, toward protecting vascularized grafts in fully immunocompetent recipients.


Asunto(s)
Receptores Quiméricos de Antígenos , Aloinjertos , Animales , Rechazo de Injerto/etiología , Supervivencia de Injerto , Antígeno HLA-A2 , Isoantígenos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Reguladores
6.
Am J Transplant ; 22(9): 2246-2253, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35373451

RESUMEN

Thrombospondin-1 (TSP-1) is a key mediator of renal ischemia-reperfusion injury (IRI), a major cause of kidney dysfunction under various disease conditions and a risk factor of renal allograft rejection. In this study, we developed a nanotechnology-based therapy targeting TSP-1 to prevent renal IRI. A biocompatible nanoparticle (NP) capable of specific binding to TSP-1 was prepared by conjugating NPs with TSP-1-binding (LSKL) peptides. LSKL/NPs not only effectively adsorbed recombinant TSP-1 proteins in vitro, but also efficiently neutralized TSP-1 in mice undergoing renal IRI. IRI-induced elevation of TSP-1 in the kidney was significantly inhibited by post-IR treatment with LSKL/NPs, but not free LSKL or NPs. Furthermore, TSP-1 proteins adsorbed on LSKL/NPs were functionally inactive and unable to induce apoptosis in renal tubular epithelial cells. Importantly, LSKL/NPs induced strong protection against renal IRI, as shown by markedly diminished serum creatinine levels and improved histological lesions of the kidney. Thus, LSKL/NPs provide a useful means of depleting and inactivating TSP-1 and a potential therapy for renal IRI.


Asunto(s)
Trasplante de Riñón , Nanopartículas , Daño por Reperfusión , Animales , Apoptosis , Riñón/patología , Trasplante de Riñón/efectos adversos , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Trombospondina 1/antagonistas & inhibidores , Trombospondina 1/metabolismo , Trombospondina 1/farmacología
7.
Am J Transplant ; 22(7): 1791-1803, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35303398

RESUMEN

Donor infection affects organ utilization, especially the infections by multidrug-resistant bacteria, which may have disastrous outcomes. We established a rat model, inoculated with Escherichia coli or carbapenem-resistant Klebsiella pneumoniae (CRKP), to investigate whether hypothermic machine perfusion (HMP), normothermic machine perfusion (NMP), or static cold storage (SCS) combined with antibiotic (AB) could eliminate the bacteria. E. coli or CRKP-infected kidneys were treated with cefoperazone-sulbactam and tigecycline, respectively. The HMP+AB and NMP+AB treatments had significant therapeutic effects on E. coli or CRKP infection compared with the SCS+AB treatment. The bacterial load of CRKP-infected kidneys in the HMP+AB (22 050 ± 2884 CFU/g vs. 1900 ± 400 CFU/g, p = .007) and NMP+AB groups (25 433 ± 2059 CFU/g vs. 500 ± 458 CFU/g, p = .002) were significantly reduced, with no statistically significant difference between both groups. Subsequently, the CRKP-infected kidneys of the HMP+AB and SCS+AB groups were transplanted. The rats in the SCS+AB group were severe infected and euthanized on day 4 post-transplant. By contrast, the rats in the HMP+AB group were in good condition. In conclusion, HMP and NMP combined with AB seems to be efficient approaches to decrease bacterial load of infected kidneys. This might lead to higher utilization rates of donors with active infection.


Asunto(s)
Hipotermia , Preservación de Órganos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli , Humanos , Perfusión , Ratas , Donantes de Tejidos
8.
Am J Transplant ; 22(3): 705-716, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34726836

RESUMEN

Intragraft events thought to be relevant to the development of tolerance are here subjected to a comprehensive mechanistic study during long-term spontaneous tolerance that occurs in C57BL/6 mice that receive life sustaining DBA/2 kidneys. These allografts rapidly develop periarterial Treg-rich organized lymphoid structures (TOLS) that form in response to class II but not to class I MHC disparity and form independently of lymphotoxin α and lymphotoxin ß receptor pathways. TOLS form in situ in the absence of lymph nodes, spleen, and thymus. Distinctive transcript patterns are maintained over time in TOLS including transcripts associated with Treg differentiation, T cell checkpoint signaling, and Th2 differentiation. Pathway transcripts related to inflammation are expressed in early stages of accepted grafts but diminish with time, while B cell transcripts increase. Intragraft transcript patterns at one week posttransplant distinguish those from kidneys destined to be rejected, that is, C57BL/6 allografts into DBA/2 recipients, from those that will be accepted. In contrast to inflammatory tertiary lymphoid organs (iTLOs) that form in response to chronic viral infection and transgenic Lta expression, TOLS lack high endothelial venules and germinal centers. TOLS represent a novel, pathogenetically important type of TLO that are in situ markers of regulatory tolerance.


