Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomater Appl ; 39(4): 298-316, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39077998

RESUMEN

Although low mechanical properties, Zinc (Zn) alloy systems with Copper (Cu) and Silver (Ag) as alloying elements have strong biocompatibility and biodegradability characteristics. This study examined the effects of rolling parameters and Ag alloying on the mechanical, biodegradable, and final structure of an alloy based on Zn. Comparing treated and untreated specimens, the addition of Ag led to a considerable improvement in both hardness and compressive strength. The produced alloys with varying amounts of Ag (between 1 and 4 wt%) were cold rolled at 400-800 r/min and friction coefficients between 0.3 and 0.5. The alloys' ultimate strength rose with an increase in rolling speed for Zn1Cu4Ag, and hardness and compressive strengths rose to 80HV and 470 MPa, respectively. It was demonstrated that rolling force rose somewhat with Ag concentration but significantly increased with rolling speed and friction. E. Coli and S. aureus were used to assess the biodegradable alloys' antibacterial properties. For the Zn-1Cu-2Ag alloy, the inclusion of Ag resulted in a considerable (50%) rise in antibacterial activity that exceeded the effects seen in other alloy systems.


Asunto(s)
Aleaciones , Antibacterianos , Materiales Biocompatibles , Escherichia coli , Ensayo de Materiales , Plata , Staphylococcus aureus , Zinc , Aleaciones/química , Plata/química , Plata/farmacología , Zinc/química , Zinc/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Fuerza Compresiva , Dureza , Cobre/química , Pruebas de Sensibilidad Microbiana
2.
Sci Total Environ ; 949: 174913, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39069190

RESUMEN

Currently, the environmental problems associated with plastic production and waste, such as the consequences of worldwide pollution of natural waters with microplastics, have led to the seeking of alternative materials that can at least partially replace conventional petroleum-based plastics. Substitute materials include bioplastics and similar plant-based materials or their composites. However, their fate when disposed of in unintended environments (e.g., water bodies) remains largely unknown, while such information is highly desirable prior to massive expansion of exploiting such materials. This study aims to contribute filling this knowledge gap. Specifically, 19 different types of bioplastic and similar plant-based material debris (corresponding to the size of microplastics) were kept in long-term contact with water to mimic their behaviour as water pollutants, and the leachates were continuously analysed. Eighteen of the 19 investigated materials released significant amounts of dissolved organic carbon-up to 34.0 mg per g of debris after 12 weeks of leaching. Each leachate also contained one or more of the following elements: Al, B, Ba, Ca, Fe, K, Mg, Mn, N, Na, P, Si, Ti, and Zn. Non-targeted analysis aimed at providing more specific insight into the leachate composition tentatively revealed 91 individual chemicals, mostly fatty acids and other carboxylic acids, phthalates, terephthalates, adipates, phenols, amides, alcohols, or organophosphates. Based on the compound characteristics, they might be additives, non-intentionally added substances, as well as their degradation products. In general, the current results imply that bioplastics and similar plant-based materials should be considered complex materials that undergo industrial processing and comprise additives rather than harmless natural matter. Additionally, various compounds can release from the bioplastic and similar plant-based material debris when deposited in water. It might have consequences on the fluxes of carbon, metals and specific organic contaminants, and it resembles some properties of conventional petroleum-based microplastics.


Asunto(s)
Carbono , Monitoreo del Ambiente , Metales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Metales/análisis , Carbono/análisis , Microplásticos/análisis , Plásticos/análisis
3.
Heliyon ; 10(12): e32713, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39027458

RESUMEN

Mg-based and Zn-based biodegradable materials have the potential to become the next-generation implant materials to treat bone diseases, because of their desired degradation and mechanical properties. This article reviews the status of these implant materials. The required properties of biodegradable materials such as biodegradability, mechanical properties, and biocompatibility for performance evaluation were briefly discussed. The influence of fabrication techniques, microstructure, alloying elements, and post-processing techniques on the properties of Mg and Zn-based materials was addressed. The degradation mechanism by dissolution, oxidation, and interaction with human body cells was discussed. The biocompatibility of Mg and Zn-based biodegradable materials was analyzed. The significance of in vitro and in vivo biocompatibility testing was highlighted, emphasizing the superiority of in vivo results over cell line studies. This article identifies the many Mg and Zn-based biodegradable materials and summarizes the key findings.

