Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; : e202401653, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363759

RESUMEN

The ethanol extract of the roots of Clausena excavata gave two previously undescribed coumarins, clauexcatin A (1) and clauexcatin B (2), as well as a pair of new isomers, trans/cis-clauexcatin C (3a, 3b), along with thirty known compounds. Among these, compound 33 was isolated from this genus for the first time. The structures of these compounds were elucidated based on their physicochemical properties and spectroscopic data. The anti-neuroinflammatory activities were assessed using LPS-activated BV-2 microglial cells. Compounds 6, 8, 17, 24, 29, and 30 exhibited significant inhibition of nitric oxide release in a dose-dependent manner, with their inhibitory effects being 1.2 to 10.9 times greater than that of the positive control (minocycline).

2.
J Ethnopharmacol ; 337(Pt 2): 118877, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362323

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The cortex of Eleutherococcus henryi (EH, Araliaceae), also known as "Wu-Jia-Pi", is known for its effects such as dispelling wind and dampness, calming the mind and enhancing intelligence, removing heat and toxin, strengthening muscles and bones, and nourishing the liver and kidneys. Throughout Chinese history and tradition, it has been used for conditions like amnesia, mental fatigue, arthritis, hepatitis, and rheumatism. However, research evaluating its neuroprotective effects and pharmacological properties remains scarce. AIM OF THE STUDY: The goal is to explore the anti-neuroinflammatory properties of EH in vitro and to discover precisely the bioactive natural products within the medicinal plant that are relevant to its traditional usage. MATERIALS AND METHODS: Utilizing chromatographic techniques, a phytochemical exploration was conducted. The phytochemical structures of the natural products were then elucidated through an analysis involving comprehensive spectra and a comparison with relevant data from published studies. Network pharmacology combined with molecular dynamics simulations (MDs) and docking were applied to forecast potential anti-neuroinflammatory targets of active compounds. In vitro, the anti-neuroinflammatory efficacy was evaluated via the suppression of inflammatory mediators activated by lipopolysaccharide (LPS) in BV2 microglia. RESULTS: The methanol extract of E.henryi (EHME) restrained the NO release in LPS-activated BV2 microglia, demonstrating anti-neuroinflammatory activity. Subsequently, chemical composition analysis revealed the separation and elucidation of 31 secondary metabolites, comprising 7 new compounds (1-7) and 1 new natural product (8). Based on LPS-induced BV2 cell in vitro activity tests, compounds 4-17, 19, 20, 22, 23, 26, 29 and 31 were found to exhibit potential anti-neuroinflammatory activity, with compound 6 showing the highest efficacy. Furthermore, employing network pharmacology in conjunction with both molecular docking and MDs, potential anti-neuroinflammatory targets of compound 6 were predicted to include TLR4, Src, MAPK, and NF-κB. Finally, validation through in vitro experiments confirmed that the anti-neuroinflammatory mechanism of compound 6 is associated with the TLR4/Src/MAPK p38/NF-κB p65 signaling pathways. CONCLUSIONS: The study affirmed the traditional efficacy of E. henryi and unveiled novel lignans as potent agents against neuroinflammation.

3.
Phytochemistry ; 229: 114310, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39461492

RESUMEN

The four matrine-derived alkaloids, namely sophflarines B-E (1-4), with distinct skeleton types, were isolated from Sophora flavescens. Compounds 1 and 2 possess rare 1-aza-11-oxatricyclo[5.3.1.02,6] undecane cores, featuring unprecedented N,O-heterocyclic systems of 5/5/6/6/6 and 6/5/5/6/6, respectively. Compounds 3 and 4 exhibit two novel C15 units with tetracyclic skeletons of 5/6/6/6 and 6/5/6/6, respectively. The structures were elucidated through spectroscopic analyses, quantum chemical calculations, and X-ray diffraction data. A plausible biosynthetic pathway for these newly discovered compounds was proposed. Furthermore, compounds 1 and 2 showed anti-neuroinflammatory activity against the cytokines NO, TNF-α, and IL-6. Compound 2 exhibited a neuroprotective effect potentially mediated by activating the Keap1-Nrf2/HO-1 pathway to reduce inflammation and oxidative stress.

