Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 795
Filtrar
1.
Environ Sci Pollut Res Int ; 31(32): 44900-44907, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954337

RESUMEN

Seed coating with pesticides is used extensively for the protection of both seeds and plants against pests. In this study, the uptake and transport of seed-coating pesticides (insecticides), including cyantraniliprole (CYN) and thiamethoxam (THX), were investigated. The translocation of these pesticides from the soil to the plant and their accumulation in different plant parts were also calculated. After sowing the seeds with seed coating pesticides, soil and plant samples were taken across the study area. These samples were extracted and analyzed in liquid chromatography with tandem mass spectrometry (LC-MS/MS). CYN and THX were used in maize plants for the first time to observe soil degradation kinetics, and CYN showed a higher half-life than THX in soil. Both pesticides have been taken up by the corn maize plant and transferred and accumulated to the upper parts of the plant. Although the THX concentration was between 2.240 and 0.003 mg/kg in the root, between 3.360 and 0.085 mg/kg in the stem, it was between 0.277 and 3.980 mg/kg in the leaf, whereas CYN was detected at higher concentrations. The concentration of CYN was 1.472 mg/ kg and 0.079 mg/kg in the roots and stems of the maize plant, respectively. However, the bioconcentration factor (BCF) indicates the soil-to-plant accumulation of CYN from 28 to 34.6 and that of 12.5 to 4567.1 for THX on different sampling days. The translocation factor (TFstem) represents the ratio of pesticides absorbed from the stem and transported to the roots. For CYN, TFstem ranges from 3.6 to 20.5, while for THX, it varies between 1.5 and 26.8, indicating a higher translocation rate for THX. The ratio of leaf to root concentration are 3.6 to 20.5 for CYN and 1.8 to 87.7 for THX, demonstrating effective translocation for both pesticides. The TF values for both pesticides are above 1, signifying successful root-to-stem-to-leaf movement. Notably, THX exhibits a notably higher transport rate compared to CYN.


Asunto(s)
Semillas , Tiametoxam , Zea mays , Zea mays/metabolismo , Pirazoles/metabolismo , Contaminantes del Suelo/metabolismo , ortoaminobenzoatos/metabolismo , Plaguicidas/metabolismo , Suelo/química
2.
Plants (Basel) ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38999644

RESUMEN

The aim of this study was to assess the level of contamination of the common dandelion-Taraxacum officinale-with selected metals (Mn, Fe, Ni, Cu, Zn, Cd, and Pb) and to demonstrate that this plant can be used in passive biomonitoring of industrial sites. Two sample transects (the first was near a forest, an area potentially uncontaminated by analytes [A], while the second ran near a steel mill, a contaminated area [B]), each about 1.5 km long, located in Ozimek, Opole Province, Poland, were used in this study. Metals in plant and soil samples were determined by atomic absorption spectroscopy (AAS). Based on the analysis of the obtained results to determine the concentration of metals, plants at site A were more contaminated with Mn (240 mg/kg d.m.) and those at site B with Fe (635 mg/kg d.m.). Mean Pb values (8.39 mg/kg d.m.) were higher at the industrial site (B) and statistically significant at the forest site (A), together with Mn and Fe at the p < 0.001 level. The BCF values for T. officinale showed that Cu (0.473) and Zn (0.785) accumulated to an average degree on both transects. This shows that dandelion is heavily loaded with these metals. Both dandelion and soil samples showed the highest concentrations of Mn, Fe, and Zn, especially in the polluted area B, which is the result of pollution not only from the smelter (dust from electric arc furnaces in steel smelting, extraction installations in production halls transmitting pollutants into the air from molding sand, or waste from molding and core masses dumped on the heap and blown by the wind from the landfill) but also from the high anthropopressure caused by human activity-for example, heating processes or road transport. Our results confirmed that Taraxacum officinale can be successfully used as a herbal plant in passive biomonitoring to assess the quality of the environment, but it must be collected from uncontaminated areas if we want to use it like a medicinal plant.

