Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731436

RESUMEN

In our research, we explored a natural substance called Oxymatrine, found in a traditional Chinese medicinal plant, to fight against a common bird flu virus known as H9N2. This virus not only affects birds but can also pose a threat to human health. We focused on how this natural compound can help in stopping the virus from spreading in cells that line the lungs of birds and potentially humans. Our findings show that Oxymatrine can both directly block the virus and boost the body's immune response against it. This dual-action mechanism is particularly interesting because it indicates that Oxymatrine might be a useful tool in developing new ways to prevent and treat this type of bird flu. Understanding how Oxymatrine works against the H9N2 virus could lead to safer and more natural ways to combat viral infections in animals and humans, contributing to the health and well-being of society. The H9N2 Avian Influenza Virus (AIV) is a persistent health threat because of its rapid mutation rate and the limited efficacy of vaccines, underscoring the urgent need for innovative therapies. This study investigated the H9N2 AIV antiviral properties of Oxymatrine (OMT), a compound derived from traditional Chinese medicine, particularly focusing on its interaction with pulmonary microvascular endothelial cells (PMVECs). Employing an array of in vitro assays, including 50% tissue culture infectious dose, Cell Counting Kit-8, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot, we systematically elucidated the multifaceted effects of OMT. OMT dose-dependently inhibited critical antiviral proteins (PKR and Mx1) and modulated the expression of type I interferons and key cytokines (IFN-α, IFN-ß, IL-6, and TNF-α), thereby affecting TLR3 signaling and its downstream elements (NF-κB and IRF-3). OMT's antiviral efficacy extended beyond TLR3-mediated responses, suggesting its potential as a versatile antiviral agent. This study not only contributes to the growing body of research on the use of natural compounds as antiviral agents but also underscores the importance of further investigating the broader application of OMT for combating viral infections.


Asunto(s)
Antivirales , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Matrinas , Transducción de Señal , Receptor Toll-Like 3 , Animales , Perros , Humanos , Antivirales/farmacología , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Aviar/tratamiento farmacológico , Gripe Aviar/inmunología , Células de Riñón Canino Madin Darby , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 3/metabolismo
2.
J Agric Food Chem ; 72(7): 3506-3519, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38346922

RESUMEN

Microbial secondary metabolites produced by Streptomyces have diverse application prospects in the control of plant diseases. Herein, the fermentation filtrate of Streptomyces SN40 effectively inhibited the infection of tobacco mosaic virus (TMV) in Nicotiana glutinosa and systemic infection of potato virus Y (PVY) in Nicotiana benthamiana. Additionally, metabolomic analysis indicated that anisomycin (C14H19NO4) and trans-3-indoleacrylic acid (C11H9NO2) were highly abundant in the crude extract and that anisomycin effectively suppressed the infection of TMV as well as PVY. Subsequently, transcriptomic analysis was conducted to elucidate its mechanisms on the induction of host defense responses. Furthermore, the results of molecular docking suggested that anisomycin can potentially bind with the helicase domain (Hel) of TMV replicase, TMV coat protein (CP), and PVY helper component proteinase (HC-Pro). This study demonstrates new functions of anisomycin in virus inhibition and provides important theoretical significance for the development of new biological pesticides to control diverse plant viruses.


Asunto(s)
Potyvirus , Streptomyces , Virus del Mosaico del Tabaco , Anisomicina , Simulación del Acoplamiento Molecular , Virus del Mosaico del Tabaco/genética , Streptomyces/genética , Antivirales/farmacología , Enfermedades de las Plantas
3.
Chemosphere ; 351: 141101, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171396

