Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(21): e2308554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509868

RESUMEN

Metal hydrides or lithium ion battery electrodes can take the form of interstitial solid solutions with a miscibility gap. This work discusses theory approaches for locating, in temperature-composition space, coherent phase transformations during the charging/discharging of such systems and for identifying the associated transformation mechanisms. The focus is on the simplest scenario, where instabilities derive from the thermodynamics of the bulk phase alone, considering strain energy as the foremost consequence of coherency and admitting for stress relaxation at free surfaces. The extension of the approach to include capillarity is demonstrated by an example. The analysis rests on constrained equilibrium phase diagrams that are informed by geometry- and dimensionality-specific mechanical boundary conditions and on elastic instabilities-again geometry-specific-as implied by the theory of open-system elasticity. It is demonstrated that some scenarios afford the analysis of chemical stability to be based entirely on a linear stability analysis of the mechanical equilibrium, which provides closed-form solutions in a straightforward manner. Attention is on the impact of the system geometry (infinitely extended or of finite size) and on the chemical (closed or open system) and mechanical (incoherent or coherent) boundary conditions. Transformation mechanism maps are suggested for documenting the findings. The maps reveal a hierarchy of instabilities, which depend strongly on each of the above characteristics. Specifically, realistic, finite-sized systems differ qualitatively from idealized systems of infinite extension. Among the transformation mechanisms exposed by the analysis are a uniform switchover to the other phase when the open system reaches its chemical spinodal, practical coherent nucleation, as well as chemo-elastically coupled spontaneous buckling modes, which may take the form of either, single-phase or dual-phase states.

2.
ACS Appl Mater Interfaces ; 16(2): 2417-2427, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38171351

RESUMEN

Natural ores are abundant, cost-effective, and environmentally friendly. Ultrathin (2D) layers of a naturally abundant van der Waals mineral, Biotite, have been prepared in bulk via exfoliation. We report here that this 2D Biotene material has shown extraordinary Li-Na-ion battery anode properties with ultralong cycling stability. Biotene shows 302 and 141 mAh g-1 first cycle-specific charge capacity for Li- and Na-ion battery applications with ∼90% initial Coulombic efficiency. The electrode exhibits significantly extended cycling stability with ∼75% capacity retention after 4000 cycles even at higher current densities (500-2000 mA g-1). Further, density functional theory studies show the possible Li intercalation mechanism between the 2D Biotene layers. Our work brings new directions toward designing the next generation of metal-ion battery anodes.

3.
Small Methods ; 7(10): e2300310, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37452269

RESUMEN

For devices encountering long-term stability challenges, a precise evaluation of degradation is of paramount importance. However, methods for comprehensively elucidating the degradation mechanisms in devices, particularly those undergoing dynamic chemical and mechanical changes during operation, such as batteries, are limited. Here, a method is presented using operando computed tomography combined with X-ray absorption near-edge structure spectroscopy (CT-XANES) that can directly track the evolution of the 3D distribution of the local capacity loss in battery electrodes during (dis)charge cycles, thereby enabling a five-dimensional (the 3D spatial coordinates, time, and chemical state) analysis of the degradation. This paper demonstrates that the method can quantify the spatiotemporal dynamics of the local capacity degradation within an electrode during cycling, which has been truncated by existing bulk techniques, and correlate it with the overall electrode performance degradation. Furthermore, the method demonstrates its capability to uncover the correlation among observed local capacity degradation within electrodes, reaction history during past (dis)charge cycles, and electrode microstructure. The method thus provides critical insights into the identification of degradation factors that are not available through existing methods, and therefore, will contribute to the development of batteries with long-term stability.

4.
Int J Numer Methods Eng ; 123(7): 1513-1546, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35911078

RESUMEN

Fibrous electrodes are a promising alternative to conventional particle-based lithium-ion battery electrodes. In this contribution, we propose an efficient computational approach for the modeling and simulation of electrochemical phenomena taking place in fibrous electrodes during battery charge/discharge processes. Since each fiber is explicitly modeled by means of a dimensionally reduced embedded fiber model, the framework enables simulations in a three-dimensional setting with relatively modest discretization and computational requirements compared to simulations with fully resolved fiber discretizations. The approach is applied to electrodes with high volume fractions of high aspect ratio fibers. Various local and global quantities are analyzed and results are compared to those obtained with the standard finite element method and the pseudo-2D model.