3.
J Hazard Mater ; 476: 135102, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39003805

RESUMEN

The Liquid Organic Hydrogen Carrier (LOHC) technology offers a technically attractive way for hydrogen storage. If LOHC systems were to fully replace liquid fossil fuels, they would need to be handled at the multi-million tonne scale. To date, LOHC systems on the market based on toluene or benzyltoluene still offer potential for improvements. Thus, it is of great interest to investigate potential LOHCs that promise better performance and environmental/human hazard profiles. In this context, we investigated the acute aquatic toxicity of oxygen-containing LOHC (oxo-LOHC) systems. Toxic Ratio (TR) values of oxo-LOHC compounds classify them baseline toxicants (0.1 < TR < 10). Additionally, the mixture toxicity test conducted with D. magna suggests that the overall toxicity of a benzophenone-based system can be accurately predicted using a concentration addition model. The estimation of bioconcentration factors (BCF) through the use of the membrane-water partition coefficient indicates that oxo-LOHCs are unlikely to be bioaccumulative (BCF < 2000). None of the oxo-LOHC compounds exhibited hormonal disrupting activities at the tested concentration of 2 mg/L in yeast-based reporter gene assays. Therefore, the oxo-LOHC systems seem to pose a low level of hazard and deserve more attention in ongoing studies searching for the best hydrogen storage technologies.

4.
Environ Sci Technol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051472

RESUMEN

Accurate prediction of parameters related to the environmental exposure of chemicals is crucial for the sound management of chemicals. However, the lack of large data sets for training models may result in poor prediction accuracy and robustness. Herein, integrated transfer learning (TL) and multitask learning (MTL) was proposed for constructing a graph neural network (GNN) model (abbreviated as TL-MTL-GNN model) using n-octanol/water partition coefficients as a source domain. The TL-MTL-GNN model was trained to predict three bioaccumulation parameters based on enlarged data sets that cover 2496 compounds with at least one bioaccumulation parameter. Results show that the TL-MTL-GNN model outperformed single-task GNN models with and without the TL, as well as conventional machine learning models trained with molecular descriptors or fingerprints. Applicability domains were characterized by a state-of-the-art structure-activity landscape-based (abbreviated as ADSAL) methodology. The TL-MTL-GNN model coupled with the optimal ADSAL was employed to predict bioaccumulation parameters for around 60,000 chemicals, with more than 13,000 compounds identified as bioaccumulative chemicals. The high predictive accuracy and robustness of the TL-MTL-GNN model demonstrate the feasibility of integrating the TL and MTL strategy in modeling small-sized data sets. The strategy holds significant potential for addressing small data challenges in modeling environmental chemicals.

5.
J Chromatogr A ; 1731: 465195, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39038416

RESUMEN

N,N'-Substituted p-phenylenediamine quinones (PPD-Qs) are the emerging toxicant, which transform from the rubber tire antioxidant N,N'-substituted p-phenylenediamines (PPDs). Because of their potential toxic and widespread occurrence in the environment, PPD-Qs have received great attention. However, efficiently extracting PPD-Qs from complex samples is still a challenge. Herein, a cysteine functional covalent organic framework (Cys-COF) designed according to the "donor-acceptor" sites of hydrogen bonding of PPD-Qs was synthesized via click reaction and then used as solid-phase extraction (SPE) adsorbent. Cys-COF can form the seven-member ring adsorption structure with PPD-Qs via hydrogen bonding. The adsorption mechanism was tentatively revealed by density functional theory (DFT). After optimizing the Cys-COF-SPE parameters, PPD-Qs were efficiently extracted from water, soil, sediment, and fish, followed by detection using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The Cys-COF-SPE-UHPLC-MS/MS method exhibited ideal linearity (R2 ≥ 0.9932), high relative recoveries (80.4-111 %), and low limits of detection (0.0001-0.0013 ng mL-1). In addition, the bioconcentration kinetics in goldfish provides a feasible platform to investigate the toxicity and accumulated ability of PPD-Qs.