4.
Polymers (Basel) ; 16(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891421

RESUMEN

The stability and composting behaviour of monolayers and laminates of poly (lactic acid) (PLA) and starch with and without active extracts and cellulose fibres from rice straw (RS) were evaluated. The retrogradation of the starch throughout storage (1, 5, and 10 weeks) gave rise to stiffer and less extensible monolayers with lower water vapour barrier capacity. In contrast, the PLA monolayers, with or without extract, did not show marked changes with storage. However, these changes were more attenuated in the bilayers that gained water vapour and oxygen barrier capacity during storage, maintaining the values of the different properties close to the initial range. The bioactivity of the active films exhibited a slight decrease during storage, so the antioxidant capacity is better preserved in the bilayers. All monolayer and bilayer films were fully composted within 90 days but with different behaviour. The bilayer assembly enhanced the biodegradation of PLA, whose monolayer exhibited a lag period of about 35 days. The active extract reduced the biodegradation rate of both mono- and bilayers but did not limit the material biodegradation within the time established in the Standard. Therefore, PLA-starch laminates, with or without the valorised fractions from RS, can be considered as biodegradable and stable materials for food packaging applications.

5.
Bioact Mater ; 38: 207-224, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38756201

RESUMEN

Healing of fractures or bone defects is significantly hindered by overactivated osteoclasts and inhibited osteogenesis in patients with abnormal bone metabolism. Current clinical approaches using titanium alloys or stainless steel provide mechanical support but have no biological effects on bone regeneration. Therefore, designing and fabricating degradable metal materials with sufficient mechanical strength and bidirectional regulation of both osteoblasts and osteoclasts is a substantial challenge. Here, this study first reported an adaptive biodegradable Zn-0.8 Mg alloy with bidirectional regulation of bone homeostasis, which promotes osteogenic differentiation by activating the Pi3k/Akt pathway and inhibits osteoclast differentiation by inhibiting the GRB2/ERK pathway. The anti-osteolytic ability of the Zn-0.8 Mg alloy was verified in a mouse calvarial osteolysis model and its suitability for internal fracture fixation with high-strength screws was confirmed in the rabbit femoral condyle fracture model. Furthermore, in an aged postmenopausal rat femoral condyle defect model, 3D printed Zn-0.8 Mg scaffolds promoted excellent bone regeneration through adaptive structures with good mechanical properties and bidirectionally regulated bone metabolism, enabling personalized bone defect repair. These findings demonstrate the substantial potential of the Zn-0.8 Mg alloy for treating fractures or bone defects in patients with aberrant bone metabolism.

6.
J Clin Med ; 13(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792458

RESUMEN

Background: This review examines the application of shellac in orthodontics, focusing on its properties, advantages, and potential as an alternative to conventional materials. In orthodontics, where bond strength, ease of application, and removal are paramount, shellac's capabilities meet these needs while supporting environmentally friendly practices. Methods: With objectives centered on evaluating shellac's effectiveness, biocompatibility, and impact on patient outcomes, a comprehensive search across multiple databases was conducted, including PubMed, Scopus, and Web of Science. This study's selection criteria targeted studies assessing shellac's use in orthodontic applications, measuring treatment effectiveness, biocompatibility, and patient satisfaction while excluding those not directly involving orthodontic applications or lacking empirical data. Results: Through a qualitative synthesis of the extracted data-encompassing study design, sample size, treatment outcomes, and adverse effects-the findings reveal shellac's potential benefits in orthodontics, such as enhanced patient comfort and comparable treatment outcomes to traditional materials. However, the review also notes variability in study designs and outcomes, indicating the need for further research. Conclusions: This study concluded that shellac presents a promising alternative in orthodontic materials, recommending additional studies to standardize assessment methodologies and confirm its long-term advantages.

