RESUMEN
Although allele frequency data for most HLA loci provide strong evidence for balancing selection at the allele level, the DPB1 locus is a notable exception, with allele frequencies compatible with neutral evolution (genetic drift) or directional selection in most populations. This discrepancy is especially interesting as evidence for balancing selection has been seen at the nucleotide and amino acid (AA) sequence levels for DPB1. We describe methods used to examine the global distribution of DPB1 alleles and their constituent AA sequences. These methods allow investigation of the influence of natural selection in shaping DPß diversity in a hierarchical fashion for DPB1 alleles, all polymorphic DPB1 exon 2-encoded AA positions, as well as all pairs and trios of these AA positions. In addition, we describe how asymmetric linkage disequilibrium for all DPB1 exon 2-encoded AA pairs can be used to complement other methods. Application of these methods provides strong evidence for the operation of balancing selection on AA positions 56, 85-87, 36, 55 and 84 (listed in decreasing order of the strength of selection), but no evidence for balancing selection on DPB1 alleles.
RESUMEN
Small and isolated populations face several intrinsic risks, such as genetic drift, inbreeding depression, and reduced gene flow. Thus, patterns of genetic diversity and differentiation have become an important focus of conservation genetics research. The golden snub-nosed monkey Rhinopithecus roxellana, an endangered species endemic to China, has experienced rapid reduction in population size and severe population fragmentation over the past few decades. We measured the patterns of genetic diversity and population differentiation using both neutral microsatellites and adaptive major histocompatibility complex (MHC) genes in 2 R. roxellana populations (DPY and GNG) distributed on the northern and southern slopes of the Qinling Mountains, respectively. Eight MHC-linked haplotypes formed by 5 DQA1 alleles, 5 DQB1 alleles, 5 DRB1 alleles, and 4 DRB2 alleles were detected in the 2 populations. The larger GNG population showed higher genetic variation for both MHC and microsatellites than the smaller DPY population, suggesting an effect of genetic drift on genetic variation. Genetic differentiation index (F ST) outlier analyses, principal coordinate analysis (PCoA), and inferred population genetic structure showed lower genetic differentiation in the MHC variations than microsatellites, suggesting that pathogen-mediated balancing selection, rather than local adaptation, homogenized the MHC genes of both populations. This study indicates that both balancing selection and genetic drift may shape genetic variation and differentiation in small and fragmented populations.
RESUMEN
The DPB1 locus is notable among the classical HLA loci in that allele frequencies at this locus are consistent with genetic drift, whereas the frequencies of specific DPß amino acids are consistent with the action of balancing selection. We investigated the influence of natural selection in shaping the diversity of three functional categories of DPB1 diversity defined by specific amino acid motifs, DPB1 T-cell epitopes, DPB1 supertypes and DP1-DP4 serologic categories (SCs), via Ewens-Watterson (EW) selective neutrality and asymmetric Linkage Disequilibrium (ALD) analyses in a worldwide sample of 136 populations. These EW analyses provide strong evidence for the operation of balancing selection on DP SCs, but no evidence for balancing selection on T-cell epitopes or supertypes. We further investigated the global distribution of SCs. Each SC is common in a different region of the world, with the DP1 SC most common in Southeast Asia and Oceania, the DP2 SC in North and South America, the DP3 SC in South America, and the DP4 SC in Europe. The DP2 SC is present in all populations, while 14% of populations are missing at least one DP1, DP3, or DP4 SC. We observed consistent DPA1â¼DP SC haplotype associations across 10 populations from five global regions, and found that asymmetric linkage disequilibrium (LD) between the DPB1 locus and the four most-common DPA1 alleles (DPA1*01:03, *02:01, *02:02 and *03:01) is determined by variation at DPß AA positions 85-87. These positions are in LD with both DPα positions 31 and 50. We conclude from these EW analyses that natural selection is primarily operating to maintain population-level diversity of DP SCs, rather than DPB1 alleles or other functional categories of DPB1 diversity.