6.
Environ Monit Assess ; 196(8): 768, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080074

RESUMEN

This research examined soil contamination and the uptake of potentially toxic elements (PTEs) by maize plants in mining communities. We collected 192 soil samples and 40 maize plant samples from two mining areas and a pristine site. We analyzed the physical properties and element content of the soil, including phosphorus, nitrogen, potassium, Fe, Zn, Co, Pb, Cd, Cr, and Ni. We also measured the elemental concentrations in the maize plants. The study found higher levels of Zn, Cu, and Pb at the mining sites compared to the control areas. The pollution factor (CF) indicated pollution with Cu > Pb > and > Zn at both mine sites. The pollution index (PLI) showed no pollution in the Nkalagu mine and control sites, but heavy and moderate pollution at the Ameka mine and control sites, respectively. The Ameka mine site was enriched with Zn. The bioaccumulation coefficient (BAC) was < 1 except for Zn at the Nkalagu mine and control site. The transfer factor for Fe and Zn from root to shoot was > 1. Pb was > 1 in all study areas except the Ameka mining areas. The results suggest remediation is needed for the two mine sites, especially at Ameka.


Asunto(s)
Monitoreo del Ambiente , Plomo , Minería , Contaminantes del Suelo , Zea mays , Zinc , Contaminantes del Suelo/análisis , Nigeria , Zinc/análisis , Plomo/análisis , Carbonato de Calcio , Suelo/química , Metales Pesados/análisis
7.
Biol Trace Elem Res ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066964

RESUMEN

The fruiting body of Neoboletus luridiformis (Scarletina bolete) mushroom was used to determine the level of bioconcentration and subsequent distribution of seventeen elements (Ag, Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Sr, and Zn). A two-centimeter-thick vertical section of the entire fruit body was divided into 101 partial sub-samples where the contents of the studied elements were determined using ICP OES. The actual distribution of the elements in the fruiting body profile was visualized using a GIS interpolation method resulting in distribution maps. The study provides valuable insights into the distribution patterns of 17 elements within the fruiting body of N. luridiformis. Based on the visualization of the elemental content, the determined elements can be divided into three categories. Elements accumulated primarily (i) in the cap (Al, Ag, Ca, Cd, Cu, Fe, K, Mg, Ni, and Zn), (ii) in the stipe (Ba, Mn, Na, Pb, and Se), and (iii) elements with non-specific distribution (Cr and Sr). Since such detailed information supported by graphical visualization has not been published to date, the information in this study will help to better understand the accumulation and distribution of elements within the fruiting bodies of wild as well as cultivated mushroom species.

8.
J Hazard Mater ; 477: 135201, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39068891

RESUMEN

Field research on phthalate monoesters (MPEs) and their relationships with phthalate esters (PAEs) is limited, especially in wild fishes. Here, PAEs and MPEs were measured in surface water, sediment, and wild fish collected from a representative river basin with high economic development. Several metabolites of emerging plasticizers, such as mono(3,5,5-trimethyl-1-hexyl) phthalate and mono(6-oxo-2-propylheptyl) phthalate, have already existed in fish with high detection frequencies (95 % and 100 %). Monobutyl phthalate and mono(2-ethylhexyl) phthalate were the predominant MPEs in fish and natural environment (surface water and sediment), while bis(2-ethylhexyl) phthalate was the most abundant PAEs in all matrices. The total concentrations (median) of 9 PAEs and 16 MPEs were 5980 and 266 ng/L in water, 231 and 10.6 ng/g (dw) in sediment, and 209 and 32.5 ng/g (ww) in fish, respectively. The occurrence of MPEs was highly related to their parent PAEs, with similar spatial distribution characteristics in the aquatic environments. Moreover, municipal wastewater discharge was recognized as the main source of MPEs in the research area. Fish species can accumulate targeted chemicals, and it seems more MPEs were from the PAE degradation in fish other than the direct uptake of MPEs in water. Parent PAEs showed higher ecological risk than their corresponding metabolites.

