Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Intervalo de año de publicación
1.
Card Electrophysiol Clin ; 16(3): 271-280, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084720

RESUMEN

Several complex mechanisms, working alone, or together, initiate and maintain atrial fibrillation (AF). At disease onset, pulmonary vein-atrial triggers, producing ectopy, predominate. Then, as AF progresses, a shift toward substrate occurs, which AF also self-perpetuates. The autonomic nervous system (ANS) plays an important role as trigger and substrate. Although the efferent arm of the ANS as AF trigger is well-established, there is emerging evidence to show that (1) the ANS is a substrate for AF and (2) afferent or regulatory ANS dysfunction occurs in AF patients. These findings could represent a mechanism for the progression of AF.


Asunto(s)
Fibrilación Atrial , Sistema Nervioso Autónomo , Fibrilación Atrial/fisiopatología , Humanos , Sistema Nervioso Autónomo/fisiopatología
2.
Front Physiol ; 15: 1422927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895516

RESUMEN

The hypoxic chemoreflex and the arterial baroreflex are implicated in the ventilatory response to exercise. It is well known that long-term exercise training increases parasympathetic and decreases sympathetic tone, both processes influenced by the arterial baroreflex and hypoxic chemoreflex function. Hypobaric hypoxia (i.e., high altitude [HA]) markedly reduces exercise capacity associated with autonomic reflexes. Indeed, a reduced exercise capacity has been found, paralleled by a baroreflex-related parasympathetic withdrawal and a pronounced chemoreflex potentiation. Additionally, it is well known that the baroreflex and chemoreflex interact, and during activation by hypoxia, the chemoreflex is predominant over the baroreflex. Thus, the baroreflex function impairment may likely facilitate the exercise deterioration through the reduction of parasympathetic tone following acute HA exposure, secondary to the chemoreflex activation. Therefore, the main goal of this review is to describe the main physiological mechanisms controlling baro- and chemoreflex function and their role in exercise capacity during HA exposure.

3.
Physiol Rep ; 12(1): e15891, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163669

RESUMEN

Cardiovascular rhythms representing functional states of the autonomic nervous system (ANS) are insufficiently reflected by the current physiological model based on low and high frequency bands (LF, HF, resp.). An intermediate (IM) frequency band generated by a brainstem pacemaker was included in systemic physiological ANS analyses of forehead skin perfusion (SP), ECG, and respiration. Data of 38 healthy participants at T0 and T1 (+1 week) before, during, and following osteopathic cranial vault hold (CVH) stimulation were analyzed including momentary frequencies of highest amplitude, amplitudes in low (0.05-0.12 Hz), IM (0.12-0.18 Hz), and high (0.18-0.4 Hz) frequency bands, and established heart rate variability (HRV) metrics. During CVH, LF interval durations increased, whereas IM/HF band durations decreased significantly. Amplitudes increased significantly in all frequency bands. A cluster analysis found one response pattern dominated by IM activity (47% of participants) with highly stable 0.08 Hz oscillation to CVH, and one dominated by LF activity (0.10 Hz) at T0, increasing to IM activity at T1. Showing frequency ratios at ≈3:1, respiration was not responsible for oscillations in PPG during CVH. HRV revealed no significant responses. Rhythmic patterns in SP and respiration matched previous findings on a reticular "0.15 Hz rhythm". Involvement of baroreflex pathways is discussed as alternative explanation.


Asunto(s)
Sistema Nervioso Autónomo , Sistema Cardiovascular , Humanos , Presión Sanguínea/fisiología , Sistema Nervioso Autónomo/fisiología , Respiración , Barorreflejo , Frecuencia Cardíaca/fisiología
4.
Dis Model Mech ; 17(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38111957

RESUMEN

eNOS (NOS3) is the enzyme that generates nitric oxide, a signalling molecule and regulator of vascular tone. Loss of eNOS function is associated with increased susceptibility to atherosclerosis, hypertension, thrombosis and stroke. Aortopathy and cardiac hypertrophy have also been found in eNOS null mice, but their aetiology is unclear. We evaluated eNOS nulls before and around birth for cardiac defects, revealing severe abnormalities in the ventricular myocardium and pharyngeal arch arteries. Moreover, in the aortic arch, there were fewer baroreceptors, which sense changes in blood pressure. Adult eNOS null survivors showed evidence of cardiac hypertrophy, aortopathy and cartilaginous metaplasia in the periductal region of the aortic arch. Notch1 and neuregulin were dysregulated in the forming pharyngeal arch arteries and ventricles, suggesting that these pathways may be relevant to the defects observed. Dysregulation of eNOS leads to embryonic and perinatal death, suggesting mutations in eNOS are candidates for causing congenital heart defects in humans. Surviving eNOS mutants have a deficiency of baroreceptors that likely contributes to high blood pressure and may have relevance to human patients who suffer from hypertension associated with aortic arch abnormalities.


