Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cancers (Basel) ; 16(19)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39409881

RESUMEN

Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of immunotherapies directly focused on melanoma cells. This is partly due to few available targets, especially those expressed on the cancer cell surface. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface molecule overexpressed in human melanoma, with restricted distribution and low expression in non-malignant tissues and involved in several cancer-promoting and dissemination pathways. Here, we summarize the current understanding of the expression and functional significance of CSPG4 in health and melanoma, and we outline immunotherapeutic strategies. These include monoclonal antibodies, antibody-drug conjugates (ADCs), chimeric-antigen receptor (CAR) T cells, and other strategies such as anti-idiotypic and mimotope vaccines to raise immune responses against CSPG4-expressing melanomas. Several showed promising functions in preclinical models of melanoma, yet few have reached clinical testing, and none are approved for therapeutic use. Obstacles preventing that progress include limited knowledge of CSPG4 function in human cancer and a lack of in vivo models that adequately represent patient immune responses and human melanoma biology. Despite several challenges, immunotherapy directed to CSPG4-expressing melanoma harbors significant potential to transform the treatment landscape.

2.
Cancers (Basel) ; 16(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39335175

RESUMEN

OBJECTIVES: To perform the first national analysis of demographic and clinicopathological features associated with the HER2 positive, HER2-low, and HER2-zero invasive breast cancers in New Zealand. The study will reveal the proportion of women who may benefit from new HER2-targeted antibody drug conjugate (ADC) therapies. METHODS: Utilising data from Te Rehita Mate Utaetae (Breast Cancer Foundation NZ National Register), the study analysed data from women diagnosed with invasive breast cancer over a 21-year period. The HER2 status of tumours was classified into three categories-HER2-zero, HER2-low, HER2-positive. RESULTS: From 2009-2021, 94% of women underwent HER2 testing, with 14% diagnosed with HER2-positive breast cancer. For advanced-stage disease, 38% of those formerly classified as HER2-negative were reclassified as HER2-low. Including HER2-positive breast cancers, this indicates that 60% of women with advanced breast cancer may potentially benefit from the new HER2-directed ADCs (approximately 120 women per year). CONCLUSIONS: The findings suggest a significant proportion of women with invasive breast cancer in New Zealand could benefit from new HER2-targeted treatments. There is a need to standardise HER2 testing to enhance personalised treatment and improve outcomes.

3.
Pharmaceutics ; 16(9)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39339183

RESUMEN

The advent of immunotherapy and antibody-drug conjugates (ADCs) have revolutionized breast cancer treatment, offering new hope to patients. However, challenges, such as resistance and limited efficacy in certain cases, remain. Recently, the combination of these therapies has emerged as a promising approach to address these challenges. ADCs play a crucial role by delivering cytotoxic agents directly to breast cancer cells, minimizing damage to healthy tissue and enhancing the tumor-killing effect. Concurrently, immunotherapies harness the body's immune system to recognize and eliminate cancer cells. This integration offers potential to overcome resistance mechanisms and significantly improve therapeutic outcomes. This review explores the rationale behind combining immunotherapies with ADCs, recent advances in this field, and the potential implications for breast cancer treatment.