4.
Phytomedicine ; 135: 156140, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39405611

RESUMEN

BACKGROUND: In the traditional "Yao" ethno-medicine system, Piper hancei Maxim. is used to treat rheumatism, wind-cold, and inflammation. Previous studies indicate that lignans obtained from P. hancei stems have anti-neuroinflammatory potential in LPS-stimulated microglial cells. However, identification of the lignan enantiomers and the precise mechanism by which they work to reduce inflammation is yet to be explored. PURPOSE: To identify the active anti-neuroinflammatory lignan enantiomers isolated from P. hancei stems and to elucidate the mechanism of action both in vitro and in vivo. METHODS: The lignan enantiomers from P. hancei stems were isolated and elucidated using various chromatographic and spectroscopic methods. The anti-neuroinflammatory potential of all the compounds was initially screened by measuring nitric oxide (NO) inhibition in LPS-stimulated BV-2 microglial cells. Then anti-neuroinflammatory efficacy of the most active compound was assessed with LPS-stimulated microglial cell model, microglia-induced neuronal injury SH-SY5Y cell model, and LPS-intracerebroventricular injection neuroinflammation mouse model. The underlying mechanism was further explored by qRT-PCR analysis, Western blot analysis, and immunofluorescence staining experiments to understand the intervention pathway. RESULTS: Phytochemical analysis of P. hancei stems resulted in the isolation of 13 pairs of neolignan enantiomers (1-13), including 4 new pairs named piperhancin D-G (1-4). All right-handed (+) and left-handed (-) enantiomers of each pair (1-13) were isolated successfully. Notably, (+)-futoquinol (5) demonstrated significant anti-neuroinflammatory activity without cytotoxicity, unlike its inactive enantiomer (-)-5 in LPS-stimulated microglial cells. The representative compound (+)-5 effectively suppressed pro-inflammatory cytokines in LPS stimulated BV-2 cells and mouse brains, and alleviated microglia-induced neuronal damage in SH-SY5Y cells. Behavioral tests showed that (+)-5 alleviated the LPS-induced cognitive dysfunction in mice. Furthermore, the compound was able to reduce LPS-induced neuronal damage and microglial activation in mouse brains. A mechanistic study demonstrated that (+)-5 hindered the nuclear translocation of NF-κB p65 and downregulated the pro-inflammatory mediators to relieve neuroinflammation. CONCLUSION: This is the first example of both in vitro and in vivo study on the anti-neuroinflammatory effects and underlying mechanism of the neolignan enantiomers isolated from P. hancei. Notably, (+)-futoquinol (5) emerged as a potential lead for further drug development to treat neurodegenerative diseases.

5.
Phytochemistry ; 229: 114298, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39419315

RESUMEN

Eight cyclopenta[b]benzofurans (1, 2, 4, and 5-9) and eight cyclopenta[bc]benzopyrans (3, 10-16), including a revised (4) and three undescribed compounds (1-3), were isolated from the twigs and leaves of Aglaia edulis (Roxb.) Wall. Their structures were determined by a combination of spectral analysis in conjunction with NMR and ECD calculations. Moreover, based on the findings from 13C NMR calculations and DP4+ statistical analysis, an empirical guideline was established to differentiate the structures of cyclopenta[bc]benzopyrans and cyclopenta[b]benzofurans by aggregating chemical shift data from known compounds. This guideline facilitated the proposal of structural revisions for three previously reported analogs (R-1, R-2, R-3). Biological assay indicated that cyclopenta[b]benzofuran flavalines (2, and 4-8) could significantly inhibit NO production in LPS-induced BV-2 cells with IC50 values from 0.002 to 0.05 µM.

6.
Eur J Med Chem ; 278: 116794, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39226707

RESUMEN

Alzheimer's disease (AD, also known as dementia) has become a serious global health problem along with population aging, and neuroinflammation is the underlying cause of cognitive impairment in the brain. Nowadays, the development of multitarget anti-AD drugs is considered to be one effective approach. Imidazolylacetophenone oxime ethers or esters (IOEs) were multifunctional agents with neuroinflammation inhibition, metal chelation, antioxidant and neuroprotection properties against Alzheimer's disease. In this study, IOEs derivatives 1-8 were obtained by structural modifications of the oxime and imidazole groups, and the SARs showed that (Z)-oxime ether (derivative 2) had stronger anti-neuroinflammatory and neuroprotective ability than (E)-congener. Then, IOEs derivatives 9-30 were synthesized based on target-directed ligands and activity-based groups hybridization strategy. In vitro anti-AD activity screening revealed that some derivatives exhibited potentially multifunctional effects, among which derivative 28 exhibited the strongest inhibitory activity on NO production with EC50 value of 0.49 µM, and had neuroprotective effects on 6-OHDA-induced cell damage and RSL3-induced ferroptosis. The anti-neuroinflammatory mechanism showed that 28 could inhibit the release of pro-inflammatory factors PGE2 and TNF-α, down-regulate the expression of iNOS and COX-2 proteins, and promote the polarization of BV-2 cells from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. In addition, 28 can dose-dependently inhibit acetylcholinesterase (AChE) and Aß42 aggregation. Moreover, the selected nuclide [18F]-labeled 28 was synthesized to explore its biodistribution by micro-PET/CT, of which 28 can penetrate the blood-brain barrier (BBB). These results shed light on the potential of 28 as a new multifunctional candidate for AD treatment.