7.
Sci Rep ; 14(1): 7912, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575715

RESUMEN

Recent advancements in the field of biomedical engineering have underscored the pivotal role of biodegradable materials in addressing the challenges associated with tissue regeneration therapies. The spectrum of biodegradable materials presently encompasses ceramics, polymers, metals, and composites, each offering distinct advantages for the replacement or repair of compromised human tissues. Despite their utility, these biomaterials are not devoid of limitations, with issues such as suboptimal tissue integration, potential cytotoxicity, and mechanical mismatch (stress shielding) emerging as significant concerns. To mitigate these drawbacks, our research collective has embarked on the development of protein-based composite materials, showcasing enhanced biodegradability and biocompatibility. This study is dedicated to the elaboration and characterization of an innovative suture fabricated from human serum albumin through an extrusion methodology. Employing a suite of analytical techniques-namely tensile testing, scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA)-we endeavored to elucidate the physicochemical attributes of the engineered suture. Additionally, the investigation extends to assessing the influence of integrating biodegradable organic modifiers on the suture's mechanical performance. Preliminary tensile testing has delineated the mechanical profile of the Filament Suture (FS), delineating tensile strengths spanning 1.3 to 9.616 MPa and elongation at break percentages ranging from 11.5 to 146.64%. These findings illuminate the mechanical versatility of the suture, hinting at its applicability across a broad spectrum of medical interventions. Subsequent analyses via SEM and TGA are anticipated to further delineate the suture's morphological features and thermal resilience, thereby enriching our comprehension of its overall performance characteristics. Moreover, the investigation delves into the ramifications of incorporating biodegradable organic constituents on the suture's mechanical integrity. Collectively, the study not only sheds light on the mechanical and thermal dynamics of a novel suture material derived from human serum albumin but also explores the prospective enhancements afforded by the amalgamation of biodegradable organic compounds, thereby broadening the horizon for future biomedical applications.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Humanos , Estudios Prospectivos , Materiales Biocompatibles/química , Suturas , Albúminas , Albúmina Sérica Humana
8.
J Funct Biomater ; 15(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667566

RESUMEN

In recent years, the use of zinc (Zn) alloys as degradable metal materials has attracted considerable attention in the field of biomedical bone implant materials. This study investigates the fabrication of porous scaffolds using a Zn-1Mg-0.1Sr alloy through a three-dimensional (3D) printing technique, selective laser melting (SLM). The results showed that the porous Zn-1Mg-0.1Sr alloy scaffold featured a microporous structure and exhibited a compressive strength (CS) of 33.71 ± 2.51 MPa, a yield strength (YS) of 27.88 ± 1.58 MPa, and an elastic modulus (E) of 2.3 ± 0.8 GPa. During the immersion experiments, the immersion solution showed a concentration of 2.14 ± 0.82 mg/L for Zn2+ and 0.34 ± 0.14 mg/L for Sr2+, with an average pH of 7.61 ± 0.09. The porous Zn-1Mg-0.1Sr alloy demonstrated a weight loss of 12.82 ± 0.55% and a corrosion degradation rate of 0.36 ± 0.01 mm/year in 14 days. The Cell Counting Kit-8 (CCK-8) assay was used to check the viability of the cells. The results showed that the 10% and 20% extracts significantly increased the activity of osteoblast precursor cells (MC3T3-E1), with a cytotoxicity grade of 0, which indicates safety and non-toxicity. In summary, the porous Zn-1Mg-0.1Sr alloy scaffold exhibits outstanding mechanical properties, an appropriate degradation rate, and favorable biosafety, making it an ideal candidate for degradable metal bone implants.

9.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611157

RESUMEN

Biocomposites were fabricated utilizing polylactic acid (PLA) combined with native starch sourced from mountain's yam (Dioscorea remotiflora Knuth), an underexplored tuber variety. Different starch compositions (7.5, 15.0, 22.5, and 30.0 wt.%) were blended with PLA in a batch mixer at 160 °C to produce PLA/starch biocomposites. The biocomposites were characterized by analyzing their morphology, particle size distribution, thermal, X-ray diffraction (XDR), mechanical, and dynamic mechanical (DMA) properties, water absorption behavior, and color. The results showed that the amylose content of Dioscorea remotiflora starch was 48.43 ± 1.4%, which corresponds to a high-amylose starch (>30% of amylose). Particle size analysis showed large z-average particle diameters (Dz0) of the starch granules (30.59 ± 3.44 µm). Scanning electron microscopy (SEM) images showed oval-shaped granules evenly distributed throughout the structure of the biocomposite, without observable agglomeration or damage to its structure. XDR and DMA analyses revealed an increase in the crystallinity of the biocomposites as the proportion of the starch increased. The tensile modulus (E) underwent a reduction, whereas the flexural modulus (Eflex) increased with the amount of starch incorporated. The biocomposites with the highest Eflex were those with a starch content of 22.5 wt.%, which increased by 8.7% compared to the neat PLA. The water absorption of the biocomposites demonstrated a higher uptake capacity as the starch content increased. The rate of water absorption in the biocomposites followed the principles of Fick's Law. The novelty of this work lies in its offering an alternative for the use of high-amylose mountain's yam starch to produce low-cost bioplastics for different applications.