RESUMEN
Invasive species cause massive economic and ecological damage. Climate change has resulted in an unprecedented increase in the number and impact of invasive species; however, the mechanisms underlying these invasions are unclear. The sycamore lace bug, Corythucha ciliata, is a highly invasive species originating from North America and has expanded across the Northern Hemisphere since the 1960s. In this study, we assembled the C. ciliata genome using high-coverage Pacific Biosciences (PacBio), Illumina, and high-throughput chromosome conformation capture (Hi-C) sequencing. A total of 15,278 protein-coding genes were identified, and expansions of gene families with oxidoreductase and metabolic activities were observed. In-depth resequencing of 402 samples from native and nine invaded countries across three continents revealed 2.74 million single nucleotide polymorphisms. Two major invasion routes of C. ciliata were identified from North America to Europe and Japan, with a contact zone forming in East Asia. Genomic signatures of selection associated with invasion and long-term balancing selection in native ranges were identified. These genomic signatures overlapped with expanded genes, suggesting improvements in the oxidative stress and thermal tolerance of C. ciliata. These findings offer valuable insights into the genomic architecture and adaptive evolution underlying the invasive capabilities of species during rapid environmental changes.
RESUMEN
INTRODUCTION: Invasive species pose a major threat to global biodiversity and agricultural productivity, yet the genomic mechanisms driving their rapid expansion into new habitats are not fully understood. The fall armyworm, Spodoptera frugiperda, originally from the Americas, has expanded its reach across the Old World, causing substantial reduction in crop yield. Although the hybridization between two genetically distinct strains has been well-documented, the role of such hybridization in enhancing the species' invasive capabilities remains largely unexplored. OBJECTIVES: This study aims to investigate the contributions of hybridization and natural selection to the rapid invasion of the fall armyworm. METHODS: We analyzed the whole-genome resequencing data from 432 individuals spanning its global distribution. We identified the genomic signatures of selection associated with invasion and explored their linkage with the Tpi gene indicating strain differentiation. Furthermore, we detected signatures of balancing selection in native populations for candidate genes that underwent selective sweeps during the invasion process. RESULTS: Our analysis revealed pronounced genomic differentiation between native and invasive populations. Invasive populations displayed a uniform genomic structure distinctly different from that of native populations, indicating hybridization between the strains during invasion. This hybridization likely contributes to maintaining high genetic diversity in invasive regions, which is crucial for survival and adaptation. Additionally, polymorphisms on genes under selection during invasion were possibly preserved through balancing selection in their native environments. CONCLUSION: Our findings reveal the genomic basis of the fall armyworm's successful invasion and rapid adaptation to new environments, highlighting the important role of hybridization in the dynamics of invasive species.
RESUMEN
Variation in coat color is a prominent feature in carnivores, thought to be shaped by environmental factors. As new traits could allow populations to occupy novel niches and habitats, color polymorphism may be maintained by balancing selection. Consequently, color polymorphic species may speciate more rapidly and can give rise to monomorphic daughter species. We thus predicted that, within the Carnivora, (i) speciation rate is higher in polymorphic lineages, (ii) divergence between color polymorphic lineages is more recent, and (iii) within closely related groups, polymorphic lineages are ancestral and monomorphic lineages derived. We also tested whether accelerated speciation rates relate to niche breadth, measured by the number of occupied habitats and range size. We collected data of 48 polymorphic and 192 monomorphic carnivore species, and assessed speciation rates using phylogenetic comparative methods. We found that polymorphic carnivores had higher speciation rates (λ1 = 0.29, SD = 0.13) than monomorphic species (λ0 = 0.053, SD = 0.044). Hidden and quantitative state speciation and extinction models inferred that color polymorphism was the main contributing factor, and that niche breadth was not of influence. Therefore, other selective forces than spatial niche segregation, such as predator-prey coevolution, may contribute to color polymorphism in wild carnivores.