RESUMEN

Waterborne pathogenic viruses present unrelenting challenges to the global health and wastewater treatment industry. Phytoremediation offers promising solutions for wastewater treatment through plant-based technologies. This study investigated antiviral mechanisms in-vivo using bacteriophages MS2 and T4 as surrogates for effective herbs screened in-vitro from three embryophytes (Ocimum basilicum, Mentha sp., Plectranthus amboinicus), two macrophytes (Eichhornia crassipes, Pistia stratiotes) and a perennial grass (Cyperus rotundas). In-silico virtual screening predicted antiviral phytochemicals for further antiviral potency assessment. Results suggested in-vitro antiviral activities of embryophytes and macrophytes were higher (43-62%) than grass (21-26%). O. basilicum (OB, 57-62%) and P. stratiotes (PS, 59-60%) exhibited the highest antiviral activities. In-vivo tests showed notable virus reduction (>60%) in culture solution, attributed to rhizofiltration (66-74%) and phytoinactivation/phytodegradation (63-84%). In-silico analysis identified rutin as a primary antiviral phytochemical for MS2 (-9.7 kcal/mol) and T4 (-10.9 kcal/mol), correlating with dose-response inactivation (∼58-62%). In-vivo tests suggested additional phytocompounds may contribute to viral inactivation, presenting new opportunities for herb-based wastewater treatment solutions. Consequently, this study not only demonstrates the antiviral capabilities of OB and PS but also introduces an innovative approach for addressing viral contaminants in water.


Asunto(s)
Araceae , Eichhornia , Contaminantes Químicos del Agua , Biodegradación Ambiental , Contaminantes Químicos del Agua/análisis , Plantas/metabolismo , Eichhornia/metabolismo , Araceae/metabolismo , Poaceae/metabolismo , Levivirus , Antivirales/farmacología
4.
Trends Plant Sci ; 29(1): 16-19, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37953079

RESUMEN

Plants use RNA interference for basal antiviral immunity, but emerging evidence suggests that additional RNA-targeting defense mechanisms also defend against invading viruses. Recent advancements in the understanding of RNA decay, RNA quality control, and N6-methyladenosine (m6A) RNA modifications have unveiled new insights into the molecular arms race between plants and viruses.


Asunto(s)
Enfermedades de las Plantas , Virus de Plantas , Interferencia de ARN , ARN , Virus de Plantas/genética , Plantas
5.
Int J Biol Macromol ; 255: 128192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979760

RESUMEN

IL-1ß is an important proinflammatory cytokine with multifaceted modulatory roles in immune responses. In fish, recombinant IL-1ß has been employed in the control of bacterial diseases, while the antiviral mechanisms of IL-1ß remain largely unknown, and the efficacy of recombinant IL-1ß as an immunomodulator to prevent viral diseases is still not determined. This study evaluated the immunomodulatory effects of recombinant grass carp IL-1ß against grass carp reovirus (GCRV) in vitro and in vivo. Firstly, the mature form (Ser111-Lys270) of grass carp IL-1ß was identified, and its recombinant protein (designated as rgcIL-1ß) was prepared through prokaryotic expression. Then, an in vitro evaluation model for rgcIL-1ß activity was established in the CIK cells, with the appropriate concentration (600 ng/mL) and effect time (1 h). In vitro, rgcIL-1ß could not only induce the production of proinflammatory cytokines such as IL-1ß, IL-6, IL-8, and TNF-α but also a series of antiviral factors including IFN-1, IFN-2, IFN-γ, and ISG15. Mechanistically, transcriptome analysis and western blotting confirmed that rgcIL-1ß activated multiple transcriptional factors, including NF-κB, IRF1, IRF3, and IRF8, and the signal pathways associated with inflammatory cytokines and antiviral factors expression. Expectedly, rgcIL-1ß treatment significantly inhibited GCRV replication in vitro. In vivo administration of rgcIL-1ß via intraperitoneal pre-injection significantly aroused an antiviral response to restrict GCRV replication and intense tissue inflammation in grass carp, demonstrating the immunomodulatory effects of rgcIL-1ß. More importantly, rgcIL-1ß administrated with 10 ng/g and 1 ng/g could improve the survival rate of grass carp during GCRV infection. This study represents the first time to comprehensively reveal the immunomodulatory and antiviral mechanisms of IL-1ß in fish and may also pave the way for further developing recombinant IL-1ß as an immunotherapy for the prevention and control of fish viral diseases.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Reoviridae , Reoviridae , Animales , Proteínas Recombinantes/farmacología , Citocinas/genética , Infecciones por Reoviridae/tratamiento farmacológico , Infecciones por Reoviridae/veterinaria , Adyuvantes Inmunológicos , Peces , Factores Inmunológicos/farmacología , Antivirales/farmacología , Carpas/genética , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control
6.
Discov Nano ; 18(1): 126, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817016

