Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.033
Filtrar
1.
Bioresour Technol ; 407: 131093, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986888

RESUMEN

Hydrothermal liquefaction (HTL) is a promising method for municipal sludge valorization through waste minimization and biofuel production. The process wastewater, HTL aqueous, presents a significant challenge for scale-up due to recalcitrant compounds. In this study, granular activated carbon (GAC) was used to remove potential inhibitors from HTL aqueous through adsorption to enhance aerobic and anaerobic biological treatment. GAC removed up to 61 % chemical oxygen demand (COD), 50 % biochemical oxygen demand (BOD) and potential inhibitors, such as total phenolic compounds (87 %) and N-heterocycles (90 % of pyridines) at 100 g/L. Conversely, most volatile fatty acids remained in HTL aqueous. Subsequently, mesophilic and thermophilic specific methane potential increased by up to 97 % and 83 %, respectively. BOD increased by up to 50 %, which enhanced BOD/COD ratio from 81 % to 93 % before and after adsorption. This study established the groundwork for HTL aqueous adsorption, described mechanism for pollutant removal, and provided insights for biological treatment.

2.
Water Res ; 261: 122068, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39003879

RESUMEN

Electrochemical advanced oxidation processes (EAOPs) have shown great promise for treating industrial wastewater contaminated with phenolic compounds. However, the presence of chloride in the wastewater leads to the production of undesirable chlorinated organic and inorganic byproducts, limiting the application of EAOPs. To address this challenge, we investigated the potential of incorporating Fe(II) and Fe(III) into the EAOPs with a boron-doped diamond (BDD) anode under near-neutral conditions. Our findings revealed that both Fe(II) and Fe(III) facilitated the generation of high-valent iron-oxo species (Fe(IV) and Fe(V)) in the anodic compartment, thereby reducing the oxidation contribution of reactive chlorine species. Remarkably, the addition of 1000 µM Fe(II) under high chloride conditions resulted in over a 2.8-fold increase in the oxidation rate of 50 µM phenolic contaminants at pH 6.5. Furthermore, 1000 µM Fe(II) contributed to a reduction of more than 66% in the formation of chlorinated byproducts, consequently enhancing the biodegradability of the treated water. Additionally, transitioning from batch mode to continuous flow mode further amplified the positive effects of Fe(II) on the EAOPs. Overall, this study presents a modified electrochemical approach that simultaneously enhanced the degradation of phenolic contaminants and improved the biodegradability of wastewater with high chloride concentrations.

3.
Heliyon ; 10(12): e32131, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988522

RESUMEN

In this work, a set of eight technical lignin samples from various botanical origins and production processes were characterized for their chemical composition, higher heating value, size distribution, dust explosion sensitivity and severity, thermal hazard characteristics and biodegradability, in further support of their sustainable use. More specifically, safety-focused parameters have been assessed in terms of consistency with relating physico-chemical properties determined for the whole set of technical lignins. The results emphasized the heterogeneity and variability of technical lignins and the subsequent need for a comprehensive characterization of new lignin feedstocks arising from novel biorefineries. Indeed, significant differences were revealed between the samples in terms of hazards sensitivity. This first comparative physico-chemical safety profiling of technical lignins could be useful for the hazard analysis and the safe design of the facilities associated with large scale valorisation of biomass residues such as lignins, targeting "zero waste" sustainable conversion of bioresources.

4.
Sci Total Environ ; 948: 174779, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009161

RESUMEN

Replete with ammonia nitrogen and organic pollutants, landfill leachate typically undergoes treatment employing expensive and carbon-intensive integrated techniques. We propose a novel microalgae technology for efficient, low-carbon simultaneous treatment of carbon, nitrogen, and phosphorus in landfill leachate (LL). The microbial composition comprises a mixed microalgae culture with Chlorella accounting for 82.58%. After seven days, the process with an N/P ratio of approximately 14:1 removed 98.81% of NH4+-N, 88.62 % of TN, and 99.55% of TP. Notably, the concentrations of NH4+-N and TP met the discharge standards, while the removal rate of NH4+-N was nearly three times higher than previously reported in relevant studies. The microalgae achieved a removal efficiency of 64.27% for Total Organic Carbon (TOC) and 99.26% for Inorganic Carbon (IC) under mixotrophic cultivation, yielding a biomass of 1.18 g/L. The treatment process employed in this study results in a carbon emissions equivalent of -8.25 kgCO2/kgNremoved, representing a reduction of 33.56 kgCO2 compared to the 2AO + MBR process. In addition, shake flask experiments were conducted to evaluate the biodegradability of leachate after microalgae treatment. After microalgae treatment, the TOCB (Biodegradable Total Organic Carbon)/TOC ratio decreased from 56.54% to 27.71%, with no significant improvement in biodegradability. It establishes a fundamental foundation for further applied research in microalgae treatment of leachate.