Asunto(s)
Carnívoros , Especiación Genética , Filogenia , Animales , Carnívoros/genética , Carnívoros/clasificación , Ecosistema , Polimorfismo Genético , Pigmentación/genéticaRESUMEN
The major histocompatibility complex (MHC) plays a critical role in the immune response against pathogens. Its high polymorphism is thought to be mainly the consequence of host-pathogen co-evolution, but elucidating the mechanism(s) driving MHC evolution remains challenging for natural populations. We investigated the diversity of MHC class II genes in a wild population of pied flycatchers Ficedula hypoleuca and tested its associations with two key components of individual fitness: lifetime reproductive success and survival. Among 180 breeding adults in our study population, we found 182 unique MHC class II exon 2 alleles. The alleles showed a strong signal of positive selection and grouped into nine functional supertypes based on physicochemical properties at the inferred antigen-binding sites. Three supertypes were found in > 98% of the sampled individuals, indicating that they are nearly fixed in the population. We found no rare supertypes in the population, as all supertypes were present in > 70% of individuals. Three supertypes were related to different components of individual fitness: two were associated with lower offspring production over time, while the third was positively associated with survival. Overall, the substantial allelic and functional diversity and the relationship between specific supertypes and fitness are in accordance with the notion that balancing selection maintains MHC class II diversity in the study population, possibly with fluctuating selection as the underlying mechanism. The absence of rare supertypes in the population suggests that the balancing selection is not driven by rare-allele advantage.
Asunto(s)
Alelos , Genes MHC Clase II , Reproducción , Pájaros Cantores , Animales , Pájaros Cantores/genética , Reproducción/genética , Genes MHC Clase II/genética , Selección Genética , Genética de Población , Migración Animal , Aptitud Genética , FemeninoRESUMEN
Natural selection is known to favor specific gene combinations, thereby shaping the evolution of recombination rates, often through epistatic interactions. However, the dynamics of these interacting factors within natural populations remain poorly understood. In this study, we investigate the long-term maintenance of a complex polymorphism involving linked, nonoverlapping chromosomal inversions in a natural population of Drosophila mediopunctata. Remarkably, even after 30 years-equivalent to roughly 340 generations-two major features have remained unexpectedly stable: the linkage disequilibrium (LD) between inversions, which deviates significantly from the theoretical prediction of decay, and a consistent seasonal cycle pattern of heterozygous excess and homozygous deficiencies. We explored the roles of recombination suppression, epistatic selection, and overdominance in maintaining this stability, examining their alignment with previously described patterns. Our findings reveal that moderate selection coefficients, such as s = 0.0407, are sufficient to maintain the observed LD for the most common haplotypes, albeit leading to an unstable equilibrium. Simulations further reveal that the introduction of overdominance stabilizes the system, enabling the long-term persistence of this complex inversion polymorphism across various frequency scenarios. The stability of this system appears to hinge on a delicate balance between LD, recombination rates, and selective pressures, with overdominance playing a critical role. Our findings highlight the significance of epistatic interactions and selective pressures in shaping evolutionary pathways in natural populations and offer a compelling example of natural selection acting on a complex inversion polymorphism, providing valuable insights into the evolutionary dynamics governing inversion systems.
RESUMEN
Like other plants, wild and domesticated rice species (Oryza nivara, O. rufipogon, and O. sativa) evolve in environments with various biotic and abiotic stresses that fluctuate in intensity through space and time. Microbial pathogens and invertebrate herbivores such as plant-parasitic nematodes and caterpillars show geographical and temporal variation in activity patterns and may respond differently to certain plant defensive mechanisms. As such, plant interactions with multiple community members may result in conflicting selection pressures on genetic polymorphisms. Here, through assays with different above- and belowground herbivores, the fall armyworm (Spodoptera frugiperda) and the southern root-knot nematode (Meloidogyne incognita), respectively, and comparison with rice responses to microbial pathogens, we identify potential genetic trade-offs at the KSL8 and MG1 loci on chromosome 11. KSL8 encodes the first committed step towards biosynthesis of either stemarane- or stemodane-type diterpenoids through the japonica (KSL8-jap) or indica (KSL8-ind) allele. Knocking out KSL8-jap and CPS4, encoding an enzyme that acts upstream in diterpenoid synthesis, in japonica rice cultivars increased resistance to S. frugiperda and decreased resistance to M. incognita. Furthermore, MG1 resides in a haplotype that provided resistance to M. incognita, while alternative haplotypes are involved in mediating resistance to the rice blast fungus Magnaporthe oryzae and other pests and pathogens. Finally, KSL8 and MG1 alleles are located within trans-species haplotypes and may be evolving under long-term balancing selection. Our data are consistent with a hypothesis that polymorphisms at KSL8 and MG1 may be maintained through complex and diffuse community interactions.