RESUMEN

Traditional Chinese medicines (TCMs)/nanopreparations as viral antagonists exhibited a structure-function correlation, i.e., the differences in surface area/volume ratio caused by the variations in shape and size could result in different biochemical properties and biological activities, suggesting an important impact of morphology and structure on the antiviral activity of TCM-based nanoparticles. However, few studies paid attention to this aspect. Here, the effect of TCM-based nanoparticles with different morphologies on their antiviral activity was explored by synthesizing rhein/silver nanocomposites (Rhe@AgNPs) with spherical (S-Rhe/Ag) and linear (L-Rhe/Ag) morphologies, using rhein (an active TCM ingredient) as a reducing agent and taking its self-assembly advantage. Using porcine reproductive and respiratory syndrome virus (PRRSV) as a model virus, the inhibitory effects of S-Rhe/Ag and L-Rhe/Ag on PRRSV were compared. Results showed that the product morphology could be regulated by varying pH values, and both S- and L-Rhe/Ag exhibited good dispersion and stability, but with a smaller size for L-Rhe/Ag. Antiviral experiments revealed that Rhe@AgNPs could effectively inhibit PRRSV infection, but the antiviral effect was morphology-dependent. Compared with L-Rhe/Ag, S-Rhe/Ag could more effectively inactivate PRRSV in vitro and antagonize its adsorption, invasion, replication, and release stages. Mechanistic studies indicated that Rhe@AgNPs could reduce the production of reactive oxygen species (ROS) induced by PRRSV infection, and S-Rhe/Ag also had stronger ROS inhibitory effect. This work confirmed the inhibitory effect of Rhe@AgNPs with different morphologies on PRRSV and provided useful information for treating PRRSV infection with metal nanoparticles synthesized from TCM ingredients.

7.
Viruses ; 15(9)2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37766327

RESUMEN

With the emergence of the novel betacoronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there has been an urgent need for the development of fast-acting antivirals, particularly in dealing with different variants of concern (VOC). SARS-CoV-2, like other RNA viruses, depends on host cell machinery to propagate and misregulate metabolic pathways to its advantage. Herein, we discovered that the immunometabolic microRNA-185 (miR-185) restricts SARS-CoV-2 propagation by affecting its entry and infectivity. The antiviral effects of miR-185 were studied in SARS-CoV-2 Spike protein pseudotyped virus, surrogate virus (HCoV-229E), as well as live SARS-CoV-2 virus in Huh7, A549, and Calu-3 cells. In each model, we consistently observed microRNA-induced reduction in lipid metabolism pathways-associated genes including SREBP2, SQLE, PPARG, AGPAT3, and SCARB1. Interestingly, we also observed changes in angiotensin-converting enzyme 2 (ACE2) levels, the entry receptor for SARS-CoV-2. Taken together, these data show that miR-185 significantly restricts host metabolic and other pathways that appear to be essential to SAR-CoV-2 replication and propagation. Overall, this study highlights an important link between non-coding RNAs, immunometabolic pathways, and viral infection. miR-185 mimics alone or in combination with other antiviral therapeutics represent possible future fast-acting antiviral strategies that are likely to be broadly antiviral against multiple variants as well as different virus types of potential pandemics.


Asunto(s)
COVID-19 , MicroARNs , Humanos , SARS-CoV-2/genética , Antivirales/farmacología , MicroARNs/genética , Lípidos
8.
J Allergy Clin Immunol ; 152(6): 1376-1381, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37739069

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has brought new insights into the immunologic intricacies of asthma. In this review, we discuss the epidemiology of asthma in patients infected with SARS-CoV-2 and the risk of severe infection. Type 2 inflammation had an overall protective effect against SARS-CoV-2 infection by various mechanisms summarized in this review. Asthma, intranasal, and inhaled corticosteroids decreased the angiotensin-converting enzyme 2 receptor, an important receptor for SARS-CoV-2 entry into host cells. We summarize the nuances of the treatment of type 2 inflammation despite its underlying protective effects. Research to date has shown that patients on various allergen immunotherapies and biologics do benefit from being vaccinated.