10.
Adv Sci (Weinh) ; 11(20): e2307060, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38516744

RESUMEN

Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond-laser ablation in liquids rapidly dissolve in physiological-like environment through the oxidation mechanism. The biodegradation of Ge nanoparticles is preserved in tumor cells in vitro and in normal tissues in mice with a half-life as short as 3.5 days. Biocompatibility of Ge NPs is confirmed in vivo by hematological, biochemical, and histological analyses. Strong optical absorption of Ge in the near-infrared spectral range enables photothermal treatment of engrafted tumors in vivo, following intravenous injection of Ge NPs. The photothermal therapy results in a 3.9-fold reduction of the EMT6/P adenocarcinoma tumor growth with significant prolongation of the mice survival. Excellent mass-extinction of Ge NPs (7.9 L g-1 cm-1 at 808 nm) enables photoacoustic imaging of bones and tumors, following intravenous and intratumoral administrations of the nanomaterial. As such, strongly absorbing near-infrared-light biodegradable Ge nanomaterial holds promise for advanced theranostics.


Asunto(s)
Germanio , Técnicas Fotoacústicas , Fototerapia , Animales , Ratones , Técnicas Fotoacústicas/métodos , Germanio/química , Fototerapia/métodos , Modelos Animales de Enfermedad , Rayos Láser , Nanopartículas/química , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Materiales Biocompatibles/química , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Femenino
11.
Int J Biol Macromol ; 265(Pt 1): 130899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490375

RESUMEN

The development of biodegradable active packaging films with hydrophobic characteristics is vital for extending the shelf life of food and reducing the reliance on petroleum-based plastics. In this study, novel hydrophobic cerium-based metal-organic framework (Ce-MOF) nanoparticles were successfully synthesized. The Ce-MOF nanoparticles were then incorporated into the cassava starch matrix at varying concentrations (0.5 %, 1.5 %, 3 %, and 4 % w/w of total solid) to fabricate cassava-based active packaging films via the solution casting technique. The influence of Ce-MOF on the morphology, thermal attributes, and physicochemical properties of the cassava film was subsequently determined through further analyses. Biomedical analysis including antioxidant activity and the cellular morphology evaluation in the presence of the films was also conducted. The results demonstrated that the consistent dispersion of Ce-MOF nanofillers within the cassava matrix led to a significant enhancement in the film's crystallinity, thermal stability, antioxidant activity, biocompatibility, and hydrophobicity. The introduction of Ce-MOF also contributed to the film's reduced water solubility. Considering these outcomes, the developed cassava/Ce-MOF films undoubtedly have significant potential for active food packaging applications.


Asunto(s)
Embalaje de Alimentos , Estructuras Metalorgánicas , Embalaje de Alimentos/métodos , Antioxidantes , Permeabilidad , Almidón/química
12.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38475252

RESUMEN

The transition to a more sustainable lifestyle requires a move away from petroleum-based sources and the investigation and funding of renewable and waste feedstocks to provide biobased sustainable materials. The formulation of films based on chitosan and microcrystalline cellulose with potential applications in the packaging sector has been demonstrated. Glycerol is also used as a plasticizer in the formulation of flexible films, while mucic acid is used as a valid alternative to acetic acid in such films. The film based on chitosan, microcrystalline cellulose, glycerol, and mucic acid shows properties and a performance similar to those of the film formulated with acetic acid, and, in addition, it seems that the photo-oxidation resistance of the film based on mucic acid is better than that of the material containing acetic acid. The films were characterized using spectroscopy (FTIR and UV-vis), tensile testing, water contact angle measurements, surface observations, and photo-oxidation resistance measurements. The presence of microcrystalline cellulose enhances the mechanical behavior, UV barrier properties, and surface hydrophobicity of the film. The feasibility of formulating chitosan-based films, with or without microcrystalline cellulose, which exhibit good properties and performances is demonstrated. Mucic acid instead of acetic acid is used in the formulation of these film.