Asunto(s)
Acetofenonas , Enfermedad de Alzheimer , Diseño de Fármacos , Imidazoles , Fármacos Neuroprotectores , Oximas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Oximas/química , Oximas/farmacología , Oximas/síntesis química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química , Animales , Relación Estructura-Actividad , Imidazoles/farmacología , Imidazoles/química , Imidazoles/síntesis química , Acetofenonas/química , Acetofenonas/farmacología , Acetofenonas/síntesis química , Estructura Molecular , Humanos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Acetilcolinesterasa/metabolismo , Relación Dosis-Respuesta a Droga , Ratas , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química
7.
Curr Med Chem ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39279700

RESUMEN

INTRODUCTION: Cerebral infarction, the blockage of blood vessels in the brain, is generally an age-related illness. Factors such as unhealthy diets, stressful behaviours and decreased environmental consistency with physiological barriers also contribute to increased casualties. Long-term brain function reconstruction and successful drug therapy are needed. The most frequent malignant brain tumour, glioblastoma, has been linked to variations in mitochondrial ROS, chaperone-mediated autophagy, and the interaction between lncRNA (BC200) and miRNA. Glioblastoma stem cells express high levels of ATP/P2X7 receptors, promoting survival by activating M2 muscarinic receptors. AREAS COVERED: This expert opinion provides an overview of the latest experimental drug therapies aimed at protecting against and restoring cerebral stroke. EXPERT OPINION: Nanomedicine overcomes the challenges associated with traditional therapy and physiological obstacles in the treatment of cerebral infarction by improving stroke management, including diagnosis, imaging, and treatment, addressing a diverse range of associated factors.

8.
J Nat Med ; 78(4): 970-977, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126611

RESUMEN

Phytochemical study on the flowers of Hypericum formosanum Maxim. (Hypericaceae) led to the isolation of formohyperins G-L (1-6), whose structures were assigned by detailed spectroscopic analysis. Formohyperins G-L (1-6) are new benzoylphloroglucinols substituted by a C10 unit, a prenyl group, and a methyl group. Formohyperins G-J (1-4) possess a 6/6/6-tricyclic structure, while formohyperins K (5) and L (6) have a unique 6/6/5/4-tetracyclic structure consisting of cyclohexadienone, dihydropyrane, cyclopentane, and cyclobutane rings. The absolute configurations of 1-6 were deduced by analysis of the ECD spectra. Formohyperins G-J (1-4) and L (6) were found to show potent inhibitory activities against IL-1ß release from LPS-treated murine microglial cells with EC50 values of 5.0, 10.9, 6.3, 10.8, and 13.7 µM, respectively, without cytotoxicity. 6-O-Methylformohyperins G (1a) and I (3a) also exhibited the inhibitory activities with EC50 values of 4.7 and 2.7 µM, respectively, although they were cytotoxic against microglial cells.


Asunto(s)
Flores , Hypericum , Floroglucinol , Hypericum/química , Animales , Floroglucinol/química , Floroglucinol/farmacología , Flores/química , Ratones , Estructura Molecular , Interleucina-1beta/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Prenilación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Lipopolisacáridos/farmacología , Línea Celular
9.
Bioorg Med Chem ; 110: 117826, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004050