9.
Environ Res ; 258: 119412, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876418

RESUMEN

Human activities have changed the natural rates at which metals are moved and accumulated in both land and water environments, resulting in negative impacts on local wildlife. In this study, concentrations of Cr, Ni, Cd, Pb, Cu, Mn, Co, and Zn were evaluated in water and riverbed sediment samples collected from the Verde River basin (VR), as well as in tissue samples from five native Loricariidae species. Sediment samples collected from the central section of the VR riverbed indicated the presence of metal concentrations, which were primarily attributed to scattered pollution sources linked to rural activities in the surrounding areas. The bioconcentration factor in the Loricariids liver presented the highest average values for Zn (1.27-58.21), Co (0.48-14.91) and Cu (1.15-11.14). The same pattern was observed in the muscle, but in a lower proportion. Regarding the bioaccumulation factor, Co (1.54-34.84), Cu (5.85-25.22) and Zn (0.64-18.08) attained the highest average values in the liver. The co-inertia analysis examined the spatial distribution of metal concentrations in riverbed sediments and in tissues of Loricariids from the upper, middle, and lower stretches of the river, including the river mouth. The analysis revealed varying patterns, with samples from some regions showing higher bioaccumulation levels. This suggests that riverbed sediments are a primary source of metal contamination in Loricariids from these areas. The pollution has had a significant impact on the bioaccumulation of metals in the VR' Loricariids, which are good indicators of sediment-associated metal bioaccumulation. The metal concentrations recorded in both the riverbed sediments and Loricariids surpassed international and Brazilian limits set for aquatic health and safe human consumption. Given the importance of the Verde River in terms of its ecological, social, cultural, and economic roles, it is essential to implement biomonitoring and control measures to safeguard both terrestrial and aquatic resources.

10.
Environ Pollut ; 356: 124358, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871168

RESUMEN

Metal(loid) bioaccumulation in acanthocephalans (Dentitruncus truttae) and intestines of fish (Salmo trutta) from the Krka River, influenced by industrial and municipal wastewaters, was investigated in relation to exposure to metal(loid)s from fish gut content (GC), water, and sediment to estimate potentially available metal (loid)s responsible for toxic effects and cellular disturbances in biota. Sampling was performed in two seasons (spring and autumn) at the reference site (river source, KRS), downstream of the wastewater outlets (Town of Knin, KRK), and in the national park (KNP). Metal(loid) concentrations were measured by ICP-MS. The highest accumulation of As, Ba, Ca, Cu, Fe, Pb, Se and Zn was observed mainly in organisms from KRK, of Cd, Cs, Rb and Tl at KRS, and of Hg, Mn, Mo, Sr and V at KNP. Acanthocephalans showed significantly higher bioaccumulation than fish intestine, especially of toxic metals (Pb, Cd and Tl). Metal(loid) bioaccumulation in organisms partially coincided to exposure from water, sediments and food, while in GC almost all elements were elevated at KNP, reflecting the metal(loid) exposure from sediments. Seasonal differences in organisms and GC indicated higher metal (loid) accumulation in spring, which follows enhanced fish feeding rates. Higher number of acanthocephalans in the intestine influenced biodilution process and lower concentrations of metal(loid)s in fish, indicating positive effects of parasites to their host, as supported by high values of bioconcentration factors. Fish intestine and acanthocephalan D. truttae were confirmed as sensitive indicators of available metal fraction in conditions of generally low environmental exposure in karst ecosystem. Since metal(loid) accumulation depended on ecological, chemical and biological conditions, but also on the dietary habits, physiology of organisms and parasite infection, continuous monitoring is recommended to distinguish between the effects of these factors and environmental exposure when assessing dietary associated metal(loid) exposure in aquatic organisms.