13.
J Fungi (Basel) ; 10(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38535193

RESUMEN

Modern efforts to influence materials science with principles of biology have allowed fungal mycelial materials to take a foothold and develop novel solutions for the circular bioeconomy of tomorrow. However, recent studies have shown that the value of tomorrow's green materials is not determined simply by their environmental viability, but rather by their ability to make the polluting materials of today obsolete. With an inherently strong structure of chitin and ß-glucan, the ever-adaptable mycelia of fungi can compete at the highest levels with a litany of materials from leather to polyurethane foam to paper to wood. There are significant efforts to optimize pure mycelial materials (PMMs) through the entire process of species and strain selection, mycelial growth, and fabrication. Indeed, the promising investigations of novel species demonstrate how the diversity of fungi can be leveraged to create uniquely specialized materials. This review aims to highlight PMMs' current trajectory, evaluate the successes in technology, and explore how these new materials can help shape a better tomorrow.

14.
Small ; 20(28): e2307742, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38326101

RESUMEN

Biodegradable medical implants promise to benefit patients by eliminating risks and discomfort associated with permanent implantation or surgical removal. The time until full resorption is largely determined by the implant's material composition, geometric design, and surface properties. Implants with a fixed residence time, however, cannot account for the needs of individual patients, thereby imposing limits on personalization. Here, an active Fe-based implant system is reported whose biodegradation is controlled remotely and in situ. This is achieved by incorporating a galvanic cell within the implant. An external and wireless signal is used to activate the on-board electronic circuit that controls the corrosion current between the implant body and an integrated counter electrode. This configuration leads to the accelerated degradation of the implant and allows to harvest electrochemical energy that is naturally released by corrosion. In this study, the electrochemical properties of the Fe-30Mn-1C/Pt galvanic cell model system is first investigated and high-resolution X-ray microcomputed tomography is used to evaluate the galvanic degradation of stent structures. Subsequently, a centimeter-sized active implant prototype is assembled with conventional electronic components and the remotely controlled corrosion is tested in vitro. Furthermore, strategies toward the miniaturization and full biodegradability of this system are presented.


Asunto(s)
Metales , Corrosión , Metales/química , Microtomografía por Rayos X , Prótesis e Implantes , Electroquímica , Implantes Absorbibles , Técnicas Electroquímicas/métodos
15.
Adv Healthc Mater ; : e2303797, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368254

RESUMEN

Skin-mountable electronic materials are being intensively evaluated for use in bio-integrated devices that can mutually interact with the human body. Over the past decade, functional electronic materials inspired by the skin are developed with new functionalities to address the limitations of traditional electronic materials for bio-integrated devices. Herein, the recent progress in skin-mountable functional electronic materials for skin-like electronics is introduced with a focus on five perspectives that entail essential functionalities: stretchability, self-healing ability, biocompatibility, breathability, and biodegradability. All functionalities are advanced with each strategy through rational material designs. The skin-mountable functional materials enable the fabrication of bio-integrated electronic devices, which can lead to new paradigms of electronics combining with the human body.

16.
ACS Nano ; 18(5): 3969-3995, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38271679

RESUMEN

Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.


Asunto(s)
Dispositivos Electrónicos Vestibles , Prótesis e Implantes , Electrónica , Polímeros/química
17.
Adv Healthc Mater ; 13(5): e2302868, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37925607