4.
Front Pharmacol ; 15: 1425617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228525

RESUMEN

Background: Antibody-drug conjugates (ADCs) have emerged as the focus and hotspots in the cancer field, yet the accompanying ocular toxicity has often been underestimated. We aimed to comprehensively and comparatively analyze the risk of ocular toxicity associated with various ADCs using the FDA Adverse Event Reporting System (FAERS) database. Methods: Data were extracted from the FAERS database from Q3 2011 to Q3 2023. We analyzed the clinical characteristics of ADCs-related ocular adverse events (AEs). These data were further mined by proportional analysis and Bayesian approach to detect signals of ADCs-induced ocular AEs. Moreover, the time to onset of ocular toxicity was also evaluated. Results: A total of 1,246 cases of ocular AEs were attributed to ADCs. Ocular toxicity signals were observed in patients treated with belantamab mafodotin, brentuximab vedotin, enfortumab vedotin, mirvetuximab soravtansine, sacituzumab govitecan, trastuzumab deruxtecan, and trastuzumab emtansine. Of these, belantamab mafodotin, trastuzumab emtansine, and mirvetuximab soravtansine, whose payloads are microtubule polymerization inhibitors, were more susceptible to ocular toxicity. The ten most common ADCs-related ocular AEs signals are keratopathy [ROR = 1,273.52, 95% CI (1,129.26-1,436.21)], visual acuity reduced [ROR = 22.83, 95% CI (21.2-24.58)], dry eye [ROR = 9.69, 95% CI (8.81-10.66)], night blindness [ROR = 259.87, 95% CI (228.23-295.89)], vision blurred [ROR = 1.78, 95% CI (1.57-2.02)], photophobia [ROR = 10.45, 95% CI (9.07-12.05)], foreign body sensation in eyes [ROR = 23.35, 95% CI (19.88-27.42)], ocular toxicity [ROR = 144.62, 95% CI (117.3-178.32)], punctate keratitis [ROR = 126.21, 95% CI (101.66-156.69)], eye disorder [ROR = 2.71, 95% CI (2.21-3.32)]. In terms of onset time, sacituzumab govitecan displayed an earlier onset of 21 days, while trastuzumab deruxtecan exhibited the latest onset of 223 days. Conclusion: ADCs may increase the risk of ocular toxicity in cancer patients, leading to serious mortality. With the widespread application of newly launched ADCs, combining the FAERS data with other data sources is crucial for monitoring the ocular toxicity of ADCs. In addition, novel ocular toxicity signals not documented in product labeling were detected. Further research will be necessary to validate our findings in the future.

5.
Eur J Med Chem ; 279: 116899, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39321689

RESUMEN

As an emerging tumor therapeutic strategy, antibody-drug conjugates (ADCs) overcome the high toxicity of traditional small molecule chemotherapy and improve the targeting of treatment. In this study, we successfully constructed a novel ADC, Tras-16b, for the first time using homocamptothecin 16b as the payload. Tras-16b, at a dose of 3 mg/kg, exhibited comparable anti-tumor activity to Enhertu and demonstrated an enhanced safety profile in the NCI-N87 xenograft model. Notably, this is the first ADC developed based on homocamptothecin, marking a significant advancement with promising prospects for the structural modification of camptothecin ADCs.


Asunto(s)
Camptotecina , Inmunoconjugados , Camptotecina/farmacología , Camptotecina/química , Camptotecina/síntesis química , Camptotecina/análogos & derivados , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Animales , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Estructura Molecular , Línea Celular Tumoral , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos , Femenino , Ratones Desnudos , Ratones Endogámicos BALB C
6.
J Pharm Sci ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182845

RESUMEN

Charge variants are one of the most important quality attributes for protein therapeutics, including antibody drug conjugates (ADCs). ADCs are conjugation products between monoclonal antibodies (mAbs) and highly potent payloads. After attaching a payload, the charge profile of a mAb can be modified due to the change in net charge or surface charge. In this study, we present a unique challenge of charge assay development that arises from a desirable engineering of ADCs that incorporates the hydrolysis-prone succinimide-thioether conjugation chemistry. This engineered hydrolysis at conjugation sites is usually not complete during conjugation process and continuously progressing during mild stress. This hydrolysis also creates a carboxylic functional group, which manifests as acidic peaks in the ADC charge profiles. As a result, ion exchange chromatograms become sensitive measurements of this hydrolysis, which often masks the charge profile change due to other important post-translational modifications. In this study, two approaches were explored to address this unique challenge: to remove the hydrolysis heterogeneity by incubating ADCs under high pH conditions to drive complete hydrolysis; and to analyze charge variants at the subunit level after IdeS digestion. Acceptable charge profiles and quantitative integration results were successfully obtained by both approaches.