11.
Plant Physiol Biochem ; 214: 108846, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38945095

RESUMEN

Eco-friendly and sustainable practices must be followed while using the right plants and microbes to remove harmful heavy metals from the soil. The goal of the current study was to ascertain how effectively sorghum plants removed cadmium (Cd) from the soil using polyamines and mycorrhiza. Plant-biochemicals such as free amino acids, ascorbic acids, anthocyanin, proline, and catalase, APX, peroxidase activities were considered as markers in this study which revealed the adverse plant growth performance under 70 and 150 ppm of Cd concentration (w/w) after 30,60, and 90 days of treatment. The plants showed a mitigating effect against high Cd-concentration with exogenous use of mycorrhiza and putrescine. The treatment T17 (mycorrhiza +5 mM putrescine) showed a substantial decrease in the content of total free amino acid, ascorbic acid, catalase, APX, peroxidase by 228.36%, 39.79%, 59.06%, 182.79% 106.97%, respectively after 90 days as compared to T12 (150 ppm Cd). Anthocyanin content was negatively correlated (-0.503, -0.556, and -0.613) at p < 0.01 with other studied markers, with an increase by 10.52% in T17 treated plant as compared to T12. The concentration of Cd in root increased by 49.6% (141 ppm) and decreased in the shoot by 71% (17.8 ppm) in T17 treated plant as compared to T12 after 90 days. The application of mycorrhiza and putrescine significantly increased BCF (>1) and decreased TF (<1) for Cd translocation. The administration of mycorrhiza and putrescine boosted the Cd removal efficiency of sorghum plants, according to FTIR, XRD, and DSC analysis. As a result, this study demonstrates novel approaches for induced phytoremediation activity of plants via mycorrhiza and putrescine augmentation, which can be a promising option for efficient bioremediation in contaminated sites.

12.
Sci Total Environ ; 946: 174274, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38942320

RESUMEN

Limited attention has been given to the interaction between antibiotics and arsenic in the soil-plant system. In this investigation, Medicago sativa seedlings were grown in soil treated with cow manure containing oxytetracycline (OTC) or sulfadiazine (SD), as well as arsenic (introduced through roxarsone, referred to as ROX treatment). The study revealed a notable increase in As(III) and dimethylarsinic acid (DMA(V)) levels in rhizosphere soils and plant root tissues as arsenic contamination intensified in the presence of antibiotics, while concentrations of As(V) and monomethylarsonic acid (MMA(V)) decreased. Conversely, elevated antibiotic presence resulted in higher levels of As(V) but reduced DMA concentrations in both rhizosphere soils and plant root tissues in the presence of arsenic. The arsenic biotransformation gene aioA was inhibited by arsenic contamination when antibiotics were present, and suppressed by antibiotic contamination in the presence of arsenic, especially in SD treatments, resulting in reduced expression levels at higher SD concentrations. Conversely, the arsM gene exhibited consistent upregulation under all conditions. However, its expression was found to increase with higher concentrations of ROX in the presence of antibiotics, decrease with increasing SD concentrations, and initially rise before declining with higher levels of OTC in the presence of arsenic. Bacterial genera within the Proteobacteria phylum, such as Geobacter, Lusitaniella, Mesorhizobium, and Methylovirgula, showed significant co-occurrence with both aioA and arsM genes. Correlation analysis demonstrated associations between the four arsenic species and the two arsenic biotransformation genes, emphasizing pH as a critical factor influencing the transformation and uptake of different arsenic species in the soil-plant system. The combined stress of antibiotics and arsenic has the potential to modify arsenic behavior and associated risks in soil-plant systems, highlighting the necessity of considering this interaction in future research endeavors.