5.
Microb Cell Fact ; 23(1): 199, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026314

RESUMEN

BACKGROUND: The demand for bioplastics has increased exponentially as they have emerged as alternatives to petrochemical plastics. However, there is a substantial lack of knowledge regarding bioplastic degradation. This study developed a novel pretreatment method to improve the accessibility of a bioplastic substrate for biodegradation. In this study, cellulose acetate, a bioplastic found in the world's most littered waste, e.g. cigarette filters, was selected as a potential substrate. Before anaerobic digestion, three thermal alkaline pretreatments: TA 30 °C, TA 90 °C, and TA 121 °C, were used to evaluate their effects on the chemical alterations of cellulose acetate. RESULT: The ester groups in cellulose acetate were significantly reduced by the TA 30 °C pretreatment, as seen by a decrease in C = O stretching vibrations and shortening of C - O stretches (1,270 ∼ 1,210 cm- 1), indicating effective removal of acetyl groups. This pretreatment significantly enhanced cellulose acetate biodegradability to a maximum of 91%, surpassing the previously reported cellulose acetate degradation. Methane production increased to 695.0 ± 4 mL/g of volatile solid after TA 30 °C pretreatment, indicating enhanced cellulose acetate accessibility to microorganisms, which resulted in superior biogas production compared to the control (306.0 ± 10 mL/g of volatile solid). Diverse microbes in the anaerobic digestion system included hydrolytic (AB240379_g, Acetomicrobium, FN436103_g, etc.), fermentative, and volatile fatty acids degrading bacteria (JF417922_g, AB274492_g, Coprothermobacter, etc.), with Methanobacterium and Methanothermobacter being the sole hydrogenotrophic methanogens in the anaerobic digestion system. Additionally, an attempt to predict the pathway for the effective degradation of cellulose acetate from the microbial community in different pretreatment conditions. CONCLUSIONS: To the best of our knowledge, this is the first study to estimate the maximum cellulose acetate degradation rate, with a simple and cost-effective pretreatment procedure. This approach holds promise for mitigating the environmental impact of cellulose acetate of cigarette filters and presents a sustainable and economically viable waste management strategy.


Asunto(s)
Biodegradación Ambiental , Celulosa , Celulosa/metabolismo , Celulosa/análogos & derivados , Metano/metabolismo , Anaerobiosis , Biocombustibles , Productos de Tabaco , Bacterias/metabolismo , Temperatura , Filtración
6.
Small ; : e2404566, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963158

RESUMEN

Optoelectronic synapses have gained increasing attentions as a fundamental building block in the development of neuromorphic visual systems. However, it remains a challenge to integrate multiple functions into a single optoelectronic synapse that can be widely applied in wearable artificial intelligence and implantable neuromorphic vision systems. In this study, a stretchable optoelectronic synapse based on biodegradable ionic gelatin heterojunction is successfully developed. This device exhibits self-powered synaptic plasticity behavior with broad spectral response and excellent elastic properties, yet it degrades rapidly upon disposal. After complete cleavage, the device can be fully repaired within 1 min, which is mainly attributed to the non-covalent interactions between different molecular chains. Moreover, the recovery and reprocessing of the ionic gelatins result in optoelectronic properties that are virtually indistinguishable from their original state, showcasing the resilience and durability of ionic gelatins. The combination of biodegradability, stretchability, self-healing, zero-power consumption, ease of large-scale preparation, and low cost makes the work a major step forward in the development of biodegradable and stretchable optoelectronic synapses.