RESUMEN
The long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them. We first experimentally measured the phenotypic manifestation of the linked load at three different levels of the dominance hierarchy. We then sequenced and phased polymorphisms in the chromosomal regions linked to 126 distinct copies of S-alleles in two populations of Arabidopsis halleri and three populations of Arabidopsis lyrata. We find that linkage to the S-locus locally distorts phylogenies over about 10-30 kb along the chromosome. The more intense balancing selection on dominant S-alleles results in greater fixation of linked deleterious mutations, while recessive S-alleles accumulate more linked deleterious mutations that are segregating. Hence, the structure rather than the overall magnitude of the linked genetic load differs between dominant and recessive S-alleles. Our results have consequences for the long-term evolution of new S-alleles, the evolution of dominance modifiers between them, and raise the question of why the non-recombining regions of some sex and mating type chromosomes expand over evolutionary times while others, such as the S-locus of the Brassicaceae, remain restricted to small chromosomal regions.
Asunto(s)
Alelos , Arabidopsis , Arabidopsis/genética , Selección Genética , Autoincompatibilidad en las Plantas con Flores/genética , Carga Genética , Mutación , Genes Dominantes , FenotipoRESUMEN
How phenotypic diversity originates and persists within populations are classic puzzles in evolutionary biology. While balanced polymorphisms segregate within many species, it remains rare for both the genetic basis and the selective forces to be known, leading to an incomplete understanding of many classes of traits under balancing selection. Here, we uncover the genetic architecture of a balanced sexual mimicry polymorphism and identify behavioral mechanisms that may be involved in its maintenance in the swordtail fish Xiphophorus birchmanni. We find that â¼40% of X. birchmanni males develop a "false gravid spot," a melanic pigmentation pattern that mimics the "pregnancy spot" associated with sexual maturity in female live-bearing fish. Using genome-wide association mapping, we detect a single intergenic region associated with variation in the false gravid spot phenotype, which is upstream of kitlga, a melanophore patterning gene. By performing long-read sequencing within and across populations, we identify complex structural rearrangements between alternate alleles at this locus. The false gravid spot haplotype drives increased allele-specific expression of kitlga, which provides a mechanistic explanation for the increased melanophore abundance that causes the spot. By studying social interactions in the laboratory and in nature, we find that males with the false gravid spot experience less aggression; however, they also receive increased attention from other males and are disdained by females. These behavioral interactions may contribute to the maintenance of this phenotypic polymorphism in natural populations. We speculate that structural variants affecting gene regulation may be an underappreciated driver of balanced polymorphisms across diverse species.
Asunto(s)
Ciprinodontiformes , Animales , Masculino , Femenino , Ciprinodontiformes/genética , Ciprinodontiformes/fisiología , Variación Estructural del Genoma , Polimorfismo Genético , Mimetismo Biológico/genética , Estudio de Asociación del Genoma Completo , Conducta Sexual Animal , Pigmentación/genética , FenotipoRESUMEN
Genetic diversity is an essential indicator that echoes the natural selection and environmental adaptation of a species. Isolated small populations are vulnerable to genetic drift, inbreeding, and limited gene flow; thus, assessing their genetic diversity is critical in conservation. In this study, we studied the genetic diversity of black-and-white snub-nosed monkeys (Rhinopithecus bieti) using neutral microsatellites and five adaptive major histocompatibility complex (MHC) genes. Two DQA1 alleles, two DQB1 alleles, two DRB1 alleles, two DRB5 alleles, and three DPB1 alleles were isolated from a population. The results indicate that neutral microsatellites demonstrate a high degree of heterozygosity and polymorphism, while adaptive MHC genes display a high degree of heterozygosity and moderate polymorphism. The results also show that balancing selection has prominently influenced the MHC diversity of the species during evolution: (1) significant positive selection is identified at several amino acid sites (primarily at and near antigen-binding sites) of the DRB1, DRB5, and DQB1 genes; (2) phylogenetic analyses display the patterns of trans-species evolution for all MHC loci. This study provides valuable genetic diversity insights into black-and-white snub-nosed monkeys, which dwell at the highest altitude and have experienced the harshest environmental selection of all primates globally since the Pleistocene. Such results provide valuable scientific evidence and a reference for making or amending conservation strategies for this endangered primate species.