Asunto(s)
Antibacterianos , Arsénico , Estiércol , Medicago sativa , Roxarsona , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Arsénico/análisis , Suelo/química , Rizosfera
13.
J Environ Sci Health B ; 59(8): 483-496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38853697

RESUMEN

Selected wild-growing edible fungi (Boletus edulis, Neoboletus luridiformis, Cantharellus cibarius, Macrolepiota procera, Amanita rubescens, Russula virescens, Lycoperdon perlatum, and Flammulina velutipes) along with the poisonous medicinal species Amanita muscaria were collected from five sites in the Bohemian Forest, the Czech Republic and analyzed regarding the contents of 19 elements (Ag, Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Pb, Rb, Se, Tl, and Zn) in their fruiting bodies. The contents of the elements as well as bioconcentration factors (ratios of the element content in dry matter of the mushroom to the content in the soil; BCF) were significantly species dependent. In general, the analysis revealed the most intensive accumulation of Cd, Rb, Ag, Cu, Se, and Zn in the studied mushrooms. B. edulis accumulated Ag, Se, Cd, Rb, Cu, and Zn with average BCF of 31, 25, 18, 13, 3.9, and 2.6, respectively. On the other hand, A. rubescens accumulated Cd, Rb, Ag, Cu, Zn, and As (BCF of 41, 27, 4.8, 3.3, 2.1, and 1.4). The data concerning the detrimental elements in sporocarps of edible mushrooms indicate no negative effect on human health if the fungi are consumed occasionally or as a delicacy.


Asunto(s)
Agaricales , Bosques , Cuerpos Fructíferos de los Hongos , República Checa , Cuerpos Fructíferos de los Hongos/metabolismo , Cuerpos Fructíferos de los Hongos/química , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Agaricales/metabolismo , Agaricales/química , Oligoelementos/análisis , Oligoelementos/metabolismo , Monitoreo del Ambiente
14.
Regul Toxicol Pharmacol ; 151: 105651, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825065

RESUMEN

In the European Medicines Agency (EMA) "Guideline for Environmental Risk Assessment of Medicinal Products for Human Use," a fish bioconcentration factor (BCF) study is triggered in Phase I for pharmaceuticals having log Kow >4.5, to support Persistence, Bioaccumulation and Toxicity (PBT) screening, and in Phase II to assess secondary poisoning and bioaccumulation ('B') potential when log Kow ≥3. The standard sampling schedule outlined in OECD Test Guideline 305 (TG305) may require assessment of approximately 200 fish following exposure to low- and high-test concentrations and a negative control. We report experimental log Kow and BCF values for 64 human pharmaceuticals that were used to evaluate the current BCF testing trigger of log Kow ≥3, and whether a single BCF exposure concentration allows accurate classification of bioaccumulation potential. Our data support raising the BCF testing trigger to log Kow ≥4, and use of a single test concentration. The resulting reduction in the use of fish is consistent with the 3 R s principle and did not adversely affect classification accuracy. An assessment of potential risk of secondary poisoning was also conducted for three drugs classified as either B or vB, and no risks were identified.


Asunto(s)
Peces , Contaminantes Químicos del Agua , Animales , Humanos , Medición de Riesgo , Preparaciones Farmacéuticas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Bioacumulación
15.
Chemosphere ; 360: 142405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782134

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) with the properties of structural stability, semi-volatility, and hydrophobicity are toxic and persistent in environments; thus, their transport and fate in agroecosystems is essential for reducing PAH accumulation in the edible parts of crops. Here, we cultivated cabbages (Brassica pekinensis L.) and carrots (Daucus carota L.) in PAH-contaminated soils under the greenhouse and field conditions. After harvesting, we observed a 9.5-46% reduction in soil ∑PAH concentrations. There were 37% of bioconcentration factors (BCFbs) > 1 and 93% of translocation factors (TFab) > 1, while low-molecular-weight (LMW) PAHs had higher BCFbs than high-molecular-weight (HMW) PAHs. The PAH concentrations showed significant and positive correlations among soils, the belowground parts, and the aboveground parts. The toxicity equivalent concentration (TEQBaP) followed the order of cabbage (greenhouse) > cabbage (field) > carrot (greenhouse) > carrot (field), suggesting potentially higher health risks in cabbage relative to carrot and vegetables under the greenhouse relative to field condition. Our study suggested growing carrots under field conditions as a management strategy for reducing the risks of vegetables grown in PAH-contaminated soils.