Asunto(s)
Asma , COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Peptidil-Dipeptidasa A , Asma/epidemiología , Inflamación
9.
Small Methods ; 7(8): e2300044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37075731

RESUMEN

MXene QDs (MQDs) have been effectively used in several fields of biomedical research. Considering the role of hyperactivation of immune system in infectious diseases, especially in COVID-19, MQDs stand as a potential candidate as a nanotherapeutic against viral infections. However, the efficacy of MQDs against SARS-CoV-2 infection has not been tested yet. In this study, Ti3 C2 MQDs are synthesized and their potential in mitigating SARS-CoV-2 infection is investigated.  Physicochemical characterization suggests that MQDs are enriched with abundance of bioactive functional groups such as oxygen, hydrogen, fluorine, and chlorine groups as well as surface titanium oxides. The efficacy of MQDs is tested in VeroE6 cells infected with SARS-CoV-2. These data demonstrate that the treatment with MQDs is able to mitigate multiplication of virus particles, only at very low doses such as 0,15 µg mL-1 . Furthermore, to understand the mechanisms of MQD-mediated anti-COVID properties, global proteomics analysis are performed and determined differentially expressed proteins between MQD-treated and untreated cells. Data reveal that MQDs interfere with the viral life cycle through different mechanisms including the Ca2 + signaling pathway, IFN-α response, virus internalization, replication, and translation. These findings suggest that MQDs can be employed to develop future immunoengineering-based nanotherapeutics strategies against SARS-CoV-2 and other viral infections.


Asunto(s)
COVID-19 , Puntos Cuánticos , Humanos , SARS-CoV-2 , Puntos Cuánticos/química , Titanio/uso terapéutico , Titanio/química
10.
Front Pharmacol ; 13: 909945, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339544

RESUMEN

The Covid-19 pandemic has elicited much laboratory and clinical research attention on vaccines, mAbs, and certain small-molecule antivirals against SARS-CoV-2 infection. By contrast, there has been comparatively little attention on plant-derived compounds, especially those that are understood to be safely ingested at common doses and are frequently consumed in the diet in herbs, spices, fruits and vegetables. Examining plant secondary metabolites, we review recent elucidations into the pharmacological activity of flavonoids and other polyphenolic compounds and also survey their putative frequent-hitter behavior. Polyphenols, like many drugs, are glucuronidated post-ingestion. In an inflammatory milieu such as infection, a reversion back to the active aglycone by the release of ß-glucuronidase from neutrophils and macrophages allows cellular entry of the aglycone. In the context of viral infection, virions and intracellular virus particles may be exposed to promiscuous binding by the polyphenol aglycones resulting in viral inhibition. As the mechanism's scope would apply to the diverse range of virus species that elicit inflammation in infected hosts, we highlight pre-clinical studies of polyphenol aglycones, such as luteolin, isoginkgetin, quercetin, quercetagetin, baicalein, curcumin, fisetin and hesperetin that reduce virion replication spanning multiple distinct virus genera. It is hoped that greater awareness of the potential spatial selectivity of polyphenolic activation to sites of pathogenic infection will spur renewed research and clinical attention for natural products antiviral assaying and trialing over a wide array of infectious viral diseases.

11.
Adv Nanobiomed Res ; 2(10): 2200067, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36249178

RESUMEN

Due to the worldwide impact of viruses such as SARS-CoV-2, researchers have paid extensive attention to antiviral reagents against viruses. Despite extensive research on two-dimensional (2D) transition metal carbides (MXenes) in the field of biomaterials, their antiviral effects have received little attention. In this work, heparan sulfate analogue (sodium 3-mercapto-1-propanesulfonate, MPS) modified 2D MXene nanocomposites (Ti3C2-Au-MPS) for prevention of viral infection are prepared and investigated using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus and porcine reproductive and respiratory syndrome virus (PRRSV) as two model viruses. Ti3C2-Au-MPS nanocomposites are shown to possess antiviral properties in the different stages of PRRSV proliferation, such as direct interaction with PRRS virions and inhibiting their adsorption and penetration in the host cell. Additionally, Ti3C2-Au-MPS nanocomposites can strongly inhibit the infection of SARS-CoV-2 pseudovirus as shown by the contents of its reporter gene GFP and luciferase. These results demonstrate the potential broad-spectrum antiviral property of Ti3C2-Au-MPS nanocomposites against viruses with the receptor of heparin sulfate. This work sheds light on the specific antiviral effects of MXene-based nanocomposites against viruses and may facilitate further exploration of their antiviral applications.