7.
Environ Sci Pollut Res Int ; 31(35): 47836-47850, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007977

RESUMEN

This current study explored the effect of pyrite on the treatment of chlorophenolic compounds (CP) by Fenton process with micron-sized zero-valent iron (ZVI) as the catalyst. The experiments were conducted in batch reactors with 100 mg L-1 CP, 0-0.02 M H2O2, and variable pyrite and ZVI doses (0-1 g L-1). Our findings show that while the reactor with 1 g L-1 ZVI as the only catalyst achieved only 10% CP removal efficiency due to rapid ZVI surface passivation and ZVI particle aggregation, the CP removal efficiency increased with increasing pyrite dose and reached 100% within couple of minutes in reactors with 0.8 g L-1 pyrite and 0.2 g L-1 ZVI. The CP removal was mainly driven by the oxidative treatment of CPs with some strong radicals such as hydroxyl radicals (•OH) while the adsorption onto the catalyst surface was only responsible for 10 to 25% of CP removals, depending on the type of CP studied. The positive impact of pyrite on CP removal by the ZVI/H2O2 system could be attributed to the ability of pyrite to (1) create an acidic environment for optimum Fenton process, (2) provide support material for ZVI to minimize ZVI particle agglomeration, and (3) stimulate iron redox cycling for improved surface site generation. Following oxidative Fenton treatment, the degradation intermediate products of CPs, including some aromatic compounds (benzoquinone, hydroquinone, etc.) and organic acids (e.g., acetic acid), became more biodegradable in comparison to their mother compounds. Overall, the treatment systems with a mixture of ZVI and pyrite as catalyst materials could offer a suitable cost-effective technology for the treatment of wastewater containing biologically non- or low-degradable toxic compounds such as chlorophenols.


Asunto(s)
Clorofenoles , Peróxido de Hidrógeno , Hierro , Hierro/química , Peróxido de Hidrógeno/química , Clorofenoles/química , Concentración de Iones de Hidrógeno , Sulfuros/química , Catálisis , Biodegradación Ambiental , Contaminantes Químicos del Agua/química , Oxidación-Reducción
8.
Environ Res ; 261: 119684, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067802

RESUMEN

Dye industry plays an essential role in industrial development, contributing significantly to economic growth and progress. However, its rapid expansion has led to significant environmental concerns, especially water pollution and ecosystem degradation due to the discharge of untreated or inadequately treated dye effluents. The effluents introduce various harmful chemicals altering water quality, depleting oxygen levels, harming aquatic organisms, and disrupting food chains. Dye contamination can also persist in the environment for extended periods, leading to long-term ecological damage and threatening biodiversity. Therefore, the complex effects of dye pollutants on aquatic ecosystems have been comprehensively studied. Recently, zebrafish (Danio rerio) has proved to be an effective biomedical model for this study due to its transparent embryos allowing real-time observation of developmental processes and genetic proximity (approx. 87%) to humans for studying diverse biological responses. This review highlights the various toxicological effects of industrial dyes, including cardiovascular toxicity, neurotoxicity, genotoxicity, hepatotoxicity, and developmental toxicity. These effects have been observed at different developmental stages and dye concentrations in zebrafish. The review underscores that the structure, stability and chemical composition of dyes significantly influence toxicological impact, emphasizing the need for detailed investigation into dye degradation to better understand and mitigate the environmental and health risks posed by dye pollutants.

9.
Molecules ; 29(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893402

RESUMEN

The use of vegetable oil-dervied plasticizers to enhance the flexibility of polylactic acid (PLA) has received much attention due to their renewability, inexpensiveness and biodegradation. However, the double bonds in vegetable oil-based plasticizers limit their compatibility with PLA, resulting in PLA-derived products with reduced flexibility. Herein, we examined soybean oil-derived hydrogenated dimer acid-based polyethylene glycol methyl ether esters (HDA-2n, 2n = 2, 4, 6 or 8, referring to the ethoxy units) developed via the direct esterification of saturated hydrogenated dimer acid and polyethylene glycol monomethyl ethers. The resulting HDA-2n was first used as a plasticizer for PLA, and the effects of the ethoxy units in HDA-2n on the overall performance of the plasticized PLA were systematically investigated. The results showed that, compared with PLA blended with dioctyl terephthalate (DOTP), the PLA plasticized by HDA-8 with the maximum number of ethoxy units (PLA/HDA-8) exhibited better low-temperature resistance (40.1 °C vs. 15.3 °C), thermal stability (246.8 °C vs. 327.6 °C) and gas barrier properties. Additionally, the biodegradation results showed that HDA-8 could be biodegraded by directly burying it in soil. All results suggest that HDA-8 could be used as green alternative to the traditional petroleum-based plasticizer DOTP, which is applied in the PLA industry.

