Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Rice (N Y) ; 17(1): 14, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351214

RESUMEN

Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases for rice crops, significantly affecting crop yield and quality. During the infection process, M. oryzae secretes effector proteins that help in hijacking the host's immune responses to establish infection. However, little is known about the interaction between the effector protein AvrPik-D and the host protein Pikh, and how AvrPik-D increases disease severity to promote infection. In this study, we show that the M. oryzae effector AvrPik-D interacts with the zinc finger-type transcription factor WG7 in the nucleus and promotes its transcriptional activity. Genetic removal (knockout) of the gene WG7 in transgenic rice enhances resistance to M. oryzae and also results in an increased burst of reactive oxygen species after treatments with chitin. In addition, the hormone level of SA and JA, is increased and decreased respectively in WG7 KO plants, indicating that WG7 may negatively mediate resistance through salicylic acid pathway. Conversely, WG7 overexpression lines reduce resistance to M. oryzae. However, WG7 is not required for the Pikh-mediated resistance against rice blast. In conclusion, our results revealed that the M. oryzae effector AvrPik-D targets and promotes transcriptional activity of WG7 to suppress rice innate immunity to facilitate infection.

3.
Plant Commun ; 4(5): 100626, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37177781

RESUMEN

Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases of rice. During infection, M. oryzae secretes effectors to facilitate blast development. Among these effectors, the avirulence factor AvrPi9 is recognized by Pi9, a broad-spectrum blast resistance protein that triggers Pi9-mediated resistance in rice. However, little is known about the interaction between AvrPi9 and Pi9 and how AvrPi9 exerts virulence to promote infection. In this study, we found that ectopic expression of AvrPi9 in the Pi9-lacking cultivar TP309 suppressed basal resistance against M. oryzae. Furthermore, we identified an AvrPi9-interacting protein in rice, which we named OsRGLG5, encoding a functional RING-type E3 ubiquitin ligase. During infection, AvrPi9 was ubiquitinated and degraded by OsRGLG5. Meanwhile, AvrPi9 affected the stability of OsRGLG5. Infection assays revealed that OsRGLG5 is a positive regulator of basal resistance against M. oryzae, but it is not essential for Pi9-mediated blast resistance in rice. In conclusion, our results revealed that OsRGLG5 is targeted by the M. oryzae effector AvrPi9 and positively regulates basal resistance against rice blast.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Magnaporthe/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas/genética
4.
New Phytol ; 237(3): 944-958, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36300791

RESUMEN

Plant pathogens secrete effector proteins to support host colonization through a wide range of molecular mechanisms, while plant immune systems evolved receptors to recognize effectors or their activities to mount immune responses to halt pathogens. Importantly, plants do not act as single organisms, but rather as holobionts that actively shape their microbiota as a determinant of health. The soil-borne fungal pathogen Verticillium dahliae was recently demonstrated to exploit the VdAve1 effector to manipulate the host microbiota to promote vascular wilt disease in the absence of the corresponding immune receptor Ve1. We identify a multiallelic V. dahliae gene displaying c. 65% sequence similarity to VdAve1, named VdAve1-like (VdAve1L), which shows extreme sequence variation, including alleles that encode dysfunctional proteins, indicative of selection pressure to overcome host recognition. We show that the orphan cell surface receptor Ve2, encoded at the Ve locus, does not recognize VdAve1L. Additionally, we demonstrate that the full-length variant VdAve1L2 possesses antimicrobial activity, like VdAve1, yet with a divergent activity spectrum, that is exploited by V. dahliae to mediate tomato colonization through the direct suppression of antagonistic Actinobacteria in the host microbiota. Our findings open up strategies for more targeted biocontrol against microbial plant pathogens.


Asunto(s)
Actinobacteria , Verticillium , Proteínas de Plantas/metabolismo , Virulencia , Actinobacteria/genética , Actinobacteria/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/genética , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
5.
Front Plant Sci ; 11: 545306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013967

RESUMEN

The whitefly-transmitted tomato yellow leaf curl virus (TYLCV) is one of the most destructive viral pathogens of cultivated tomato. To combat TYLCV, resistance gene Ty-2 has been introduced into cultivated tomato (Solanum lycopersicum) from wild tomato species Solanum habrochaites by interspecific crossing. Introgression lines with Ty-2 contain a large inversion compared with S. lycopersicum, which causes severe suppression of recombination and has hampered the cloning of Ty-2 so far. Here, we report the fine-mapping and cloning of Ty-2 using crosses between a Ty-2 introgression line and several susceptible S. habrochaites accessions. Ty-2 was shown to encode a nucleotide-binding leucine-rich repeat (NLR) protein. For breeding purposes, a highly specific DNA marker tightly linked to the Ty-2 gene was developed permitting marker-assisted selection. The resistance mediated by Ty-2 was effective against the Israel strain of TYLCV (TYLCV-IL) and tomato yellow leaf curl virus-[China : Shanghai2] (TYLCV-[CN : SH2]), but not against tomato yellow leaf curl Sardinia virus (TYLCSV) and leafhopper-transmitted beet curly top virus (BCTV). By co-infiltration experiments we showed that transient expression of the Rep/C1 protein of TYLCV, but not of TYLCSV triggered a hypersensitive response (HR) in Nicotiana benthamiana plants co-expressing the Ty-2 gene. Our results indicate that the Rep/C1 gene of TYLCV-IL presents the avirulence determinant of Ty-2-mediated resistance.