12.
Retrovirology ; 19(1): 16, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810297

RESUMEN

Mammalian cells mount a variety of defense mechanisms against invading viruses to prevent or reduce infection. One such defense is the transcriptional silencing of incoming viral DNA, including the silencing of unintegrated retroviral DNA in most cells. Here, we report that the lymphoid cell lines K562 and Jurkat cells reveal a dramatically higher efficiency of silencing of viral expression from unintegrated HIV-1 DNAs as compared to HeLa cells. We found K562 cells in particular to exhibit an extreme silencing phenotype. Infection of K562 cells with a non-integrating viral vector encoding a green fluorescent protein reporter resulted in a striking decrease in the number of fluorescence-positive cells and in their mean fluorescence intensity as compared to integration-competent controls, even though the levels of viral DNA in the nucleus were equal or in the case of 2-LTR circles even higher. The silencing in K562 cells was functionally distinctive. Histones loaded on unintegrated HIV-1 DNA in K562 cells revealed high levels of the silencing mark H3K9 trimethylation and low levels of the active mark H3 acetylation, as detected in HeLa cells. But infection of K562 cells resulted in low H3K27 trimethylation levels on unintegrated viral DNA as compared to higher levels in HeLa cells, corresponding to low H3K27 trimethylation levels of silent host globin genes in K562 cells as compared to HeLa cells. Most surprisingly, treatment with the HDAC inhibitor trichostatin A, which led to a highly efficient relief of silencing in HeLa cells, only weakly relieved silencing in K562 cells. In summary, we found that the capacity for silencing viral DNAs differs between cell lines in its extent, and likely in its mechanism.


Asunto(s)
VIH-1 , Animales , ADN Viral/genética , ADN Viral/metabolismo , VIH-1/fisiología , Células HeLa , Humanos , Linfocitos/metabolismo , Mamíferos , Integración Viral
13.
Front Cell Infect Microbiol ; 12: 928050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734576

RESUMEN

Probiotics exert a variety of beneficial effects, including maintaining homeostasis and the balance of intestinal microorganisms, activating the immune system, and regulating immune responses. Due to the beneficial effects of probiotics, a wide range of probiotics have been developed as probiotic agents for animal and human health. Viral diseases cause serious economic losses to the livestock every year and remain a great challenge for animals. Moreover, strategies for the prevention and control of viral diseases are limited. Viruses enter the host through the skin and mucosal surface, in which are colonized by hundreds of millions of microorganisms. The antiviral effects of probiotics have been proved, including modulation of chemical, microbial, physical, and immune barriers through various probiotics, probiotic metabolites, and host signaling pathways. It is of great significance yet far from enough to elucidate the antiviral mechanisms of probiotics. The major interest of this review is to discuss the antiviral effects and underlying mechanisms of probiotics and to provide targets for the development of novel antivirals.


Asunto(s)
Probióticos , Virus , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Sistema Inmunológico , Intestinos , Probióticos/farmacología , Probióticos/uso terapéutico
14.
Cancers (Basel) ; 13(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34771433

RESUMEN

Oncolytic viruses have gained momentum in the last decades as a promising tool for cancer treatment. Despite the progress, only a fraction of patients show a positive response to viral therapy. One of the key variable factors contributing to therapy outcomes is interferon-dependent antiviral mechanisms in tumor cells. Here, we evaluated this factor using patient-derived glioblastoma multiforme (GBM) cultures. Cell response to the type I interferons' (IFNs) stimulation was characterized at mRNA and protein levels. Omics analysis revealed that GBM cells overexpress interferon-stimulated genes (ISGs) and upregulate their proteins, similar to the normal cells. A conserved molecular pattern unambiguously differentiates between the preserved and defective responses. Comparing ISGs' portraits with titration-based measurements of cell sensitivity to a panel of viruses, the "strength" of IFN-induced resistance acquired by GBM cells was ranked. The study demonstrates that suppressing a single ISG and encoding an essential antiviral protein, does not necessarily increase sensitivity to viruses. Conversely, silencing IFIT3 and PLSCR1 genes in tumor cells can negatively affect the internalization of vesicular stomatitis and Newcastle disease viruses. We present evidence of a complex relationship between the interferon response genes and other factors affecting the sensitivity of tumor cells to viruses.