RESUMEN
It is known that some endangered species have persisted for thousands of years despite their very small effective population sizes and low levels of genetic polymorphisms. To understand the genetic mechanisms of long-term persistence in threatened species, we determined the whole genome sequences of akame (Lates japonicus), which has survived for a long time with extremely low genetic variations. Genome-wide heterozygosity in akame was estimated to be 3.3 to 3.4 × 10-4/bp, one of the smallest values in teleost fishes. Analysis of demographic history revealed that the effective population size in akame was around 1,000 from 30,000 years ago to the recent past. The relatively high ratio of nonsynonymous to synonymous heterozygosity in akame indicated an increased genetic load. However, a detailed analysis of genetic diversity in the akame genome revealed that multiple genomic regions, including genes involved in immunity, synaptic development, and olfactory sensory systems, have retained relatively high nucleotide polymorphisms. This implies that the akame genome has preserved the functional genetic variations by balancing selection, to avoid a reduction in viability and loss of adaptive potential. Analysis of synonymous and nonsynonymous nucleotide substitution rates has detected signs of positive selection in many akame genes, suggesting adaptive evolution to temperate waters after the speciation of akame and its close relative, barramundi (Lates calcarifer). Our results indicate that the functional genetic diversity likely contributed to the long-term persistence of this species by avoiding the harmful effects of the population size reduction.
Asunto(s)
Variación Genética , Genoma , Animales , Evolución Molecular , Especies en Peligro de Extinción , Selección Genética , Peces/genéticaRESUMEN
Understanding how life history shapes genetic diversity is a fundamental issue in evolutionary biology, with important consequences for conservation. However, we still have an incomplete picture of the impact of life history on genome-wide patterns of diversity, especially in long-lived semelparous plants. Puya raimondii is a high-altitude semelparous species from the Andes that flowers at 40-100 years of age. We sequenced the whole genome and estimated the nucleotide diversity of 200 individuals sampled from nine populations. Coalescent-based approaches were then used to infer past population dynamics. Finally, these results were compared with results obtained for the iteroparous species, Puya macrura. The nine populations of P. raimondii were highly divergent, highly inbred, and carried an exceptionally high genetic load. They are genetically depauperate, although, locally in the genome, balancing selection contributed to the maintenance of genetic polymorphism. While both P. raimondii and P. macrura went through a severe bottleneck during the Pleistocene, P. raimondii did not recover from it and continuously declined, while P. macrura managed to bounce back. Our results demonstrate the importance of life history, in particular generation time and reproductive strategy, in affecting population dynamics and genomic variation, and illustrate the genetic fragility of long-lived semelparous plants.
Asunto(s)
Variación Genética , Genoma de Planta , Genética de Población , Factores de Tiempo , Dinámica PoblacionalRESUMEN
Phoresy is an interspecies interaction that facilitates spatial dispersal by attaching to a more mobile species. Hitchhiking species have evolved specific traits for physical contact and successful phoresy, but the regulatory mechanisms involved in such traits and their evolution are largely unexplored. The nematode Caenorhabditis elegans displays a hitchhiking behavior known as nictation during its stress-induced developmental stage. Dauer-specific nictation behavior has an important role in natural C. elegans populations, which experience boom-and-bust population dynamics. In this study, we investigated the nictation behavior of 137 wild C. elegans strains sampled throughout the world. We identified species-wide natural variation in nictation and performed a genome-wide association mapping. We show that the variants in the promoter of nta-1, encoding a putative steroidogenic enzyme, underlie differences in nictation. This difference is due to the changes in nta-1 expression in glial cells, which implies that glial steroid metabolism regulates phoretic behavior. Population genetic analysis and geographic distribution patterns suggest that balancing selection maintained two nta-1 haplotypes that existed in ancestral C. elegans populations. Our findings contribute to further understanding of the molecular mechanism of species interaction and the maintenance of genetic diversity within natural populations.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neuroglía , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuroglía/metabolismo , Estudio de Asociación del Genoma Completo , Conducta Animal/fisiología , Variación Genética , Regiones Promotoras Genéticas/genética , Esteroides/metabolismo , Esteroides/biosíntesisRESUMEN