RESUMEN

Burn wound healing continues to pose significant challenges due to excessive inflammation, the risk of infection, and impaired tissue regeneration. In this regard, an antibacterial, antioxidant, and anti-inflammatory nanocomposite (called HPA) that combines a nanosystem using hexachlorocyclotriphosphazene and the natural polyphenol of Phloretin with silver nanoparticles (AgNPs) is developed. HPA effectively disperses AgNPs to mitigate any toxicity caused by aggregation while also showing the pharmacological activities of Phloretin. During the initial stage of wound healing, HPA rapidly releases silver ions from its surface to suppress bacterial activity. Moreover, these nanoparticles are pH-sensitive and degrade efficiently in the acidic infection microenvironment, gradually releasing Phloretin. This sustained release of Phloretin helps scavenge overexpressed reactive oxygen species in the infected microenvironment area, thus reducing the upregulation of pro-inflammatory cytokines. The antibacterial activity, free radical clearance, and regulation of inflammatory factors of HPA through in vitro experiments are validated. Additionally, its effects using an infectious burn mouse model in vivo are evaluated. HPA is found to promote collagen deposition and epithelialization in the wound area. With its synergistic antibacterial, antioxidant, and anti-inflammatory activities, as well as favorable biocompatibilities, HPA shows great promise as a safe and effective multifunctional nanoplatform for burn injury wound dressings.


Asunto(s)
Antiinfecciosos , Quemaduras , Nanopartículas del Metal , Infección de Heridas , Ratones , Animales , Plata/farmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Antibacterianos/farmacología , Infección de Heridas/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Quemaduras/tratamiento farmacológico , Floretina
18.
Foods ; 12(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38137296

RESUMEN

Currently, active and intelligent packaging has been developed to solve the spoilage problem for protein-rich foods during storage, especially by adding anthocyanin extracts. In such a film system, the antioxidant and antibacterial properties were dramatically increased by adding anthocyanins. The physicochemical properties were enhanced through interactions between the active groups in the anthocyanins and reactive groups in the polymer chains. Additionally, the active and intelligent film could monitor the spoilage of protein-rich foods in response to pH changes. Therefore, this film could monitor the sensory acceptance and extend the shelf life of protein-rich foods simultaneously. In this paper, the structural and functional properties of anthocyanins, composite actions of anthocyanin extracts and biomass materials, and reinforced properties of the active and intelligent film were discussed. Additionally, the applications of this film in quality maintenance, shelf-life extension, and quality monitoring for fresh meat, aquatic products, and milk were summarized. This film, which achieves high stability and the continuous release of anthocyanins on demand, may become an underlying trend in packaging applications for protein-rich foods.

19.
Gels ; 9(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37998973

RESUMEN

Leather finishing is a critical process in the leather industry, as it significantly influences the final appearance, durability, and quality of leather products. Traditional leather finishing techniques often involve the use of synthetic chemicals, which may lead to environmental concerns and potential health hazards. In this study, we investigate the feasibility and effectiveness of a new collagen-based product for leather finishing. Collagen, a natural protein found abundantly in animals, has shown promise as an environmentally friendly and sustainable alternative for leather finishing. The new collagen gel product obtained from bovine hide waste by using an alkaline extraction method with lime was functionalized through an enzymatic treatment that allows to achieve a finishing product suitable for coating formulations, and at the same time, a biodegradable finishing. The collagen gel product was optimized by varying parameters, such as temperature, pH, and enzyme quantity. The optimized collagen gel product exhibits a wide particle size range and retains the triple-helical structure of collagen. The leather samples treated with the collagen gel product show enhanced properties compared to those with conventional finishes. The results show that the collagen gel product enhances water vapor permeability, color stability, and touch in the finishes. However, a low resistance to wet rubbing is obtained; therefore, it is necessary to study how to improve this parameter.

20.
Mar Pollut Bull ; 195: 115545, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37722264

RESUMEN

Marine plastic pollution and continuous capture of marine animals, so-called "ghost fishing", by abandoned, lost, or otherwise discarded fishing gear (ALDFG) are global concerns. This study investigated whether biodegradable polylactic acid (PLA) monofilaments can be used to replace conventionally used non-biodegradable polyamide (PA) in trammel net fishery for limiting ALDFG associated effects. It evaluated the physical properties of PLA and PA monofilaments and compared fishing performance of PLA and PA trammel nets in a commercial mullet fishery in the Yellow Sea, China. Although PA monofilament exhibited superior physical properties, no significant differences in catch efficiency between PA and PLA trammel nets were observed. Fish of both species were mainly captured by pocketing which can further explain observed similar catch efficiency. These initial results suggest a potential for applying biodegradable materials in trammel net fisheries. Therefore, further long-term testing is encouraged to investigate whether this promising performance is persistent over long-term.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...