10.
J Hazard Mater ; 474: 134819, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850940

RESUMEN

Developing superior-performance marine-biodegradable plastics remains a critical challenge in mitigating marine plastic pollution. Commercially available biodegradable polymers, such as poly(L-lactide) (PLA), undergo slow degradation in complex marine environments. This study introduces an innovative bioplastic design that employs a facile ring-opening and coupling reaction to incorporate hydrophilic polyethylene glycol (PEG) into PLA, yielding PEG-PLA copolymers with either sequence-controlled alternating or random structures. These materials exhibit exceptional toughness in both wet and dry states, with an elongation at break of 1446.8% in the wet state. Specifically, PEG4kPLA2k copolymer biodegraded rapidly in proteinase K enzymatic solutions and had a significant weight loss of 71.5% after 28 d in seawater. The degradation primarily affects the PLA segments within the PEG-PLA copolymer, as evidenced by structural changes confirmed through comprehensive characterization techniques. The seawater biodegradability, in line with the Organization for Economic Cooperation and Development 306 Marine biodegradation test guideline, reached 72.63%, verified by quantitative biochemical oxygen demand analysis, demonstrating rapid chain scission in marine environments. The capacity of PEG-PLA bioplastic to withstand DI water and rapidly biodegrade in seawater makes it a promising candidate for preventing marine plastic pollution.


Asunto(s)
Biodegradación Ambiental , Poliésteres , Polietilenglicoles , Agua de Mar , Agua de Mar/microbiología , Poliésteres/química , Poliésteres/metabolismo , Polietilenglicoles/química , Plásticos Biodegradables/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
11.
Chemosphere ; 362: 142585, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866333

RESUMEN

Manufacturing processes in semiconductor and photonics industries involve the use of a significant amount of organic solvents. Recycle and reuse of these solvents produce distillate residues and require treatment before being discharged. This study aimed to evaluate the performance of the biological treatment system in a full-scale wastewater treatment plant that treats wastewater containing distillate residues from the recycling of electronic chemicals. Batch experiments were conducted to investigate the optimal operational conditions for the full-scale wastewater treatment plant. To achieve good nitrogen removal efficiency with effluent ammonia and nitrate concentrations below 20 mg N/L and 50 mg N/L, respectively, it was suggested to control the ammonia concentration and pH of the influent below 500 mg N/L and 8.0, respectively. In addition, the biodegradability of N-methylpyrrolidone, diethylene glycol monobutyl ether, and cyclopentanone distillate residues from the electronic chemicals manufacturing process were evaluated under aerobic, anoxic, and anaerobic conditions. N-methylpyrrolidone and cyclopentanone distillate residues were suggested to be treated under anoxic condition. However, substrate inhibition occurred when using cyclopentanone distillate residue as a carbon source with chemical oxygen demand (COD) levels higher than 866 mg/L and nitrate levels higher than 415 mg N/L. Under aerobic condition, the COD from both N-methylpyrrolidone and cyclopentanone distillate residues could be easily degraded. Nevertheless, a negative effect on nitrification was observed, with a prolonged lag time for ammonia oxidation as the initial COD concentration increased. The specific ammonia oxidation rate and nitrate production rate decreased under high COD concentration contributed by N-methylpyrrolidone and cyclopentanone distillate residues. Furthermore, the biodegradability of diethylene glycol monobutyl ether distillate residue was found to be low under aerobic, anoxic, and anaerobic conditions. With respect to the abundance of nitrogen removal microorganisms in the wastewater treatment plant, results showed that Comammox may have an advantage over ammonia oxidizing bacteria under high pH conditions. In addition, Comammox may have higher resistance to environmental changes. Dominance of Comammox over ammonia oxidizing bacteria under high ammonia condition was first reported in this study.