7.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189171, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39127243

RESUMEN

Osteosarcoma, a rare primary bone cancer, presents diverse molecular aberrations that underscore its complexity. Despite the persistent endeavors by researchers, the limited amelioration in the five-year survival rate indicates that current therapeutic strategies prove inadequate in addressing the clinical necessities. Advancements in molecular profiling have facilitated an enhanced comprehension of the biology of osteosarcoma, offering a promising outlook for treatment. There is an urgent need to develop innovative approaches to address the complex challenges of osteosarcoma, ultimately contributing to enhanced patient outcomes. This review explores the nexus between osteosarcoma and cancer predisposition syndromes, intricacies in its somatic genome, and clinically actionable alterations. This review covers treatment strategies, including surgery, chemotherapy, immune checkpoint inhibitors (ICIs), and tyrosine kinase inhibitors (TKIs). Innovative treatment modalities targeting diverse pathways, including multi-target tyrosine kinases, cell cycle, PI3K/mTOR pathway, and DNA damage repair (DDR), offer promising interventions. This review also covers promising avenues, including antibody-drug conjugates (ADCs) and immunotherapy strategies, such as cytokines, adoptive cellular therapy (ACT), ICIs, and cancer vaccines. This comprehensive exploration contributes to a holistic understanding, offering guidance for clinical applications to advance the management of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/terapia , Osteosarcoma/patología , Osteosarcoma/tratamiento farmacológico , Humanos , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/terapia , Neoplasias Óseas/tratamiento farmacológico , Inmunoterapia/métodos , Terapia Molecular Dirigida , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología
8.
Curr Oncol Rep ; 26(10): 1224-1235, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39037635

RESUMEN

PURPOSE OF REVIEW: This review aims to explore the intricate interplay between scientific advancements and economic considerations in the development, production, and commercialization of Antibody Drug Conjugates (ADCs). The focus is on understanding the challenges and opportunities at this unique intersection, highlighting how scientific innovation and economic dynamics mutually influence the trajectory of ADCs in the pharmaceutical landscape. RECENT FINDINGS: There has been a significant increase in interest and investment in the development of ADCs. Initially focused on hematological malignancies, ADCs are now being researched for use in treating solid tumors as well. Pharmaceutical companies are heavily investing to broaden the range of indications for which ADCs can be effective. According to a report from the end of 2023, the global ADCs market grew from USD 1.4 billion in 2016 to USD 11.3 billion in 2023, with projections estimating a value of USD 23.9 billion by 2032, growing at a CAGR of 10.7%. ADCs represent a promising class of biopharmaceuticals in oncology, with expanding applications beyond hematological malignancies to solid tumors. The significant growth in the ADC market underscores the impact of scientific and economic factors on their development. This review provides valuable insights into how these factors drive innovation and commercialization, shaping the future of ADCs in cancer treatment.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/uso terapéutico , Inmunoconjugados/economía , Neoplasias/tratamiento farmacológico , Neoplasias/economía , Industria Farmacéutica/economía , Inversiones en Salud , Antineoplásicos/uso terapéutico , Antineoplásicos/economía
9.
Biomed Pharmacother ; 178: 117151, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029403

RESUMEN

BACKGROUND: Trop-2 is closely related to the development and progression of a variety of tumours and poor prognosis. This study aimed to construct an iodine-124 (124I)-labelled antibody-drug conjugate (ADC) positron emission tomography (PET) probe which could noninvasively image Trop-2 in vivo, providing an important method for the diagnosis of tumours with high Trop-2 expression in clinical practice and monitoring their treatment. METHODS: In this study, a novel Trop-2-targeting molecular probe, 124I-IMMU-132, was constructed to better reveal the expression of Trop-2. The targeting and binding abilities of the probe to Trop-2-positive tumours were investigated in Capan-1/MDA-MB-468/Mcf-7 cells and their animal models. RESULTS: The constructed 124I-IMMU-132 probe maintained both reliable radiochemical characteristics and binding affinity (Kd = 2.200 nmol/L). The uptake of the probe by Trop-2-positive Capan-1/MDA-MB-468 cells increased in a time-dependent manner. The probe bound specifically to Capan-1/MDA-MB-468 tumours in vivo. The SUVmax Tumour/muscle ratio gradually increased with time, from 4.30 ± 0.55-10.78 ± 1.80 (p < 0.01) in the Capan-1 model and from 8.84 ± 0.95-32.20 ± 2.9 (p < 0.001) in the MDA-MB-468 model. The biodistribution and pharmacokinetics of 124I-IMMU-132 in a mouse model were consistent with the imaging results, and the dosimetry estimation in humans was acceptable. CONCLUSIONS: 124I-IMMU-132 PET is a promising imaging technique for delineating Trop-2-positive tumours. It has great potential in early diagnosis and targeted selection of patients that could benefit from its application.