The role of balancing selection is a long-standing evolutionary puzzle. Balancing selection is a crucial evolutionary process that maintains genetic variation (polymorphism) over extended periods of time; however, detecting it poses a significant challenge. Building upon the Polymorphism-aware phylogenetic Models (PoMos) framework rooted in the Moran model, we introduce a PoMoBalance model. This novel approach is designed to disentangle the interplay of mutation, genetic drift, and directional selection (GC-biased gene conversion), along with the previously unexplored balancing selection pressures on ultra-long timescales comparable with species divergence times by analyzing multi-individual genomic and phylogenetic divergence data. Implemented in the open-source RevBayes Bayesian framework, PoMoBalance offers a versatile tool for inferring phylogenetic trees as well as quantifying various selective pressures. The novel aspect of our approach in studying balancing selection lies in polymorphism-aware phylogenetic models' ability to account for ancestral polymorphisms and incorporate parameters that measure frequency-dependent selection, allowing us to determine the strength of the effect and exact frequencies under selection. We implemented validation tests and assessed the model on the data simulated with SLiM and a custom Moran model simulator. Real sequence analysis of Drosophila populations reveals insights into the evolutionary dynamics of regions subject to frequency-dependent balancing selection, particularly in the context of sex-limited color dimorphism in Drosophila erecta.
Asunto(s)
Conversión Génica , Modelos Genéticos , Filogenia , Polimorfismo Genético , Selección Genética , Animales , Teorema de Bayes , Evolución Molecular , Masculino , FemeninoRESUMEN
Introduction: Many loci segregate alleles classified as "genetic diseases" due to their deleterious effects on health. However, some disease alleles have been reported to show beneficial effects under certain conditions or in certain populations. The beneficial effects of these antagonistically pleiotropic alleles may explain their continued prevalence, but the degree to which antagonistic pleiotropy is common or rare is unresolved. We surveyed the medical literature to identify examples of antagonistic pleiotropy to help determine whether antagonistic pleiotropy appears to be rare or common. Results: We identified ten examples of loci with polymorphisms for which the presence of antagonistic pleiotropy is well supported by detailed genetic or epidemiological information in humans. One additional locus was identified for which the supporting evidence comes from animal studies. These examples complement over 20 others reported in other reviews. Discussion: The existence of more than 30 identified antagonistically pleiotropic human disease alleles suggests that this phenomenon may be widespread. This poses important implications for both our understanding of human evolutionary genetics and our approaches to clinical treatment and disease prevention, especially therapies based on genetic modification.
RESUMEN
BACKGROUND: A heterozygous-enriched region (HER) is a genomic region with high variability generated by factors such as balancing selection, introgression, and admixture processes. In this study, we evaluated the genomic background of HERs and the impact of different parameters (i.e., minimum number of SNPs in a HER, maximum distance between two consecutive SNPs, minimum length of a HER, maximum number of homozygous allowed in a HER) and scenarios [i.e., different SNP panel densities and whole-genome sequence (WGS)] on the detection of HERs. We also compared HERs characterized in Holstein cattle with those identified in Angus, Jersey, and Norwegian Red cattle using WGS data. RESULTS: The parameters used for the identification of HERs significantly impact their detection. The maximum distance between two consecutive SNPs did not impact HERs detection as the same average of HERs (269.31 ± 787.00) was observed across scenarios. However, the minimum number of markers, maximum homozygous markers allowed inside a HER, and the minimum length size impacted HERs detection. For the minimum length size, the 10 Kb scenario showed the highest average number of HERs (1,364.69 ± 1,483.64). The number of HERs decreased as the minimum number of markers increased (621.31 ± 1,271.83 to 6.08 ± 21.94), and an opposite pattern was observed for the maximum homozygous markers allowed inside a HER (54.47 ± 195.51 to 494.89 ± 1,169.35). Forty-five HER islands located in 23 chromosomes with high Tajima's D values and differential among the observed and estimated heterozygosity were detected in all evaluated scenarios, indicating their ability to potentially detect regions under balancing selection. In total, 3,440 markers and 28 genes previously related to fertility (e.g., TP63, ZSCAN23, NEK5, ARHGAP44), immunity (e.g., TP63, IGC, ARHGAP44), residual feed intake (e.g., MAYO9A), stress sensitivity (e.g., SERPINA6), and milk fat percentage (e.g., NOL4) were identified. When comparing HER islands among breeds, there were substantial overlaps between Holstein with Angus (95.3%), Jersey (94.3%), and Norwegian Red cattle (97.1%), indicating conserved HER across taurine breeds. CONCLUSIONS: The detection of HERs varied according to the parameters used, but some HERs were consistently identified across all scenarios. Heterozygous genotypes observed across generations and breeds appear to be conserved in HERs. The results presented could serve as a guide for defining HERs detection parameters and further investigating their biological roles in future studies.