Asunto(s)
Embrión de Mamíferos , Cardiopatías Congénitas , Hipertensión , Ratones , Animales , Humanos , Corazón , Óxido Nítrico Sintasa de Tipo III/metabolismo , Aorta/metabolismo , Ratones Noqueados , Cardiomegalia
5.
Rev. HCPA & Fac. Med. Univ. Fed. Rio Gd. do Sul ; 33(3/4): 230-237, 2013. ilus, graf
Artículo en Portugués | LILACS | ID: biblio-831621

RESUMEN

A hipertensão arterial é considerada um dos principais fatores de risco para a morbidade e mortalidade cardiovascular. Os reflexos originados nos barorreceptores arteriais e nos receptores de estiramento da região cardiopulmonar são os principais mecanismos de controle efetivo da pressão arterial a curto prazo. O reflexo dos barorreceptores é considerado um sistema de controle de alto ganho, que mantém a pressão arterial dentro de limites normais em períodos de segundos a minutos. Dessa forma, esta revisão busca abordar os mecanismos desenvolvidos pelos barorreceptores na homeostase da pressão arterial. No presente artigo foram relatadas as alterações dos reflexos cardiovasculares na hipertensão arterial, focando a distribuição dos barorreceptores e seu funcionamento no restabelecimento da pressão arterial. Para realização desta pesquisa foi realizada uma revisão de artigos científicos utilizando as bases de dados Medline, Scielo e Lilacs. Adicionalmente foram consultados livros de fisiologia humana para complementação das informações sobre a fisiologia do barorreflexo na homeostase da pressão arterial. Estudos clínicos têm mostrado que uma reduzida sensibilidade do barorreflexo está associada com a morte súbita que se segue ao infarto agudo do miocárdio. O entendimento dos reflexos dos barorreceptores e a manutenção da hipertensão arterial em curto prazo são de grande importância para o entendimento da fisiopatogenia envolvidas no desenvolvimento e/ou evolução de determinadas alterações patológicas (AU)


Hypertension is considered one of the main risk factors for cardiovascular morbidity and mortality. The reflexes of arterial baroreceptors and stretch receptors in the cardiopulmonary region are the primary mechanisms for effectively controlling arterial blood pressure in the short term. Baroreflexes are a relatively high gain control system that regulates blood pressure during short time periods such as seconds or minutes. This literature review aims to discuss the mechanisms developed by baroreceptors in blood pressure homeostasis. We describe the effects of cardiovascular reflexes on blood pressure, with focus on the distribution of baroreceptors and on its role in controlling blood pressure. Our research was based on scientific articles from the Medline, Scielo, and Lilacs databases. We also researched books on human physiology in order to describe the physiology of baroreflexes in blood pressure homeostasis. Clinical studies have shown that decreased baroreflex sensitivity is associated with sudden death following myocardial infarction. Understanding baroreflexes and short-term blood pressure regulation is essential for understanding the physiopathogenesis involved in the development of certain pathological changes (AU)


Asunto(s)
Presión Arterial/fisiología , Barorreflejo/fisiología , Homeostasis/fisiología , Enfermedades Cardiovasculares/etiología , Frecuencia Cardíaca/fisiología , Hipertensión/etiología , Presorreceptores/fisiología
6.
Braz. j. med. biol. res ; 44(9): 877-882, Sept. 2011. ilus
Artículo en Inglés | LILACS | ID: lil-599671

RESUMEN

Water deprivation and hypernatremia are major challenges for water and sodium homeostasis. Cellular integrity requires maintenance of water and sodium concentration within narrow limits. This regulation is obtained through engagement of multiple mechanisms and neural pathways that regulate the volume and composition of the extracellular fluid. The purpose of this short review is to summarize the literature on central neural mechanisms underlying cardiovascular, hormonal and autonomic responses to circulating volume changes, and some of the findings obtained in the last 12 years by our laboratory. We review data on neural pathways that start with afferents in the carotid body that project to medullary relays in the nucleus tractus solitarii and caudal ventrolateral medulla, which in turn project to the median preoptic nucleus in the forebrain. We also review data suggesting that noradrenergic A1 cells in the caudal ventrolateral medulla represent an essential link in neural pathways controlling extracellular fluid volume and renal sodium excretion. Finally, recent data from our laboratory suggest that these structures may also be involved in the beneficial effects of intravenous infusion of hypertonic saline on recovery from hemorrhagic shock.