Asunto(s)
Antígenos de Neoplasias , Moléculas de Adhesión Celular , Inmunoconjugados , Radioisótopos de Yodo , Sondas Moleculares , Tomografía de Emisión de Positrones , Animales , Humanos , Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Tomografía de Emisión de Positrones/métodos , Línea Celular Tumoral , Sondas Moleculares/farmacocinética , Sondas Moleculares/química , Distribución Tisular , Ratones , Inmunoconjugados/farmacocinética , Ratones Desnudos , Femenino , Ratones Endogámicos BALB C , Radiofármacos/farmacocinética , Células MCF-7
10.
J Leukoc Biol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973261

RESUMEN

Receptor tyrosine kinase-like orphan receptor (ROR), consisting of ROR1 and ROR2, is a conserved family of receptor tyrosine kinase superfamily that plays crucial roles during embryonic development with limited expression in adult normal tissues. However, it is overexpressed in a range of hematological malignancies and solid tumors and functions in cellular processes including cell survival, polarity, and migration, serving as a potential target in cancer immunotherapy. This review summarizes the expression and structure of ROR in developmental morphogenesis and its function in cancers associated with Wnt5a signaling and highlights the cancer immunotherapy strategies targeting ROR.

11.
Bioorg Chem ; 149: 107504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850783

RESUMEN

The notable characteristics of recently emerged Antibody-Drug Conjugates (ADCs) encompass the targeting of Human Epidermal growth factor Receptor 2 (HER2) through monoclonal antibodies (mAbs) and a high ratio of drug to antibody (DAR). The achievements of Kadcyla® (T-DM1) and Enhertu® (T-Dxd) have demonstrated that HER2-targeting antibodies, such as trastuzumab, have shown to be competitive in terms of efficacy and price for development. Furthermore, with the arrival of T-Dxd and Trodelvy®, high-DAR (7-8) ADCs, which differ from the moderate DAR (3-4) ADCs that were formerly regarded as conventional, are being acknowledged for their worth. Following this trend of drug development, we endeavored to develop a high-DAR ADC using a straightforward approach involving the utilization of DM1, a highly potent substance, in combination with the widely recognized trastuzumab. To achieve a high DAR, DM1 was conjugated to reduced cysteine through the simple design and synthesis of various dimaleimide linkers with differing lengths. Using LC and MS analysis, we have demonstrated that our synthesis methodology is uncomplicated and efficacious, yielding trastuzumab-based ADCs that exhibit a remarkable degree of uniformity. These ADCs have been experimentally substantiated to exert an inhibitory effect on cancer cells in vitro, thus affirming their value as noteworthy additions to the realm of ADCs.


Asunto(s)
Ado-Trastuzumab Emtansina , Inmunoconjugados , Receptor ErbB-2 , Trastuzumab , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Ado-Trastuzumab Emtansina/química , Trastuzumab/química , Trastuzumab/farmacología , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Maleimidas/química , Maleimidas/síntesis química , Relación Dosis-Respuesta a Droga , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Maitansina/química , Maitansina/farmacología , Maitansina/síntesis química , Maitansina/análogos & derivados , Línea Celular Tumoral , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/síntesis química , Antineoplásicos Inmunológicos/farmacología
13.
Pharmaceutics ; 16(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38399275

RESUMEN

Antibody-drug conjugate (ADC) therapy, an advanced therapeutic technology comprising antibodies, chemical linkers, and cytotoxic payloads, addresses the limitations of traditional chemotherapy. This study explores key elements of ADC therapy, focusing on antibody development, linker design, and cytotoxic payload delivery. The global rise in cancer incidence has driven increased investment in anticancer agents, resulting in significant growth in the ADC therapy market. Over the past two decades, notable progress has been made, with approvals for 14 ADC treatments targeting various cancers by 2022. Diverse ADC therapies for hematologic malignancies and solid tumors have emerged, with numerous candidates currently undergoing clinical trials. Recent years have seen a noteworthy increase in ADC therapy clinical trials, marked by the initiation of numerous new therapies in 2022. Research and development, coupled with patent applications, have intensified, notably from major companies like Pfizer Inc. (New York, NY, USA), AbbVie Pharmaceuticals Inc. (USA), Regeneron Pharmaceuticals Inc. (Tarrytown, NY, USA), and Seagen Inc. (Bothell, WA, USA). While ADC therapy holds great promise in anticancer treatment, challenges persist, including premature payload release and immune-related side effects. Ongoing research and innovation are crucial for advancing ADC therapy. Future developments may include novel conjugation methods, stable linker designs, efficient payload delivery technologies, and integration with nanotechnology, driving the evolution of ADC therapy in anticancer treatment.