RESUMEN

Design, synthesis, and biological evaluation of two series of O4'-benzyl-hispidol derivatives and the analogous corresponding O3'-benzyl derivatives aiming to develop selective monoamine oxidase-B inhibitors endowed with anti-neuroinflammatory activity is reported herein. The first O4'-benzyl-hispidol derivatives series afforded several more potentially active and MAO-B inhibitors than the O3'-benzyl derivatives series. The most potential compound 2e of O4'-benzyl derivatives elicited sub-micromolar MAO-B IC50 of 0.38 µM with a selectivity index >264 whereas most potential compound 3b of O3'-benzyl derivatives showed only 0.95 MAO-B IC50 and a selectivity index >105. Advancement of the most active compounds showing sub-micromolar activities to further cellular evaluations of viability and induced production of pro-neuroinflammatory mediators confirmed compound 2e as a potential lead compound inhibiting the production of the neuroinflammatory mediator nitric oxide significantly by microglial BV2 cells at 3 µM concentration without significant cytotoxicity up to 30 µM. In silico molecular docking study predicted plausible binding modes with MAO enzymes and provided insights at the molecular level. Overall, this report presents compound 2e as a potential lead compound to develop potential multifunctional compounds.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Relación Estructura-Actividad , Animales , Ratones , Humanos , Estructura Molecular , Línea Celular , Relación Dosis-Respuesta a Droga , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Supervivencia Celular/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química
10.
Chin J Nat Med ; 22(7): 643-653, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39059833

RESUMEN

The resin of Ferula sinkiangensis has been traditionally utilized for treating gastrointestinal disorders, inflammation, tumors, various cancers, and alopecia areata. The primary bioactive constituents, sesquiterpene coumarins, have demonstrated notable therapeutic potential against neuroinflammation. In this study, a structure-guided fractionation method was used to isolate nine novel sesquiterpene coumarins from the resin of F. sinkiangensis. These compounds were characterized and structurally elucidated using comprehensive physicochemical and spectroscopic techniques, including calculated electronic circular dichroism (ECD). Anti-neuroinflammatory assays revealed that compounds 2, 3, and 6 significantly inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated BV2 microglial cells, with IC50 values ranging from 1.63 to 12.25 µmol·L-1.


Asunto(s)
Antiinflamatorios , Cumarinas , Ferula , Microglía , Óxido Nítrico , Sesquiterpenos , Ferula/química , Cumarinas/farmacología , Cumarinas/aislamiento & purificación , Cumarinas/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Microglía/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Estructura Molecular , Animales , Ratones , Línea Celular , Lipopolisacáridos/farmacología , Resinas de Plantas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
11.
Nat Prod Res ; : 1-8, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38859747

RESUMEN

A new andrastin-type meroterpenoid penimerodione A (1), and three known analogues (2-4), were isolated from the culture of a marine-derived fungus Penicillium chrysogenum HNNU w0032 by the guidance of MS/MS-based molecular networking. The planar structure of 1 was established by extensive NMR spectroscopic and HRESIMS analyses, and the absolute configuration was elucidated by a single-crystal X-ray diffraction. Compound 1 showed significant inhibitory effect on NO production in LPS-stimulated BV-2 macrophages with an IC50 value of 5.9 ± 0.3 µM. The Western blot result revealed that compound 1 exerted an anti-neuroinflammatory effect via the MAPK signalling pathway.

12.
Mar Drugs ; 22(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38921546

RESUMEN

Neurodegenerative diseases involve neuroinflammation and a loss of neurons, leading to disability and death. Hence, the research into new therapies has been focused on the modulation of the inflammatory response mainly by microglia/macrophages. The extracts and metabolites of marine sponges have been presented as anti-inflammatory. This study evaluated the toxicity of an extract and purified compound from the Brazilian marine sponge Aplysina fulva as well as its neuroprotection against inflammatory damage associated with the modulation of microglia response. PC12 neuronal cells and neonatal rat microglia were treated with the methanolic extract of A. fulva (AF-MeOH, 0.1-200 µg/mL) or with its purified dimethyl ketal of 3,5-dibromoverongiaquinol (AF-H1, 0.1-100 µM). Cytotoxicity was determined by MTT tetrazolium, Trypan blue, and propidium iodide; microglia were also treated with the conditioned medium (CM) from PC12 cells in different conditions. The microglia phenotype was determined by the expression of Iba-1 and CD68. AF-MeOH and AF-H1 were not toxic to PC12 or the microglia. Inflammatory damage with Escherichia coli lipopolysaccharide (LPS, 5 µg/mL) was not observed in the PC12 cells treated with AF-MeOH (1-10 µg/mL) or AF-H1 (1-10 µM). Microglia subjected to the CM from PC12 cells treated with LPS and AF-MeOH or AF-H1 showed the control phenotype-like (multipolar, low-CD68), highlighting the anti-neuroinflammatory and neuroprotective effect of components of this marine sponge.