15.
Adv Healthc Mater ; 10(23): e2101113, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34599850

RESUMEN

As the human cost of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still being witnessed worldwide, the development of broad-spectrum antiviral agents against emerging and re-emerging viruses is seen as a necessity to hamper the spread of infections. Various targets during the viral life-cycle can be considered to inhibit viral infection, from viral attachment to viral fusion or replication. Macromolecules represent a particularly attractive class of therapeutics due to their multivalency and versatility. Although several antiviral macromolecules hold great promise in clinical applications, the emergence of resistance after prolonged exposure urges the need for improved solutions. In the present article, the recent advancement in the discovery of antiviral peptides and polymers with diverse structural features and antiviral mechanisms is reviewed. Future perspectives, such as, the development of virucidal peptides/polymers and their coatings against SARS-CoV-2 infection, standardization of antiviral testing protocols, and use of artificial intelligence or machine learning as a tool to accelerate the discovery of antiviral macromolecules, are discussed.


Asunto(s)
Antivirales , COVID-19 , Antivirales/farmacología , Inteligencia Artificial , Humanos , Péptidos , Polímeros , SARS-CoV-2
16.
Viruses ; 13(5)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065985

RESUMEN

Insects can become lethally infected by the oral intake of a number of insect-specific viruses. Virus infection commonly occurs in larvae, given their active feeding behaviour; however, older larvae often become resistant to oral viral infections. To investigate mechanisms that contribute to resistance throughout the larval development, we orally challenged Drosophila larvae at different stages of their development with Drosophila C virus (DCV, Dicistroviridae). Here, we showed that DCV-induced mortality is highest when infection initiates early in larval development and decreases the later in development the infection occurs. We then evaluated the peritrophic matrix as an antiviral barrier within the gut using a Crystallin-deficient fly line (Crys-/-), whose PM is weakened and becomes more permeable to DCV-sized particles as the larva ages. This phenotype correlated with increasing mortality the later in development oral challenge occurred. Lastly, we tested in vitro the infectivity of DCV after incubation at pH conditions that may occur in the midgut. DCV virions were stable in a pH range between 3.0 and 10.5, but their infectivity decreased at least 100-fold below (1.0) and above (12.0) this range. We did not observe such acidic conditions in recently hatched larvae. We hypothesise that, in Drosophila larvae, the PM is essential for containing ingested virions separated from the gut epithelium, while highly acidic conditions inactivate the majority of the virions as they transit.


Asunto(s)
Dicistroviridae/patogenicidad , Sistema Digestivo/virología , Drosophila/virología , Larva/virología , Virosis/prevención & control , Animales , Sistema Digestivo/química , Femenino , Concentración de Iones de Hidrógeno , Larva/anatomía & histología , Masculino
17.
Acta Derm Venereol ; 101(1): adv00367, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33349888

RESUMEN

Cathelicidins have been reported to inhibit human papillomavirus infection in vitro; however, nothing is known about their activity in vivo. In this study, experimental skin infection with Mus musculus papillomavirus 1 resulted in robust development of cutaneous papillomas in cyclosporine A-treated C57BL/6J mice deficient for the murine cathelicidin-related antimicrobial peptide (CRAMP), in contrast to wild-type controls. Analysis of the underlying mechanisms revealed moderate disruption of virion integrity and lack of interference with viral entry and intracellular trafficking by a synthetic CRAMP peptide. Differences in the immune response to Mus musculus papillomavirus 1 infection were observed between CRAMP-deficient and wild-type mice. These included a stronger reduction in CD4+ and CD8+ T-cell numbers in infected skin, and lack of Mus musculus papillomavirus 1-specific neutralizing antibodies in response to cyclosporine A in the absence of endogenous CRAMP. CRAMP has modest direct anti-papillomaviral effects in vitro, but exerts protective functions against Mus musculus papillomavirus 1 skin infection and disease development in vivo, primarily by modulation of cellular and humoral immunity.