Asunto(s)
Humanos , Volumen Sanguíneo/fisiología , Catecolaminas/fisiología , Líquido Extracelular/fisiología , Bulbo Raquídeo/fisiología , Equilibrio Hidroelectrolítico/fisiología , Vías Aferentes/fisiología , Aorta/inervación , Fenómenos Fisiológicos Cardiovasculares , Arterias Carótidas/inervación , Riñón/metabolismo , Vías Nerviosas/fisiología , Neuronas/fisiología , Sodio/metabolismo
7.
Rev. argent. cardiol ; 75(3): 202-206, mayo-jun. 2007. ilus
Artículo en Español | LILACS | ID: lil-613242

RESUMEN

El cuerpo carotídeo (CC) es el principal quimiorreceptor arterial periférico, capaz de sensar los cambios en la PaO2, la PaCO2 y de pH y transducirlos en señales nerviosas reguladoras de respuestas ventilatorias, circulatorias y endócrinas, que permiten una adaptación a la hipoxemia, la acidosis y la hipercapnia. El seno carotídeo, ubicado próximo al CC, con función barorreceptora, genera respuestas cardiovasculares que descienden la tensión arterial (TA). Ambas estructuras son inervadas por el nervio del seno carotídeo (NSC), que a su vez se proyecta al núcleo del tracto solitario (NTS), y se relacionan íntimamente entre sí y reciben la denominación de baroquimiorreceptores. Últimamente estos órganos se han considerado claves en la regulación de respuestas cardiorrespiratorias homeostáticas que podrían estar íntimamente relacionadas con el desarrollo y el mantenimiento de la hipertensión arterial (HTA). Existe escasa información sobre los cambios estructurales que ocurren en estos órganos durante la HTA y/o como consecuencia de ella. Nuestro planteo es que los baroquimiorreceptores carotídeos representarían un nuevo “órgano blanco” de la HTA. En diversos estudios realizados en seres humanos y en modelos de hipertensión sistólica en animales observamos un daño severo en el CC que se correlacionó significativamente con la elevación de la TA. A su vez, considerando que el sistema renina-angiotensina-aldosterona (SRAA) tendría un papel significativo en la fisiopatología del daño observado, demostramos que el ramipril, versus el atenolol, ejerce un efecto protector sobre el CC más allá de la mera reducción de la TA. Incluso el losartán mostró dicho efecto protector, aun cuando los animales utilizados en los modelos fueron normotensos. Nuestros hallazgos indican que el CC se comporta como un órgano blanco de la HTA y que la activación de un SRAA local sería responsable de los cambios morfológicos y funcionales observados.


The carotid body (CB) is the main peripheral arterial chemoreceptor, able to sense changes in PaO2, PaCO2 and pH, and translate them into nervous signals that regulate ventilating, circulating and endocrine responses which allow adaptation to hypoxemia, acidosis, and hypercapnia. The carotid sinus, located next to the CB, with a baroreceptor function, generates cardiovascular responses that decrease arterial hypertension. Both structures are innervated by the carotid sinus nerve (CSN), which is projected to the solitary tract nucleus (STN), closely inter-related and called barochemoreceptors. Lately, these organs have been considered key in the regulation of homeostatic cardiorespiratory responses that could be intimately related to the development and maintenance of arterial hypertension (AHT). There is scant information on the structural changes that occur in these organs during AHT and/or as its consequence. Our hypothesis is that carotid barochemoreceptors would be a new “target organ” of the AHT. In several studies performed in humans and in models of systolic hypertension in animals we observed a severe damage in the CB which was significantly correlated with elevation of the AT. Hence, considering that the renin-angiotensin-aldosterone system(RAAS) would play a significant role in the pathophysiology of the observed injury, we showed that ramipril versus atenolol has a protective effect on the CB further to the mere decrease of the AT. Even though the animal models used had normal pressure, losartan showed this protective effect. Our findings indicate that the CB behaves as a target organ in AHT and the activation of a local RAAS would be responsible for the morphological and functional changes that were observed.


Asunto(s)
Animales , Antihipertensivos/uso terapéutico , Arterias Carótidas/fisiología , Arterias Carótidas/patología , Células Quimiorreceptoras/fisiología , Presorreceptores/fisiopatología , Atenolol/uso terapéutico , Cuerpo Carotídeo/fisiología , Hipertensión/fisiopatología , Losartán/uso terapéutico , Ramipril/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...