14.
Eur J Med Chem ; 268: 116233, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38408390

RESUMEN

Antibody-drug conjugates (ADCs) have arisen as a promising class of biotherapeutics for targeted cancer treatment, combining the specificity of monoclonal antibodies with the cytotoxicity of small-molecule drugs. The choice of an appropriate payload is crucial for the success development of ADCs, as it determines the therapeutic efficacy and safety profile. This review focuses on payloads derived from natural products, including cytotoxic agents, DNA-damaging agents, and immunomodulators. These offer several advantages such as diverse chemical structures, unique mechanism of actions, and potential for improved therapeutic index. Challenges and opportunities associated with their development were highlighted. This review underscores the significance of natural product payloads in the elaboration of ADCs, which serves as a valuable resource for researchers involved in developing and optimizing next-generation ADCs for cancer treatment.


Asunto(s)
Antineoplásicos , Productos Biológicos , Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Productos Biológicos/química , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/química , Citotoxinas/uso terapéutico , Neoplasias/tratamiento farmacológico
15.
Front Pharmacol ; 15: 1362484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384285

RESUMEN

Background: Antibody-drug conjugates (ADCs) are a relatively new class of anticancer agents that use monoclonal antibodies to specifically recognize tumour cell surface antigens. However, off-target effects may lead to severe adverse events. This study evaluated the neurotoxicity of ADCs using the FDA Adverse Event Reporting System (FAERS) database. Research design and methods: Data were extracted from the FAERS database for 2004 Q1 to 2022 Q4. We analysed the clinical characteristics of ADC-related neurological adverse events (AEs). We used the reporting odds ratio (ROR) and proportional reporting ratio (PRR) for the disproportionality analysis to evaluate the potential association between AEs and ADCs. Results: A total of 562 cases of neurological AEs were attributed to ADCs. The median age was 65 years old [(Min; Max) = 3; 92]. Neurotoxic signals were detected in patients receiving brentuximab vedotin, enfortumab vedotin, polatuzumab vedotin, trastuzumab emtansine, gemtuzumab ozogamicin, inotuzumab ozogamicin, and trastuzumab deruxtecan. The payloads of brentuximab vedotin, enfortumab vedotin, polatuzumab vedotin, and trastuzumab emtansine were microtubule polymerization inhibitors, which are more likely to develop neurotoxicity. We also found that brentuximab vedotin- and gemtuzumab ozogamicin-related neurological AEs were more likely to result in serious outcomes. The eight most common ADC-related nervous system AE signals were peripheral neuropathy [ROR (95% CI) = 16.98 (14.94-19.30), PRR (95% CI) = 16.0 (14.21-18.09)], cerebral haemorrhage [ROR (95% CI) = 9.45 (7.01-12.73), PRR (95% CI) = 9.32 (6.95-12.50)], peripheral sensory neuropathy [ROR (95% CI) = 47.87 (33.13-69.19), PRR (95% CI) = 47.43 (32.93-68.30)], polyneuropathy [ROR (95% CI) = 26.01 (18.61-36.33), PRR (95% CI) = 25.75 (18.50-35.86)], encephalopathy [ROR (95% CI) = 5.16 (3.32-8.01), PRR (95% CI) = 5.14 (3.32-7.96)], progressive multifocal leukoencephalopathy [ROR (95% CI) = 22.67 (14.05-36.58), PRR (95% CI) = 22.52 (14.01-36.21)], taste disorder [ROR (95% CI) = 26.09 (15.92-42.76), PRR (95% CI) = 25.78 (15.83-42.00)], and guillain barrier syndrome [ROR (95% CI) = 17.844 (10.11-31.51), PRR (95% CI) = 17.79 (10.09-31.35)]. The mortality rate appeared to be relatively high concomitantly with AEs in the central nervous system. Conclusion: ADCs may increase the risk of neurotoxicity in cancer patients, leading to serious mortality. With the widespread application of newly launched ADC drugs, combining the FAERS data with other data sources is crucial for monitoring the neurotoxicity of ADCs. Further studies on the potential mechanisms and preventive measures for ADC-related neurotoxicity are necessary.