Asunto(s)
Papiloma , Papillomaviridae , Animales , Péptidos Catiónicos Antimicrobianos , Catelicidinas , Ratones , Ratones Endogámicos C57BL , Papiloma/inducido químicamente , Papillomaviridae/genética
18.
Small ; 16(13): e1906206, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32077621

RESUMEN

With the gradual usage of carbon dots (CDs) in the area of antiviral research, attempts have been stepped up to develop new antiviral CDs with high biocompatibility and antiviral effects. In this study, a kind of highly biocompatible CDs (Gly-CDs) is synthesized from active ingredient (glycyrrhizic acid) of Chinese herbal medicine by a hydrothermal method. Using the porcine reproductive and respiratory syndrome virus (PRRSV) as a model, it is found that the Gly-CDs inhibit PRRSV proliferation by up to 5 orders of viral titers. Detailed investigations reveal that Gly-CDs can inhibit PRRSV invasion and replication, stimulate antiviral innate immune responses, and inhibit the accumulation of intracellular reactive oxygen species (ROS) caused by PRRSV infection. Proteomics analysis demonstrates that Gly-CDs can stimulate cells to regulate the expression of some host restriction factors, including DDX53 and NOS3, which are directly related to PRRSV proliferation. Moreover, it is found that Gly-CDs also remarkably suppress the propagation of other viruses, such as pseudorabies virus (PRV) and porcine epidemic diarrhea virus (PEDV), suggesting the broad antiviral activity of Gly-CDs. The integrated results demonstrate that Gly-CDs possess extraordinary antiviral activity with multisite inhibition mechanisms, providing a promising candidate for alternative therapy for PRRSV infection.


Asunto(s)
Carbono/farmacología , Ácido Glicirrínico/farmacología , Viabilidad Microbiana , Síndrome Respiratorio y de la Reproducción Porcina , Animales , Antivirales/química , Antivirales/farmacología , Inmunidad Innata/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Porcinos , Replicación Viral/efectos de los fármacos
19.
Viruses ; 11(9)2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480296

RESUMEN

Human adenovirus (HAdV) causes infections predominantly in early childhood and the tissue tropism of specific HAdV species determines the clinical manifestation, including infections of the gastrointestinal tract, respiratory tract, and keratoconjunctivitis. Why HAdV shows such a tropism has not yet been fully elucidated, but in the intestine different mechanisms for virus entry or resistence to immune modulatory factors have been described. Recently identified antiviral strategies by interferons provide evidence about the repression of E1A and maybe even promote HAdV persistence. The presence of HAdV in a persistent status in the gut is of importance in the setting of pediatric stem cell transplant recipients where HAdV detection in stool usually preceds clinical signs and severe infections are related to mortality. The reactivation of persistent intestinal HAdV infections in these patients needs further investigation also with regard to successful therapy options. In addition, several newly identified recombinant HAdV types have been isolated from stool samples, thus raising the question of possible recombination events in the gut. In this review, intestinal HAdV infections are discussed in relation to the tissue tropism, persistence, recombination, and new in-vitro models to enhance the knowledge about virus-host interactions and support the development of new treatment approaches.


Asunto(s)
Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/fisiología , Tracto Gastrointestinal/virología , Tropismo Viral , Infecciones por Adenovirus Humanos/tratamiento farmacológico , Infecciones por Adenovirus Humanos/inmunología , Adenovirus Humanos/clasificación , Adenovirus Humanos/inmunología , Antivirales/uso terapéutico , Tracto Gastrointestinal/inmunología , Humanos , Inmunomodulación , Interferones/uso terapéutico , Recombinación Genética , Internalización del Virus
20.
Front Microbiol ; 9: 2325, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333807

RESUMEN

Viral infections are amongst the most common diseases affecting people worldwide. New viruses emerge all the time and presently we have limited number of vaccines and only few antivirals to combat viral diseases. Fungi represent a vast source of bioactive molecules, which could potentially be used as antivirals in the future. Here, we have summarized the current knowledge of fungi as producers of antiviral compounds and discuss their potential applications. In particular, we have investigated how the antiviral action has been assessed and what is known about the molecular mechanisms and actual targets. Furthermore, we highlight the importance of accurate fungal species identification on antiviral and other natural products studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...