5.
ACS Nano ; 15(12): 19014-19025, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34898165

RESUMEN

Coupled electron/ion transport is a defining characteristic of electrochemical processes, for example, battery charge/discharge. Analytical models that represent the complex transport and electrochemical processes in an electrode in terms of equivalent electrical circuits provide a simple, but successful framework for understanding the kinetics of these coupled transport phenomena. The premise of this review is that the nature of the time-dependent phase transitions in dynamic electrochemical environments serves as an important design parameter, orthogonal to the intrinsic mixed conducting properties of the active materials in battery electrodes. A growing body of literature suggests that such phase transitions can produce divergent extrinsic resistances in a circuit model (e.g., Re, describing electron transport from an active electrode material to the current collector of an electrode, and/or Rion, describing ion transport from a bulk electrolyte to the active material surface). It is found that extrinsic resistances of this type play a determinant role in both the electrochemical performance and long-term stability of most battery electrodes. Additionally, successful suppression of the tendency of extrinsic resistances to accumulate over time is a requirement for practical rechargeable batteries and an important target for rational design. We highlight the need for battery electrode and cell designs, which explicitly address the specific nature of the structural phase transition in active materials, and for advanced fabrication techniques that enable precise manipulations of matter at multiple length scales: (i) meso-to-macroscopic conductive frameworks that provide contiguous electronic/ion pathways; (ii) nanoscale uniform interphases formed on active materials; and (iii) molecular-level structures that promote fast electron and/or ion conduction and mechanical resilience.

6.
Chemosphere ; 275: 130001, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33984902

RESUMEN

Capacitive deionization (CDI) is one of the emerging desalination technologies that attracted much attention in the last years as a low-cost, energy-efficient, and environmentally-friendly alternative to other desalination technologies, such as multi-stage flash desalination (MSF) and multiple effect distillation (MED). The implementation of faradaic electrode materials is a promising method for enhancing CDI systems' performance by achieving higher salt removal characteristics, lower energy consumption, and better ion selectivity. Therefore, a novel CDI technology named Faradaic CDI (FCDI) that implements faradaic electrode materials arose as a high-performance CDI cell design. In this work, the application of FCDI cells in desalination and wastewater treatment systems is reviewed. First, the progress done on using various FCDI systems for saline water desalination is summarized and discussed. Next, the application of FCDI in wastewater treatment applications and selective ion removal is presented. A thorough comparison between FCDI and conventional carbon-based CDI is carried out in terms of working principle, electrode material's cost, salt removal performance, energy consumption, advantages, and disadvantages. Finally, future research consideration regarding FCDI technology is included to drive this technology closer towards practical application.


Asunto(s)
Aguas Residuales , Purificación del Agua , Electrodos , Aguas Salinas , Cloruro de Sodio
7.
J Hazard Mater ; 366: 358-369, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30537653

RESUMEN

Utilization of extracted graphite rods from discharged dry cell batteries for synthesis of graphene oxide / graphene serves two purposes, one is waste management which supports environmental safety and the second is low cost production of graphene oxide / graphene which are highly promising 2D materials in various fields of research. In the present work, a sustainable feasibility for the synthesis of graphene oxide / graphene from graphite rods of waste dry cell batteries is demonstrated. The graphite rods separated from the waste dry cell batteries were subjected to electrochemical exfoliation (ECE) in an acidic media. The graphene oxide (GO) obtained from this method was subjected to reduction heat treatment under argon atmosphere at suitable temperature and time period. Finally, the reduced graphene oxide (rGO) i.e., graphene was characterized using XRD, FTIR, Raman Spectroscopy, TGA, BET, SEM and TEM. The few layer graphene structure is supposed to be less defective in comparison to similar exfoliation techniques due to less oxygen-functional groups associated with the intermediate graphene oxide.

8.
Water Res ; 150: 225-251, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30528919

RESUMEN

Substantial consumption and widespread contamination of the available freshwater resources necessitate a continuing search for sustainable, cost-effective and energy-efficient technologies for reclaiming this valuable life-sustaining liquid. With these key advantages, capacitive deionization (CDI) has emerged as a promising technology for the facile removal of ions or other charged species from aqueous solutions via capacitive effects or Faradaic interactions, and is currently being actively explored for water treatment with particular applications in water desalination and wastewater remediation. Over the past decade, the CDI research field has progressed enormously with a constant spring-up of various cell architectures assembled with either capacitive electrodes or battery electrodes, specifically including flow-by CDI, membrane CDI, flow-through CDI, inverted CDI, flow-electrode CDI, hybrid CDI, desalination battery and cation intercalation desalination. This article presents a timely and comprehensive review on the recent advances of various CDI cell architectures, particularly the flow-by CDI and membrane CDI with their key research activities subdivided into materials, application, operational mode, cell design, Faradaic reactions and theoretical models. Moreover, we discuss the challenges remaining in the understanding and perfection of various CDI cell architectures and put forward the prospects and directions for CDI future development.


Asunto(s)
Purificación del Agua , Electrodos , Iones , Aguas Residuales , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...