16.
Front Immunol ; 15: 1376045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357544

RESUMEN

[This corrects the article DOI: 10.3389/fimmu.2023.1332057.].

17.
Cancer ; 130(S8): 1392-1402, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271367

RESUMEN

Antibody-drug conjugates (ADCs)-a groundbreaking class of agents for targeted oncological therapies-consist of monoclonal antibodies with strong antigenic specificity coupled with highly active cytotoxic agents (also referred to as "payloads"). Over the past 2 decades, breast cancer research has evolved into a focal point for the research and development of ADCs, leading to several recent landmark publications. These advancements are ushering in a transformative era in breast cancer treatment and redefining conventional classifications by introducing a prospective subtype termed "HER2-low." The latest iterations of ADCs have demonstrated enhanced efficacy in disease management through the optimization of various factors, notably the incorporation of the bystander effect. These conjugates are no longer limited to the oncogenic driver human epidermal growth factor receptor 2 (HER2). Other antigens, including human epidermal growth factor receptor 3 (HER3), trophoblast cell surface antigen 2 (Trop-2), zinc transporter ZIP6 (LIV-1), and folate receptor α (FRα), have recently emerged as intriguing tumor cell surface nondriver gene targets for ADCs, each with one or more specific ADCs that showed encouraging results in the breast cancer field. This article reviews recent advances in the application of ADCs in the treatment of HER2-low breast cancer. Additionally, this review explores the underlying factors contributing to the impact of target selection on ADC efficacy to provide new insights for optimizing the clinical application of ADCs in individuals with low HER2 expression in advanced breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Inmunoconjugados , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Inmunoconjugados/uso terapéutico , Estudios Prospectivos , Anticuerpos Monoclonales/uso terapéutico , Oncología Médica , Antineoplásicos/uso terapéutico
19.
Urol Oncol ; 41(10): 395-397, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37833099

RESUMEN

The advances in targeted therapies, immunotherapy, and the recent emergence of antibody-drug conjugates (ADCs) herald a potential paradigm shift in treating patients with metastatic urothelial cancer. Yet, there are inherent challenges in utilizing these therapies, including the management of treatment-related toxicities. In this special Urologic Oncology: Seminars and Original Investigations issue, we review the latest developments and discuss insights into future research needs.


Asunto(s)
Carcinoma de Células Transicionales , Inmunoconjugados , Neoplasias de la Vejiga Urinaria , Neoplasias Urológicas , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/patología , Neoplasias Urológicas/tratamiento farmacológico , Neoplasias Urológicas/patología , Inmunoterapia , Inmunoconjugados/uso terapéutico
20.
Expert Opin Drug Saf ; : 1-12, 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37898875

RESUMEN

BACKGROUND: This study aimed to assess the association between drug-induced liver injury (DILI) and antibody-drug conjugates (ADCs) by comprehensively evaluating spontaneous reports submitted to the Food and Drug Administration Adverse Event Reporting System (FAERS) database from 2004Q1 to 2022Q3. RESEARCH DESIGN AND METHODS: All DILI cases with ADCs as primary suspected drugs were extracted from the FAERS database from 2004Q1 to 2022Q3 using OpenVigil 2.1. The reporting odds ratio (ROR) and the proportional reporting ratio (PRR) for reporting the association between different drugs and DILI risk were calculated. RESULTS: A total of 504 DILI cases were attributed to ADCs during the study period. Patients with ADCs-related DILI (n = 504) had a mean age of 56.2 ± 18.4 years, with 167 cases not reporting patients' age. Females and males comprised 42.5% and 44.0% of the cases, respectively, while there was no information on gender in 13.5% of the cases. The DILI signals were detected in trastuzumab emtansine, enfortumab vedotin, brentuximab vedotin, polatuzumab vedotin, gemtuzumab ozogamicin, inotuzumab ozogamicin, and trastuzumab deruxtecan. CONCLUSIONS: The FAERS data mining suggested an association between DILI and some ADCs. Further studies are warranted to unraveling the underlying mechanisms and taking preventive measures for ADCs-related DILI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...