6.
Viruses ; 10(11)2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30469406

RESUMEN

Tomato spotted wilt virus (TSWV) is one of the most destructive viral pathogens of plants. Recently, a single dominant gene conferring complete resistance to TSWV (RTSW) was identified in Nicotina alata and introgressed into cultivated tobacco (N. tabacum). However, whether the TSWV carries an avirulence (Avr) factor directed against RTSW remains obscure. In the present study, we identified the non-structural protein (NSm), the movement protein of TSWV, which is an RTSW-specific Avr factor, by using two different transient expression systems. Using amino acid (aa) substitution mutants, we demonstrated the ability to induce RTSW-mediated hypersensitive response (HR) of NSm is independent of its movement function. Moreover, key substitutions (C118Y and T120N), a 21-aa viral effector epitope, and different truncated versions of NSm, which are responsible for the recognition of the Sw-5b resistance gene of tomato, were tested for their ability to trigger HR to TSWV in tobacco. Together, our results demonstrated that RTSW-mediated resistance is triggered by NSm in the same way as by Sw-5b, however, via different elicitor active sites. Finally, an Avr gene-based diagnostic approach was established and used to determine the presence and effectiveness of resistance genes in tobacco.


Asunto(s)
Nicotiana/virología , Proteínas de Movimiento Viral en Plantas/metabolismo , Solanum lycopersicum/virología , Tospovirus/inmunología , Proteínas no Estructurales Virales/metabolismo , Factores de Virulencia/metabolismo , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Resistencia a la Enfermedad , Solanum lycopersicum/inmunología , Proteínas de Movimiento Viral en Plantas/genética , Nicotiana/inmunología , Tospovirus/crecimiento & desarrollo , Proteínas no Estructurales Virales/genética , Factores de Virulencia/genética
7.
New Phytol ; 219(3): 1048-1061, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29693722

RESUMEN

Cultivar-strain specificity in the wheat-Zymoseptoria tritici pathosystem determines the infection outcome and is controlled by resistance genes on the host side, many of which have been identified. On the pathogen side, however, the molecular determinants of specificity remain largely unknown. We used genetic mapping, targeted gene disruption and allele swapping to characterise the recognition of the new avirulence factor Avr3D1. We then combined population genetic and comparative genomic analyses to characterise the evolutionary trajectory of Avr3D1. Avr3D1 is specifically recognised by wheat cultivars harbouring the Stb7 resistance gene, triggering a strong defence response without preventing pathogen infection and reproduction. Avr3D1 resides in a cluster of putative effector genes located in a genome region populated by independent transposable element insertions. The gene was present in all 132 investigated strains and is highly polymorphic, with 30 different protein variants identified. We demonstrated that specific amino acid substitutions in Avr3D1 led to evasion of recognition. These results demonstrate that quantitative resistance and gene-for-gene interactions are not mutually exclusive. Localising avirulence genes in highly plastic genomic regions probably facilitates accelerated evolution that enables escape from recognition by resistance proteins.


Asunto(s)
Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Resistencia a la Enfermedad , Proteínas Fúngicas/metabolismo , Genoma de Plastidios , Enfermedades de las Plantas/microbiología , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos , Cromosomas de las Plantas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Familia de Multigenes , Polimorfismo Genético , Triticum/microbiología , Virulencia , Factores de Virulencia/química , Factores de Virulencia/genética
8.
Mol Plant Pathol ; 19(3): 731-743, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28387986

RESUMEN

Avirulence factors are critical for the arm's race between a virus and its host in determining incompatible reactions. The response of plants to viruses from the genus Nepovirus in the family Secoviridae, including Grapevine fanleaf virus (GFLV), is well characterized, although the nature and characteristics of the viral avirulence factor remain elusive. By using infectious clones of GFLV strains F13 and GHu in a reverse genetics approach with wild-type, assortant and chimeric viruses, the determinant of necrotic lesions caused by GFLV-F13 on inoculated leaves of Nicotiana occidentalis was mapped to the RNA2-encoded protein 2AHP , particularly to its 50 C-terminal amino acids. The necrotic response showed hallmark characteristics of a genuine hypersensitive reaction, such as the accumulation of phytoalexins, reactive oxygen species, pathogenesis-related protein 1c and hypersensitivity-related (hsr) 203J transcripts. Transient expression of the GFLV-F13 protein 2AHP fused to an enhanced green fluorescent protein (EGFP) tag in N. occidentalis by agroinfiltration was sufficient to elicit a hypersensitive reaction. In addition, the GFLV-F13 avirulence factor, when introduced in GFLV-GHu, which causes a compatible reaction on N. occidentalis, elicited necrosis and partially restricted the virus. This is the first identification of a nepovirus avirulence factor that is responsible for a hypersensitive reaction in both the context of virus infection and transient expression.


Asunto(s)
Aminoácidos/inmunología , Nepovirus/inmunología , Nepovirus/patogenicidad , Nicotiana/inmunología , Nicotiana/virología , Proteínas Virales/inmunología , Aminoácidos/química , Genoma Viral/genética , Nepovirus/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...