Asunto(s)
Trasplante de Riñón , Tolerancia al Trasplante , Animales , Rechazo de Injerto/etiología , Rechazo de Injerto/patología , Supervivencia de Injerto , Riñón , Trasplante de Riñón/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
10.
Am J Transplant ; 22(2): 386-401, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34714588

RESUMEN

Early insults associated with cardiac transplantation increase the immunogenicity of donor microvascular endothelial cells (ECs), which interact with recipient alloreactive memory T cells and promote responses leading to allograft rejection. Thus, modulating EC immunogenicity could potentially alter T cell responses. Recent studies have shown modulating mitochondrial fusion/fission alters immune cell phenotype. Here, we assess whether modulating mitochondrial fusion/fission reduces EC immunogenicity and alters EC-T cell interactions. By knocking down DRP1, a mitochondrial fission protein, or by using the small molecules M1, a fusion promoter, and Mdivi1, a fission inhibitor, we demonstrate that promoting mitochondrial fusion reduced EC immunogenicity to allogeneic CD8+ T cells, shown by decreased T cell cytotoxic proteins, decreased EC VCAM-1, MHC-I expression, and increased PD-L1 expression. Co-cultured T cells also displayed decreased memory frequencies and Ki-67 proliferative index. For in vivo significance, we used a novel murine brain-dead donor transplant model. Balb/c hearts pretreated with M1/Mdivi1 after brain-death induction were heterotopically transplanted into C57BL/6 recipients. We demonstrate that, in line with our in vitro studies, M1/Mdivi1 pretreatment protected cardiac allografts from injury, decreased infiltrating T cell production of cytotoxic proteins, and prolonged allograft survival. Collectively, our data show promoting mitochondrial fusion in donor ECs mitigates recipient T cell responses and leads to significantly improved cardiac transplant survival.


Asunto(s)
Trasplante de Corazón , Dinámicas Mitocondriales , Animales , Linfocitos T CD8-positivos , Células Endoteliales , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
11.
Am J Transplant ; 22(3): 955-965, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34679256

RESUMEN

The importance of PD-1/PD-L1 interaction to alloimmune response is unknown in intestinal transplantation. We tested whether PD-L1 regulates allograft tissue injury in murine intestinal transplantation. PD-L1 expression was observed on the endothelium and immune cells in the intestinal allograft. Monoclonal antibody treatment against PD-L1 led to accelerated allograft tissue damage, characterized by severe cellular infiltrations, massive destruction of villi, and increased crypt apoptosis in the graft. Interestingly, PD-L1-/- allografts were more severely rejected than wild-type allografts, but the presence or absence of PD-L1 in recipients did not affect the degree of allograft injury. PD-L1-/- allografts showed increased infiltrating Ly6G+ and CD11b+ cells in lamina propria on day 4, whereas the degree of CD4+ or CD8+ T cell infiltration was comparable to wild-type allografts. Gene expression analysis revealed that PD-L1-/- allografts had increased mRNA expressions of Cxcr2, S100a8/9, Nox1, IL1rL1, IL1r2, and Nos2 in the lamina propria cells on day 4. Taken together, study results suggest that PD-L1 expression in the intestinal allograft, but not in the recipient, plays a critical role in mitigating allograft tissue damage in the early phase after transplantation. The PD-1/PD-L1 interaction may contribute to immune regulation of the intestinal allograft via the innate immune system.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Aloinjertos/metabolismo , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Rechazo de Injerto , Proteína 1 Similar al Receptor de Interleucina-1 , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Muerte Celular Programada 1/genética
12.
Am J Transplant ; 22(1): 130-143, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34242470