12.
Bioresour Technol ; 406: 131023, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914235

RESUMEN

Gradient anaerobic digestion reactor (GADR) can improve substrate utilization efficiency by solving the problem of the "short circuit" of materials. However, the substrate's composition significantly affects the reactor's performance. This study investigated the impact of food waste (FW) levels on corn straw's dry anaerobic digestion (AD) in a novel GADR. The results show that biomethane production can be improved by coupling urban and agricultural solid waste recycling. The mechanism is to increase the hydrolysis and acid production efficiency, and the abundance of enzymes related to methanogenesis. The maximum methane yield (494.2 mL CH4/g VS) and the highest anaerobic biodegradability (85.7 %) were obtained when the FW was added at 60 %. The co-digestion of FW and straw can improve the hydrolysis and acid production efficiency and methane yield, which improves the buffering capacity and stability of the system compared with the single digestion of FW.


Asunto(s)
Biocombustibles , Reactores Biológicos , Metano , Zea mays , Hidrólisis , Metano/metabolismo , Anaerobiosis , Zea mays/química , Zea mays/metabolismo , Alimentos , Residuos , Biodegradación Ambiental , Eliminación de Residuos/métodos , Alimento Perdido y Desperdiciado
13.
J Environ Manage ; 365: 121606, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941846

RESUMEN

Oil refineries produce annually large quantities of oily sludge and non-biodegradable wastewater during petroleum refining that require adequate management to minimize its environmental impact. The fraction solid of the oily sludge accounts for 25 wt% and without treatment for their valorization. This work is focused on the valorization of these solid particles through their transformation into porous materials with enhanced properties and with potential application in the catalytic wet air oxidation (CWAO) of a non-biodegradable spent caustic refinery wastewater. Hence, dealing with the valorization and treatment of both refinery wastes in a circular approach aligned with the petrol refinery transformations by 2050. The obtained oily sludge carbonaceous materials showed improved surface area (260-762 m2/g) and a high Fe content. The good catalytic performance of these materials in CWAO processes has been attributed to the simultaneous presence of surface basic sites and iron species. Those materials with higher content of Fe and basic sites yielded the highest degradation of organic compounds present in the spent caustic refinery wastewater. In particular, the best-performing material ACT-NP 1.1 (non-preoxidated and thermically treated with 1:1 mass ratio KOH:solid) showed a chemical oxygen demand (COD) removal of 60 % after 3 h of reaction and with a higher degradation rate than that achieved with thermal oxidation without catalyst (WAO) and that using an iron-free commercial activated carbon. Moreover, the biodegradability of the treated wastewater increased up to 80% (from ca. 31% initially of the untreated effluent). Finally, this material was reused up to three catalytic cycles without losing metal species and keeping the catalytic performance.


Asunto(s)
Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales , Catálisis , Aguas del Alcantarillado/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Petróleo , Análisis de la Demanda Biológica de Oxígeno
14.
Environ Sci Pollut Res Int ; 31(29): 41844-41853, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38866932

RESUMEN

Biological degradation method, as an environmentally friendly, low-carbon, and clean pollution treatment technology, is widely used for the harmless disposal of oily sludge. The biodegradability of oily sludge with stable emulsification system, high oil, and water content is poor. Therefore, it is necessary to pre-treat the oily sludge to improve its biodegradability, including recover the petroleum resources and remove heavy metals and bio-toxic organic matters. This review systematically summarizes five oily sludge treatment methods and their influences on sludge biodegradability, including pyrolysis, chemical hot washing, solvent extraction, chemical oxidation, and hydrothermal. Pyrolysis at temperatures above 750 °C produces high molecular weight polycyclic aromatic hydrocarbons, chemical hot washing and chemical oxidation would cause secondary pollution, solvent extraction method could not be applied due to the high cost and high toxicity of the extractant, and the oil removal of hydrothermal method is inefficient. Additionally, the principles, advantages, and disadvantages of those treatments and the factors affecting microbial degradation were analyzed, which provide the development direction of pretreatment technology to improve the biodegradability of oily sludge.