Asunto(s)
Microglía , Fármacos Neuroprotectores , Poríferos , Animales , Microglía/efectos de los fármacos , Ratas , Poríferos/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Células PC12 , Brasil , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Hidrocarburos Bromados/farmacología , Inflamación/tratamiento farmacológico
13.
Bioorg Chem ; 150: 107575, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38941698

RESUMEN

Citristerones A-E (1-5), five new 23,24-diols containing ergosterols, along with three known analogues, were isolated from the endophytic fungus Penicillium citrinum TJ507 obtained from Hypericum wilsonii N. Robson. Their structures and absolute configurations were determined by NMR, HRESIMS, Snatzke's method, X-ray diffraction analyses and ECD calculation. Subsequently, the anti-neuroinflammatory effects of these isolates were screened using lipopolysaccharide (LPS)-induced BV-2 microglial cells, and citristerone B (2) showed outstanding anti-neuroinflammatory activity, with IC50 value of 0.60 ± 0.04 µM. Moreover, immunofluorescence and western blot analysis suggested that citristerone B not only reduced the release of nitric oxide (NO) and proinflammatory cytokines in LPS-induced BV-2 microglial cells, but also significantly inhibited the expression of TNF-α, iNOS and NF-κB, along with the production of cellular ROS.


Asunto(s)
Relación Dosis-Respuesta a Droga , Lipopolisacáridos , Penicillium , Penicillium/química , Ratones , Animales , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Estructura Molecular , Relación Estructura-Actividad , Microglía/efectos de los fármacos , Microglía/metabolismo , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Descubrimiento de Drogas , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación
14.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731397

RESUMEN

A chemical investigation of the arils of Torreya grandis led to the isolation of seven abietane-type diterpenoids (compounds 1-7) including three previously undescribed compounds, one unreported natural product, and three known analogs. The structures of these compounds were determined by means of spectroscopy, single-crystal X-ray diffraction, and ECD spectra. An antibacterial activity assay showed that compounds 5 and 6 had significant inhibitory effects on methicillin-resistant Staphylococcus aureus, with MIC values of 100 µM. Moreover, compounds 1, 3, 4, and 7 exhibited anti-neuroinflammatory activity in LPS-stimulated BV-2 microglia cells, with the IC50 values ranging from 38.4 to 67.9 µM.


Asunto(s)
Abietanos , Antibacterianos , Abietanos/química , Abietanos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Estructura Molecular , Línea Celular , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Lipopolisacáridos/farmacología
15.
Mar Drugs ; 22(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786605

RESUMEN

Chemical investigation of marine fungus Nigrospora oryzae SYSU-MS0024 cultured on solid-rice medium led to the isolation of three new alkaloids, including a pair of epimers, nigrosporines A (1) and B (2), and a pair of enantiomers, (+)-nigrosporine C (+)-3, and (-)-nigrosporine C (-)-3, together with eight known compounds (4-11). Their structures were elucidated based on extensive mass spectrometry (MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopic analyses and compared with data in the literature. The absolute configurations of compounds 1-3 were determined by a combination of electronic circular dichroism (ECD) calculations, Mosher's method, and X-ray single-crystal diffraction technique using Cu Kα radiation. In bioassays, compound 2 exhibited moderate inhibition on NO accumulation induced by lipopolysaccharide (LPS) on BV-2 cells in a dose-dependent manner at 20, 50, and 100 µmol/L and without cytotoxicity in a concentration of 100.0 µmol/L. Moreover, compound 2 also showed moderate acetylcholinesterase (AChE) inhibitory activities with IC50 values of 103.7 µmol/L. Compound 5 exhibited moderate antioxidant activity with EC50 values of 167.0 µmol/L.