RESUMEN

Augmenter of liver regeneration (ALR) is an anti-apoptotic protein found mainly in mitochondria. It protects hepatocytes from ischemia-reperfusion (I/R) injury, but the underlying mechanism is not clear. We found that in rats, delivery of the ALR gene alleviated hepatic I/R injury during orthotopic liver transplantation as evidenced by reduced serum aminotransferase, oxidative stress and apoptosis, and increased expression of autophagy markers. In an in vitro hypoxia/reoxygenation (H/R) model, overexpression of the ALR gene activated autophagy and relieved defective mitophagy via the PINK1/Parkin pathway. Mechanistically, ALR transfection induced the expression of mitofusin 2 (Mfn2) in the H/R model, which led to PINK1 accumulation and mitochondrial translocation of Parkin. Deletion of Mfn2 abolished mitophagy activation induced by ALR transfection, promoted mitochondrial dysfunction, and eventually increased cell apoptosis. Mfn2 administration prevented the inhibition of mitophagy in ALR-knockout (KO) cells, thus attenuated mitochondrial dysfunction and cell apoptosis. In heterozygous ALR-knockout mice treated with a warm I/R injury, marked aggravation of liver injury was associated with mitophagy inhibition and reduction in Mfn2 expression. Taken together, our results confirm that ALR accelerated Parkin translocation and mitophagy via Mfn2, and protected hepatocytes from I/R-induced injury. Our findings provide a novel rationale for the treatment of hepatic I/R injury.


Asunto(s)
Mitofagia , Daño por Reperfusión , Animales , Apoptosis , Isquemia , Hígado , Regeneración Hepática , Ratones , Ratones Endogámicos C57BL , Ratas , Daño por Reperfusión/prevención & control
13.
Am J Transplant ; 22(2): 427-437, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34551194

RESUMEN

Hyperlipidemia induces accelerated rejection of cardiac allografts and resistance to tolerance induction using costimulatory molecule blockade in mice due in part to anti-donor Th17 responses and reduced regulatory T cell function. Accelerated rejection in hyperlipidemic mice is also associated with increased serum levels of IL-6. Here, we examined the role of IL-6 in hyperlipidemia-induced accelerated rejection and resistance to tolerance. Genetic ablation of IL-6 prevented hyperlipidemia-induced accelerated cardiac allograft rejection. Using Th17-lineage fate tracking mice, we observed that IL-6 is required to promote the development of anti-donor Th17 lineage cells independently of antigen challenge. In contrast, the frequency of alloreactive T cells producing IL-2 or IFN-γ remained increased in hyperlipidemic IL-6-deficient mice. Ablation of IL-6 overcame hyperlipidemia-induced changes in Tregs, but was not sufficient to overcome resistance to costimulatory molecule blockade induced tolerance. We suggest that accelerated rejection in hyperlipidemic mice results from IL-6 driven anti-donor Th17 responses. While alterations in Tregs were overcome by ablation of IL-6, the reversal of hyperlipidemia-induced changes in Tregs was not sufficient to overcome increased Th1-type anti-donor T cell responses, suggesting that hyperlipidemia induced IL-6-independent effects on recipient immunity prevent tolerance induction.


Asunto(s)
Trasplante de Corazón , Hiperlipidemias , Animales , Rechazo de Injerto/prevención & control , Trasplante de Corazón/efectos adversos , Hiperlipidemias/etiología , Interleucina-6 , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
14.
Am J Transplant ; 22(2): 402-413, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34551205

RESUMEN

Obesity initiates a chronic inflammatory network linked to perioperative complications and increased acute rejection rates in organ transplantation. Bariatric surgery is the most effective treatment of obesity recommended for morbidly obese transplant recipients. Here, we delineated the effects of obesity and bariatric surgery on alloimmunity and transplant outcomes in diet-induced obese (DIO) mice. Allograft survival was significantly shorter in DIO-mice. When performing sleeve gastrectomies (SGx) prior to transplantation, we found attenuated T cell-derived alloimmune responses resulting in prolonged allograft survival. Administering taurodeoxycholic acid (TDCA) and valine, metabolites depleted in DIO-mice and restored through SGx, prolonged graft survival in DIO-mice comparable with SGx an dampened Th1 and Th17 alloimmune responses while Treg frequencies and CD4+ T cell-derived IL-10 production were augmented. Moreover, in recipient animals treated with TDCA/valine, levels of donor-specific antibodies had been reduced. Mechanistically, TDCA/valine restrained inflammatory M1-macrophage polarization through TGR5 that compromised cAMP signaling and inhibited macrophage-derived T cell activation. Consistently, administering a TGR5 agonist to DIO-mice prolonged allograft survival. Overall, we provide novel insights into obesity-induced inflammation and its impact on alloimmunity. Furthermore, we introduce TDCA/valine as a noninvasive alternative treatment for obese transplant patients.