Asunto(s)
Biodegradación Ambiental , Petróleo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos
15.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928394

RESUMEN

Sulfonamides can be effectively removed from wastewater through a photocatalytic process. However, the mineralization achieved by this method is a long-term and expensive process. The effect of shortening the photocatalytic process is the partial degradation and formation of intermediates. The purpose of this study was to evaluate the sensitivity and transformation of photocatalytic reaction intermediates in aerobic biological processes. Sulfadiazine and sulfamethoxazole solutions were used in the study, which were irradiated in the presence of a TiO2-P25 catalyst. The resulting solutions were then aerated after the addition of river water or activated sludge suspension from a commercial wastewater treatment plant. The reaction kinetics were determined and fifteen products of photocatalytic degradation of sulfonamides were identified. Most of these products were further transformed in the presence of activated sludge suspension or in water taken from the river. They may have been decomposed into other organic and inorganic compounds. The formation of biologically inactive acyl derivatives was observed in the biological process. However, compounds that are more toxic to aquatic organisms than the initial drugs can also be formed. After 28 days, the sulfamethoxazole concentration in the presence of activated sludge was reduced by 66 ± 7%. Sulfadiazine was practically non-biodegradable under the conditions used. The presented results confirm the advisability of using photocatalysis as a process preceding biodegradation.


Asunto(s)
Biodegradación Ambiental , Sulfonamidas , Contaminantes Químicos del Agua , Cinética , Sulfonamidas/química , Sulfonamidas/metabolismo , Catálisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Titanio/química , Sulfametoxazol/química , Sulfametoxazol/metabolismo , Fotólisis , Aguas Residuales/química , Aguas del Alcantarillado/química , Sulfadiazina/química , Sulfadiazina/metabolismo , Purificación del Agua/métodos
16.
Foods ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928856

RESUMEN

Non-biodegradable plastic materials pose environmental hazards and contribute to pollution. Arabinoxylan (AX) films have been created for applications in food packaging to replace these materials. The water interaction characteristics of biodegradable AX films were assessed following the extraction of AX from dry-milled corn bran (DCB), wet-milled corn bran (WCB), and dried distiller's grains with solubles (DDGS). Films were prepared with laccase and sorbitol before surface modification with lipase-vinyl acetate. Water solubility of the modified DCB films was significantly reduced (p < 0.05); however, the water solubility of modified WCB films decreased insignificantly (p > 0.05) compared to unmodified films. Water vapor permeability of the modified AX films from WCB and DDGS was significantly reduced (p < 0.05), unlike their unmodified counterparts. The biodegradation rates of the modified WCB AX and DDGS films increased after 63 and 99 days, respectively, compared to the unmodified films. The hydrophilic nature of AX polymers from WCB and DDGS enhances the biodegradability of the films. This study found that the modified WCB AX film was more hydrophobic, and the modified DDGS AX film was more biodegradable than the modified DCB AX film. Overall, surface modifications have potential for improving hydrophobicity of biopolymer films.

17.
Environ Res ; 254: 118676, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763285

RESUMEN

In this study, magnetic CoFe2O4-PAC nanocatalysts were synthesized through facile hydrothermal and co‒precipitation approaches with ultrasonic irradiation, which were used for the treatment of hypersaline petrochemical wastewater (HPCW). When an ultrasound‒induced synthesis process (US@CoFe2O4‒PAC) was used, a more efficient and stable magnetic spinel CoFe2O4‒PAC nanocatalyst was developed. The application of this nanocatalyst as a PMS activator, not only caused eradication of 90.4% of chemical oxygen demand (COD) of a HPCW after 90 min reaction time under the optimum conditions (pH 5-6, catalyst dose 1.0 g/L and 1.0 mM PMS), but also led to marginal leaching of iron (314 µg/L) and cobalt (95 µg/L) from the nanocatalyst. Recycling experiments over five consecutive runs showed a negligible decrease (7.2%) in COD removal efficiency which proved the stability and reusability of magnetic US@CoFe2O4-PAC. Two main mechanisms of adsorption and catalytic oxidation processes (homogeneous and heterogeneous PMS) are involved simultaneously in the PMS/US@CoFe2O4-PAC system, which are responsible for the destruction of refractory contaminants of HPCW through the generation of SO4•‒ and OH• radicals. COD of HPCW was mainly removed through SO4•- radical attack (73.6%) and the biodegradability of HPCW was enhanced dramatically after 90 min reaction time. The germination index (GI) of raw HPCW was increased 17.1 ± 4.2% and 24.3 ± 8.8% after 15 and 90 min reaction time, respectively, even PMS/US@CoFe2O4-PAC system showed less impact on phytotoxicity mitigation. Hence, it can be recommended to dilute the effluent before using for irrigational purpose. The findings of this study present practical significance of spinel US@CoFe2O4-PAC, which is an environment‒friendly catalyst, easy to handle and can sustain long‒term operation for the treatment of recalcitrant hypersaline wastewater and the other potential practical applications.