Asunto(s)
Brassica , Daucus carota , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Daucus carota/química , Daucus carota/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Brassica/química , Brassica/metabolismo , Suelo/química , Monitoreo del Ambiente , Verduras/química , Verduras/metabolismo
16.
Front Plant Sci ; 15: 1392904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766469

RESUMEN

Mercury (Hg), as a global pollutant, is persistent, migratory, insidious, highly biotoxic and highly enriched, and is widely distributed in the atmosphere, hydrosphere, biosphere and lithosphere. Wetland ecosystems, as active mercury reservoirs, have become the most important sources and sinks of heavy metal mercury. Distinguished from natural wetlands, artificial wetlands located in urban sections of rivers face problems such as diverse urban pollution sources and complex spatial and temporal changes. Therefore, in this study, five intermittently distributed artificial wetlands were selected from the upstream to the downstream of the Changchun section of the Yitong River, a tributary of the Songhua River basin in the old industrial base of Northeast China. The mercury levels in the water bodies, sediments and plants of the artificial wetlands were collected and tested in four quarters from April 2023 to analyse the spatial and temporal distribution characteristics of total mercury. The results showed that the mercury levels in the water bodies, sediments and plants of the five wetlands showed a fluctuating trend with the river flow direction and had certain spatial and temporal distribution characteristics. This phenomenon was attributed to the sinking of external mercury pollution sources. In general, the wetland ecosystems showed a decreasing trend in the total Hg output of the downstream watershed. This may be due to the retention of particulate matter by aquatic plants in artificial wetlands to regular salvage of dead aquatic plants. At the same time urbanization and industrialization affect mercury levels in aquatic environments, so the risk of residential exposure needs to be looked at.

17.
Sci Total Environ ; 935: 173358, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768727

RESUMEN

The presence of contaminants of emerging concern in aquatic ecosystems represents an ever-increasing environmental problem. Aquatic biota is exposed to these contaminants, which can be absorbed and distributed to their organs. This study focused on the assessment, distribution, and ecological risk of 32 CECs in a Spanish river impacted by effluents from a wastewater treatment plant, analyzing the organs and plasma of common carp. Environmental concentrations in water and sediment were examined at sites upstream and downstream of the wastewater treatment plant. The two downstream sites showed 15 times higher total concentrations (12.4 µg L-1 and 30.1 µg L-1) than the two upstream sites (2.08 µg L-1 and 1.66 µg L-1). Half of the CECs were detected in fish organs, with amantadine having the highest concentrations in the kidney (158 ng g-1 w.w.) and liver (93 ng g-1 w.w.), followed by terbutryn, diazepam, and bisphenol F in the brain (50.2, 3.82 and 1.18 ng g-1 w.w.). The experimental bioaccumulation factors per organ were compared with the bioconcentration factors predicted by a physiologically based pharmacokinetic model, obtaining differences of one to two logarithmic units for most compounds. Risk quotients indicated a low risk for 38 % of the contaminants. However, caffeine and terbutryn showed an elevated risk for fish. The mixed risk quotient revealed a medium risk for most of the samples in the three environmental compartments: surface water, sediment, and fish.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Animales , Sedimentos Geológicos/química , Medición de Riesgo , Carpas , Ríos/química , España , Peces
18.
Sci Total Environ ; 937: 173481, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38795983