Asunto(s)
Alcaloides , Ascomicetos , Inhibidores de la Colinesterasa , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/aislamiento & purificación , Animales , Ratones , Ascomicetos/química , Línea Celular , Óxido Nítrico/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Estructura Molecular , Acetilcolinesterasa/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Lipopolisacáridos/farmacología
16.
Phytochemistry ; 223: 114121, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697242

RESUMEN

In this study, twenty-three ent-eudesmane sesquiterpenoids (1-23) including fifteen previously undescribed ones, named eutypelides A-O (1-15) were isolated from the marine-derived fungus Eutypella sp. F0219. Their planar structures and relative configurations were established by HR-ESIMS and extensive 1D and 2D NMR investigations. The absolute configurations of the previously undescribed compounds were determined by single-crystal X-ray diffraction analyses, modified Mosher's method, and ECD calculations. Structurally, eutypelide A (1) is a rare 1,10-seco-ent-eudesmane, whereas 2-15 are typically ent-eudesmanes with 6/6/-fused bicyclic carbon nucleus. The anti-neuroinflammatory activity of all isolated compounds (1-23) was accessed based on their ability to NO production in LPS-stimulated BV2 microglia cells. Compound 16 emerged as the most potent inhibitor. Further mechanistic investigation revealed that compound 16 modulated the inflammatory response by decreasing the protein levels of iNOS and increasing ARG 1 levels, thereby altering the iNOS/ARG 1 ratio and inhibiting macrophage polarization. qRT-PCR analysis showed that compound 16 reversed the LPS-induced upregulation of pro-inflammatory cytokines, including iNOS, TNF-α, IL-6, and IL-1ß, at both the transcriptional and translational levels. These effects were linked to the inhibition of the NF-κB pathway, a key regulator of inflammation. Our findings suggest that compound 16 may be a potential structure basis for developing neuroinflammation-related disease therapeutic agents.


Asunto(s)
Antiinflamatorios , Lipopolisacáridos , Microglía , Sesquiterpenos de Eudesmano , Animales , Ratones , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Sesquiterpenos de Eudesmano/farmacología , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Microglía/efectos de los fármacos , Estructura Molecular , Óxido Nítrico/biosíntesis , Óxido Nítrico/antagonistas & inhibidores , Relación Estructura-Actividad , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Relación Dosis-Respuesta a Droga , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación
17.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675576

RESUMEN

Hyperforatums A-D (1-4), four new polyprenylated acylphloroglucinols, together with 13 known compounds were isolated and identified from the aerial parts of Hypericum perforatum L. (St. John's wort). Their structures were confirmed with a comprehensive analysis comprising spectroscopic methods, including 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) calculations. Hyperforatum A featured an unusual chromene-1,4-dione bicyclic system, and hyperforatums B and C were two rare monocyclic PPAPs with five-membered furanone cores. Compound 1 exhibited a moderate inhibition effect on NO production in BV-2 microglial cells stimulated by LPS.


Asunto(s)
Hypericum , Floroglucinol , Hypericum/química , Floroglucinol/química , Floroglucinol/farmacología , Floroglucinol/aislamiento & purificación , Floroglucinol/análogos & derivados , Estructura Molecular , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Animales , Óxido Nítrico/metabolismo , Óxido Nítrico/biosíntesis , Línea Celular , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Extractos Vegetales/farmacología , Lipopolisacáridos/farmacología
18.
Bioorg Chem ; 147: 107335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583250

RESUMEN

Fifty compounds including seven undescribed (1, 13, 18-20, 30, 31) and forty-three known (2-12, 14-17, 21-29, 32-50) ones were isolated from the extract of the twigs and leaves of Aglaia odorata with anti-neuroinflammatory activities. Their structures were determined by a combination of spectral analysis and calculated spectra (ECD and NMR). Among them, compounds 13-25 were found to possess tertiary amide bonds, with compounds 16, 17, and 19-21 existing detectable cis/trans mixtures in 1H NMR spectrum measured in CDCl3. Specifically, the analysis of the cis-trans isomerization equilibrium of tertiary amides in compounds 19-24 was conducted using NMR spectroscopy and quantum chemical calculations. Bioactivity evaluation showed that the cyclopenta[b]benzofuran derivatives (2-6, 8, 10, 12) could inhibit nitric oxide production at the nanomolar concentration (IC50 values ranging from 2 to 100 nM) in lipopolysaccharide-induced BV-2 cells, which were 413-20670 times greater than that of the positive drug (minocycline, IC50 = 41.34 µM). The cyclopenta[bc]benzopyran derivatives (13-16), diterpenoids (30-35), lignan (40), and flavonoids (45, 47, 49, 50) also demonstrated significant inhibitory activities with IC50 values ranging from 1.74 to 38.44 µM. Furthermore, the in vivo anti-neuroinflammatory effect of rocaglaol (12) was evaluated via immunofluorescence, qRT-PCR, and western blot assays in the LPS-treated mice model. The results showed that rocaglaol (12) attenuated the activation of microglia and decreased the mRNA expression of iNOS, TNF-α, IL-1ß, and IL-6 in the cortex and hippocampus of mice. The mechanistic study suggested that rocaglaol might inhibit the activation of the NF-κB signaling pathway to relieve the neuroinflammatory response.