Asunto(s)
Heterocigoto , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Animales , Bovinos/genética , Secuenciación Completa del Genoma/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Genoma , Genómica/métodosRESUMEN
The analysis of livestock heterozygosity is less common compared to the study of homozygous patterns. Heterozygous-Rich Regions (HRRs) may harbor significant loci for functional traits such as immune response, survival rate, and fertility. For this reason, this study was conducted to investigate and characterize the heterozygosity patterns of four beef cattle breeds, which included two cosmopolitan breeds (Limousine and Charolaise) and two local breeds (Sarda and Sardo Bruna). Our analysis identified regions with a high degree of heterozygosity using a consecutive runs approach, the Tajima D test, nucleotide diversity estimation, and Hardy Weinberg equilibrium test. These regions exhibited recurrent heterozygosity peaks and were consistently found on specific chromosomes across all breeds, specifically autosomes 15, 16, 20, and 23. The cosmopolitan and Sardo Bruna breeds also displayed peaks on autosomes 2 and 21, respectively. Thirty-five top runs shared by more than 25% of the populations were identified. These genomic fragments encompassed 18 genes, two of which are directly linked to male fertility, while four are associated with lactation. Two other genes play roles in survival and immune response. Our study also detected a region related to growth and carcass traits in Limousine breed. Our analysis of heterozygosity-rich regions revealed particular segments of the cattle genome linked to various functional traits. It appears that balancing selection is occurring in specific regions within the four examined breeds, and unexpectedly, they are common across cosmopolitan and local breeds. The genes identified hold potential for applications in breeding programs and conservation studies to investigate the phenotypes associated with these heterozygous genotypes. In addition, Tajima D test, Nucleotide diversity, and Hardy Weinberg equilibrium test confirmed the presence of heterozygous fragments found with Heterozygous-Rich Regions analysis.
Asunto(s)
Heterocigoto , Animales , Bovinos/genética , Bovinos/fisiología , Masculino , Femenino , Italia , Cruzamiento , Variación GenéticaRESUMEN
In fungi, fusion between individuals leads to localized cell death, a phenomenon termed heterokaryon incompatibility. Generally, the genes responsible for this incompatibility are observed to be under balancing selection resulting from negative frequency-dependent selection. Here, we assess this phenomenon in Aspergillus fumigatus, a human pathogenic fungus with a very low level of linkage disequilibrium as well as an extremely high crossover rate. Using complementation of auxotrophic mutations as an assay for hyphal compatibility, we screened sexual progeny for compatibility to identify genes involved in this process, called het genes. In total, 5/148 (3.4%) offspring were compatible with a parent and 166/2,142 (7.7%) sibling pairs were compatible, consistent with several segregating incompatibility loci. Genetic mapping identified five loci, four of which could be fine mapped to individual genes, of which we tested three through heterologous expression, confirming their causal relationship. Consistent with long-term balancing selection, trans-species polymorphisms were apparent across several sister species, as well as equal allele frequencies within A. fumigatus. Surprisingly, a sliding window genome-wide population-level analysis of an independent dataset did not show increased Tajima's D near these loci, in contrast to what is often found surrounding loci under balancing selection. Using available de novo assemblies, we show that these balanced polymorphisms are restricted to several hundred base pairs flanking the coding sequence. In addition to identifying the first het genes in an Aspergillus species, this work highlights the interaction of long-term balancing selection with rapid linkage disequilibrium decay.