RESUMEN

Various bisphenols (BPs) have been frequently detected in the aquatic environment and coexist in the form of mixtures with potential huge risks. As we all know, food chain is a media by which BPs mixtures and their mixtures probably enter the organisms at different trophic levels due to their environmental persistence. As a result, the concentrations of BPs and their mixtures may continuously magnify to varying degrees, which can produce higher risks to different levels of organisms, and even human health. However, the related researches about mixtures are few due to the complexity of mixtures. So, the ternary BP mixtures were designed by the uniform design ray method using bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) to investigate their food chain effects including bioconcentration and biomagnification. Here, Chlorella pyrenoidosa (C. pyrenoidosa) and Daphnia magna (D. magna) were selected to construct a food chain. The toxic effects of single BPs and their mixtures were also systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. Toxicity interaction within the ternary mixture was analyzed by the concentration addition model (CA) and the deviation from the CA model (dCA). The results show that the C. pyrenoidosa and D. magna had obvious bioconcentration and biomagnification effects on BPs and their mixture. The mixture had the potential to enrich at higher nutrient levels. And BPF had the largest bioconcentration effect (BCF1 = 481.86, BCF2 = 772.02) and biomagnification effect (BMF = 1.6). Three BPs were toxic to C. pyrenoidosa by destroying algal cells and decreasing protein and chlorophyll contents, and their toxicity order was BPF > BPA > BPS. Moreover, their ternary mixture exhibits synergism with time/concentration-dependency. The obtained results are of significant reference value for objectively and accurately assessing the ecological and environmental risks of bisphenol pollutants.


Asunto(s)
Compuestos de Bencidrilo , Daphnia , Cadena Alimentaria , Fenoles , Sulfonas , Contaminantes Químicos del Agua , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Contaminantes Químicos del Agua/análisis , Animales , Sulfonas/toxicidad , Chlorella/metabolismo , Pruebas de Toxicidad
19.
Mar Environ Res ; 198: 106547, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739970

RESUMEN

Micro/nanoplastics in aquatic environments is a noteworthy environmental problem. Zooplankton, an important biological group in aquatic ecosystems, readily absorb micro/nanoplastics and produce a range of toxic endpoints due to their small size. This review summarises relevant studies on the effects of micro/nanoplastics on zooplankton, including combined effects with conventional pollutants. Frequently reported adverse effects include acute/chronic lethal effects, oxidative stress, gene expression, energetic homeostasis, and growth and reproduction. Obstruction by plastic entanglement and blockage is the physical mechanism. Genotoxicity and cytotoxicity are molecular mechanisms. Properties of micro/nanoplastics, octanol/water partition coefficients of conventional pollutants, species and intestinal environments are important factors influencing single and combined toxicity. Selecting a wider range of micro/nanoplastics, focusing on the aging process and conducting field studies, adopting diversified zooplankton models, and further advancing the study of mechanisms are the outstanding prospects for deeper understanding of impacts of micro/nanoplastics on aquatic ecosystem.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Zooplancton , Zooplancton/efectos de los fármacos , Animales , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Monitoreo del Ambiente , Ecosistema , Estrés Oxidativo/efectos de los fármacos
20.
Mar Pollut Bull ; 203: 116402, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701601

RESUMEN

The progressive establishment of gas platforms and increasing petroleum accidents pose a threat to zooplankton communities and thus to pelagic ecosystems. This study is the first to compare the impacts of gas-condensate and crude oil on copepod assemblages. We conducted microcosm experiments simulating slick scenarios at five different concentrations of gas-condensate and crude oil to determine and compare their lethal effects and the bioconcentration of low molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs) in eastern Mediterranean coastal copepod assemblages. We found that gas-condensate had a two-times higher toxic effect than crude oil, significantly reducing copepod survival with increased exposure levels. The LMW-PAHs bioconcentration factor was 1-2 orders of magnitude higher in copepods exposed to gas-condensate than in those exposed to crude oil. The median lethal concentration (LC50) was significantly lower in calanoids vs. cyclopoid copepods, suggesting that calanoids are more susceptible to gas-condensate and crude oil pollution, with potential trophic implications.


Asunto(s)
Copépodos , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Copépodos/efectos de los fármacos , Copépodos/fisiología , Animales , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminación por Petróleo , Monitoreo del Ambiente , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...