Asunto(s)
Trasplante de Corazón , Obesidad Mórbida , Aloinjertos , Animales , Rechazo de Injerto/etiología , Supervivencia de Injerto , Trasplante de Corazón/efectos adversos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ácido Taurodesoxicólico , Valina
15.
Am J Transplant ; 21(12): 3871-3882, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34212503

RESUMEN

Organ transplantation has become a mainstay of therapy for patients with end-stage organ diseases. However, long-term administration of immunosuppressive agents, a scheme for improving the survival of transplant recipients, has been compromised by severe side effects and posttransplant complications. Therapeutic delivery targeting immune organs has the potential to address these unmet medical issues. Here, through screening of a small panel of mammalian target of rapamycin complex kinase inhibitor (TORKinib) compounds, a TORKinib PP242 is identified to be able to inhibit T cell function. Further chemical derivatization of PP242 using polyunsaturated fatty acids (i.e., docosahexaenoic acid) transforms this water-insoluble hydrophobic agent into a self-assembling nanoparticle (DHA-PP242 nanoparticle [DPNP]). Surface PEGylation of DPNP with amphiphilic copolymers renders the nanoparticles aqueously soluble for preclinical studies. Systemically administered DPNP shows tropism for macrophages within peripheral immune organs. Furthermore, DPNP regulates differentiation of adoptively transferred T cells in a macrophage-dependent manner in Rag1-/- mouse model. In an experimental model of heart transplantation, DPNP significantly extends the survival of grafts through inducing immune suppression, thus reducing the inflammatory response of the recipients. These findings suggest that targeted delivery of TORKinibs exploiting prodrug-assembled nanoparticle scaffolds may provide a therapeutic option against organ rejection.


Asunto(s)
Trasplante de Corazón , Trasplante de Células Madre Hematopoyéticas , Nanopartículas , Profármacos , Animales , Rechazo de Injerto/tratamiento farmacológico , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Humanos , Inmunosupresores , Ratones , Serina-Treonina Quinasas TOR
16.
Am J Transplant ; 21(11): 3538-3549, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33934505

RESUMEN

IL-12 (p35/p40) and IL-23 (p19/p40) signal through IL-12R (IL-12Rß2/ß1) and IL-23R (IL-23Rα/IL-12Rß1), respectively, which can promote pathogenic T lymphocyte activation, differentiation, and function in graft-versus-host disease (GVHD). With the use of murine models of allogeneic hematopoietic cell transplantation (HCT), we found that IL-12Rß1 on donor T cells was dispensable to induce acute GVHD development in certain circumstances, while IL-23Rα was commonly required. This observation challenges the current paradigm regarding IL-12Rß1 as a prerequisite to transmit IL-23 signaling. We hypothesized that p19/EBI3 (IL-39) may have an important role during acute GVHD. With the use of gene transfection and immunoprecipitation approaches, we verified that p19 and EBI3 can form biological heterodimers. We found that IL-39 levels in recipient serum positively correlated with development of acute GVHD in experimental models and in clinical settings, thereby implicating IL-39 in the pathogenesis of acute GVHD. Furthermore, we observed that human T cells can signal in response to IL-39. In chronic GVHD, IL-23Rα and IL-12Rß1 were similarly required for donor T cell pathogenicity, and IL-39 levels were not significantly different from controls without GVHD. Collectively, we identify a novel cytokine, IL-39, as a pathogenic factor in acute GVHD, which represents a novel potential therapeutic target to control GVHD and other inflammatory disorders.


Asunto(s)
Enfermedad Injerto contra Huésped , Interleucinas/inmunología , Receptores de Interleucina/inmunología , Animales , Enfermedad Injerto contra Huésped/etiología , Humanos , Interleucina-12 , Interleucina-23 , Ratones , Linfocitos T , Virulencia
17.
Am J Transplant ; 21(11): 3550-3560, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34014614

RESUMEN

Chronic rejection is among the most pressing clinical challenges in solid organ transplantation. Interestingly, in a mouse model of heterotopic heart transplantation, antibody-dependent, natural killer (NK) cell-mediated chronic cardiac allograft vasculopathy occurs in some donor-recipient strain combinations, but not others. In this study, we sought to identify the mechanism underlying this unexplained phenomenon. Cardiac allografts from major histocompatibility complex (MHC) mismatched donors were transplanted into immune-deficient C57Bl/6.rag-/- recipients, followed by administration of a monoclonal antibody against the donor MHC class I antigen. We found marked allograft vasculopathy in hearts from C3H donors, but near-complete protection of BALB/c allografts from injury. We found no difference in recipient NK cell phenotype or intrinsic responsiveness to activating signals between recipients of C3H versus BALB/c allografts. However, cardiac endothelial cells from C3H allografts showed an approximately twofold higher expression of Rae-1, an activating ligand of the NK cell receptor natural killer group 2D (NKG2D). Importantly, the administration of a neutralizing antibody against NKG2D abrogated the development of allograft vasculopathy in recipients of C3H allografts, even in the presence of donor-specific antibodies. Therefore, the activating NK cell receptor NKG2D is necessary in this model of chronic cardiac allograft vasculopathy, and strain-dependent expression of NK activating ligands correlates with the development of this disease.