Asunto(s)
Aglaia , Lipopolisacáridos , Óxido Nítrico , Animales , Ratones , Aglaia/química , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Masculino , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Benzofuranos/farmacología , Benzofuranos/química , Benzofuranos/aislamiento & purificación , Línea Celular , Hojas de la Planta/química
19.
Fitoterapia ; 176: 105976, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38685511

RESUMEN

Phytochemical research on an extract of Notopterygium incisum yielded fifteen compounds (1-15), including four previously undescribed compounds (10-13). The structures of the unreported compounds were elucidated by spectroscopic and spectrometric data analysis such as 1D and 2D NMR, IR and HR-ESI-MS. Compounds 1-5 and 10-14 were isolated from N. incisum for the first time. 7S⁎,8R⁎-Phenethyl-(7-methoxy-8-isoeugenol)-ferulate (10), 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11), 7S⁎,8R⁎-benzyl-(7-methoxy-8-isoeugenol)-ferulate (12) and p-hydroxyphenethyl-(4-benzoy-3-methoxy)-cinnamate (13) are the undescribed ferulic acid derivatives. Additionly, the anti-neuroinflammatory effects of compounds were evaluated in lipopolysaccharide (LPS)-induced BV2 cells. The pharmacological results showed that 6ß,10ß-epoxy-4α-hydroxy-guaiane (6), teuclatriol (7) and 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) inhibited the production and expression of nitric oxide (NO) in the LPS-induced BV2 cells in a concentration-dependent manner. Acorusnol (4), teucladiol (9), 7S⁎,8R⁎-benzyl-(7-methoxy-8-isoeugenol)-ferulate (12) and p-hydroxyphenethyl-(4-benzoy-3-methoxy)-cinnamate (13) only inhibited the release of NO at concentration of 20 µM. Moreover, 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) reduced the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in LPS-stimulated BV2 cells. The results demonstrated 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) could be a potential anti-neuroinflammatory agent and is worthy of further study.


Asunto(s)
Antiinflamatorios , Apiaceae , Fitoquímicos , Ratones , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Estructura Molecular , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Apiaceae/química , Línea Celular , Óxido Nítrico/metabolismo , China , Microglía/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química
20.
Int J Biol Macromol ; 266(Pt 2): 131254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565362

RESUMEN

Acorus tatarinowii, a famous traditional Chinese medicine, is used for the clinical treatment of memory impairment and dementia. In this research, AT50, the crude polysaccharide extracted from A. tatarinowii rhizome, significantly improved the memory and learning ability of mice with Alzheimer's disease (AD) and exerted excellent anti-neuroinflammatory effects. More importantly, AT50 returned the levels of NO, TNF-α, IL-1ß, PGE-2, and IL-6 in AD mouse brains to normal levels. To identify the active ingredients in AT50, a heteropolysaccharide ATP50-3 was obtained from AT50. Structural analysis indicated ATP50-3 consisted of α-L-Araf-(1→, →2)-α-L-Araf-(1→, →3)-α-L-Araf-(1→, →5)-α-L-Araf-(1→, α-D-Xylp-(1→, →3,4)-ß-D-Xylp-(1→, →3)-α-D-Galp-(1→, →3,6)-α-D-Galp-(1→, →6)-4-OAc-α-D-Galp-(1→, →3,4,6)-α-D-Galp-(1→, →4)-α-D-Glcp-(1→, →2,3,6)-ß-D-Glcp-(1→, →4,6)-α-D-Manp-(1→, →3,4)-α-L-Rhap-(1→, →4)-α-D-GalpA-(1→, and →4)-α-D-GlcpA-(1 â†’ residues and terminated with Xyl and Ara. Additionally, ATP50-3 significantly inhibited the release of proinflammatory factors in lipopolysaccharide-stimulated BV2 cells. ATP50-3 may be an active constituent of AT50, responsible for its anti-neuroinflammatory effects, with great potential to treat AD.


Asunto(s)
Acorus , Antiinflamatorios , Polisacáridos , Rizoma , Acorus/química , Animales , Rizoma/química , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Masculino , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...