Asunto(s)
Cobalto , Compuestos Férricos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Cobalto/química , Compuestos Férricos/química , Catálisis , Biodegradación Ambiental , Eliminación de Residuos Líquidos/métodos , Salinidad
18.
Int J Biol Macromol ; 269(Pt 1): 131988, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701999

RESUMEN

The disposal of waste lithium batteries, especially waste separators, has always been a problem, incineration and burial will cause environmental pollution, therefore, the development of degradable and high-performance separators has become an important challenge. Herein, UiO-66-NH2 particles were successfully anchored onto bacterial cellulose (BC) separators by epichlorohydrin (ECH) as a crosslinker, then a BC/UiO-66-NH2 composite separator was prepared by vacuum filtration. The ammonia groups (-NH2) from UiO-66-NH2 can form hydrogen bonds with PF6- in the electrolyte, promoting lithium-ion transference. Additionally, UiO-66-NH2 can store the electrolyte and tune the porosity of the separator. The lithium ion migration number (0.62) of the battery assembled with BC/UiO-66-NH2 composite separator increased by 50 % compared to the battery assembled with commercial PP separator (0.45). The discharge specific capacity of the battery assembled with BC/UIO-66-NH2 composite separator after 50 charge and discharge cycles is 145.4 mAh/g, which is higher than the average discharge specific capacity of 114.3 mAh/g of the battery assembled with PP separator. When the current density is 2C, the minimum discharge capacity of the battery assembled with BC/UiO-66-NH2 composite separator is 85.3 mAh/g. The electrochemical performance of the BC/UiO-66-NH2 composite separator is significantly better than that of the commercial PP separator. In addition, -NH2 can offer a nitrogen source to facilitate degradation of the BC separators, whereby the BC/UiO-66-NH2 composite separator could be completely degraded in 15 days.


Asunto(s)
Celulosa , Suministros de Energía Eléctrica , Litio , Litio/química , Celulosa/química , Iones/química , Biodegradación Ambiental
19.
Int J Biol Macromol ; 269(Pt 2): 132175, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729497

RESUMEN

Superhydrophilic/underwater superoleophobic materials for the separation of oil-water emulsions by filtration have received much attention in order to solve the pollution problem of oil-water emulsion. In this paper, a fence-like structure on the surface of CNF/KGM (Konjac Glucomannan) materials by a simple method using CNF instead of metal nanowires was successfully developed based on the hydrogen bonding of KGM and CNF. The resulted organic CNF/KGM materials surface has outstanding superhydrophilic (WCA = 0°) in air and superoleophobicity (OCA≥151°) in water, which could separate oil-water mixtures with high separation efficiency above 99.14 % under the pressure of the emulsion itself. The material shows good mechanical properties because of the addition of CNF and has outstanding anti-fouling property and reusability. More importantly, the material can be completely biodegraded after buried in soil for 4 weeks since both of KGM and CNF are organic substances. Therefore, it may have a broad application prospect in the separation of oil-water emulsion because of its outstanding separation properties, simply preparation method and biodegradability.


Asunto(s)
Celulosa , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras , Aceites , Agua , Emulsiones/química , Nanofibras/química , Aceites/química , Agua/química , Celulosa/química , Propiedades de Superficie , Biodegradación Ambiental , Mananos/química
20.
Polymers (Basel) ; 16(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732651

RESUMEN

Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...