Asunto(s)
Trasplante de Corazón , Subfamilia K de Receptores Similares a Lectina de Células NK , Animales , Anticuerpos Monoclonales , Células Endoteliales , Rechazo de Injerto/etiología , Trasplante de Corazón/efectos adversos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Receptores de Células Asesinas Naturales
19.
Am J Transplant ; 21(10): 3268-3279, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33784431

RESUMEN

Inflammation posttransplant is directly linked to cell death programs including apoptosis and necrosis. Cell death leads to the release of cellular contents which can promote inflammation. Targeting of these pathways should be an effective strategy to prevent transplant rejection. Toll-like receptor 3 (TLR3) is emerging as a major endogenous sensor of inflammation. In this study, we assessed the role of TLR3 on cell death and transplant rejection. We showed that TLR3 is highly expressed on mouse microvascular endothelial cell (ECs) and the endothelium of cardiac grafts. We demonstrated that TLR3 interacting with dsRNA or self-RNA triggered apoptosis and necroptosis in ECs. Interestingly, TLR3-induced necroptosis led mitochondrial damage. Inhibition of the mitochondrial membrane permeability molecule Cyclophilin D prevented necroptosis in ECs. In vivo, endothelium damage and activities of caspase-3 and mixed lineage kinase domain-like protein were inhibited in TLR3-/- cardiac grafts compared with C57BL/6 grafts posttransplant (n = 5, p < .001). Importantly, TLR3-/- cardiac grafts had prolonged survival in allogeneic BALB/c mice (mean survival = 121 ± 67 vs. 31 ± 6 days of C57BL/6 grafts, n = 7, p = .002). In summary, our study suggests that TLR3 is an important cell death inducer in ECs and cardiac grafts and thus a potential therapeutic target in preventing cardiac transplant rejection.


Asunto(s)
Trasplante de Corazón , Receptor Toll-Like 3 , Animales , Apoptosis , Muerte Celular , Trasplante de Corazón/efectos adversos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Donantes de Tejidos , Receptor Toll-Like 3/metabolismo
20.
Am J Transplant ; 21(9): 2964-2977, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33724664

RESUMEN

Calcineurin inhibitors (CNIs) are potent immunosuppressive agents, universally used following solid organ transplantation to prevent rejection. Although effective, the long-term use of CNIs is associated with nephrotoxicity. The etiology of this adverse effect is complex, and effective therapeutic interventions remain to be determined. Using a combination of in vitro techniques and a mouse model of CNI-mediated nephrotoxicity, we found that the CNIs, cyclosporine A (CsA), and tacrolimus (TAC) share a similar mechanism of tubular epithelial kidney cell injury, including mitochondrial dysfunction and release of High-Mobility Group Box I (HMGB1). CNIs promote bioenergetic reprogramming due to mitochondrial dysfunction and a shift toward glycolytic metabolism. These events were accompanied by diminished cell-to-cell adhesion, loss of the epithelial cell phenotype, and release of HMGB1. Notably, Erk1/2 inhibitors effectively diminished HMGB1 release, and similar inhibitor was observed on inclusion of pan-caspase inhibitor zVAD-FMK. In vivo, while CNIs activate tissue proremodeling signaling pathways, MAPK/Erk1/2 inhibitor prevented nephrotoxicity, including diminished HMGB1 release from kidney epithelial cells and accumulation in urine. In summary, HMGB1 is an early indicator and marker of progressive nephrotoxicity induced by CNIs. We suggest that proremodeling signaling pathway and loss of mitochondrial redox/bioenergetics homeostasis are crucial therapeutic targets to ameliorate CNI-mediated nephrotoxicity.


Asunto(s)
Inhibidores de la Calcineurina , Proteína HMGB1 , Animales , Inhibidores de la Calcineurina/efectos adversos , Ciclosporina/efectos adversos , Metabolismo Energético , Inmunosupresores/efectos adversos , Ratones , Tacrolimus/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...