Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros












Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2401589, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018263

RESUMEN

Using bone regeneration scaffolds to repair craniomaxillofacial bone defects is a promising strategy. However, most bone regeneration scaffolds still exist some issues such as a lack of barrier structure, inability to precisely match bone defects, and necessity to incorporate biological components to enhance efficacy. Herein, inspired by a periosteum-bone complex, a class of multifunctional hierarchical porous poly(lactic-co-glycolic acid)/baicalein scaffolds is facilely prepared by the union of personalized negative mold technique and phase separation strategy and demonstrated to precisely fit intricate bone defect cavity. The dense up-surface of the scaffold can prevent soft tissue cell penetration, while the loose bottom-surface can promote protein adsorption, cell adhesion, and cell infiltration. The interior macropores of the scaffold and the loaded baicalein can synergistically promote cell differentiation, angiogenesis, and osteogenesis. These findings can open an appealing avenue for the development of personalized multifunctional hierarchical materials for bone repair.

2.
J Biomed Mater Res A ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864151

RESUMEN

Infection is a major concern in surgery involving grafting and should be considered thoroughly when designing biomaterials. There is considerable renewed interest in silver nanoparticles (AgNPs) owing to their ability to potentiate antibacterial properties against multiple bacterial strains. This study aimed to develop two antibacterial bone regenerative scaffolds by integrating AgNPs in bovine bone particles (BBX) (Product 1), and a light cross-linked hydrogel GelMA (Product 2). The constructs were characterized using scanning electron microscopy. Metabolic activity of osteoblasts and osteoclasts on the constructs was investigated using PrestoBlue™. Disk diffusion assay was conducted to test the antibacterial properties. The regenerative capacity of the optimized AgNP functionalized BBX and GelMA were tested in a rabbit cranial 6 mm defect model. The presence of AgNPs appears to enhance proliferation of osteoblasts compared to AgNP free controls in vitro. We established that AgNPs can be used at a 100 µg dose that inhibits bacteria, with minimal adverse effects on the bone cells. Our rabbit model revealed that both the BBX and GelMA hydrogels loaded AgNPs were biocompatible with no signs of necrosis or inflammatory response. Grafts functionalized with AgNPs can provide antibacterial protection and simultaneously act as a scaffold for attachment of bone cells.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38943424

RESUMEN

The effective reconstruction of osteochondral biomimetic structures is a key factor in guiding the regeneration of full-thickness osteochondral defects. Due to the avascular nature of hyaline cartilage, the greatest challenge in constructing this scaffold lies in both utilizing the biomimetic structure to promote vascular differentiation for nutrient delivery to hyaline cartilage, thereby enhancing the efficiency of osteochondral reconstruction, and effectively blocking vascular ingrowth into the cartilage layer to prevent cartilage mineralization. However, the intrinsic relationship between the planning of the microporous pipe network and the flow resistance in the biomimetic structure, and the mechanism of promoting cell adhesion to achieve vascular differentiation and inhibiting cell adhesion to block the growth of blood vessels are still unclear. Inspired by the structure of tree trunks, this study designed a biomimetic tree-like tubular network structure for osteochondral scaffolds based on Murray's law. Utilizing computational fluid dynamics, the study investigated the influence of the branching angle of micro-pores on the flow velocity, pressure distribution, and scaffold permeability within the scaffold. The results indicate that when the differentiation angle exceeds 50 degrees, the highest flow velocity occurs at the confluence of tributaries at the ninth fractal position, forming a barrier layer. This structure effectively guides vascular growth, enhances nutrient transport capacity, increases flow velocity to promote cell adhesion, and inhibits cell infiltration into the cartilage layer.

4.
ACS Appl Bio Mater ; 7(7): 4366-4378, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38905196

RESUMEN

Bone is remodeled through a dynamic process facilitated by biophysical cues that support cellular signaling. In healthy bone, signaling pathways are regulated by cells and the extracellular matrix and transmitted via electrical synapses. To this end, combining electrical stimulation (ES) with conductive scaffolding is a promising approach for repairing damaged bone tissue. Therefore, "smart" biomaterials that can provide multifunctionality and facilitate the transfer of electrical cues directly to cells have become increasingly more studied in bone tissue engineering. Herein, 3D-printed electrically conductive composite scaffolds consisting of demineralized bone matrix (DBM) and polycaprolactone (PCL), in combination with ES, for bone regeneration were evaluated for the first time. The conductive composite scaffolds were fabricated and characterized by evaluating mechanical, surface, and electrical properties. The DBM/PCL composites exhibited a higher compressive modulus (107.2 MPa) than that of pristine PCL (62.02 MPa), as well as improved surface properties (i.e., roughness). Scaffold electrical properties were also tuned, with sheet resistance values as low as 4.77 × 105 Ω/sq for our experimental coating of the highest dilution (i.e., 20%). Furthermore, the biocompatibility and osteogenic potential of the conductive composite scaffolds were tested using human mesenchymal stromal cells (hMSCs) both with and without exogenous ES (100 mV/mm for 5 min/day four times/week). In conjunction with ES, the osteogenic differentiation of hMSCs grown on conductive DBM/PCL composite scaffolds was significantly enhanced when compared to those cultured on PCL-only and nonconductive DBM/PCL control scaffolds, as determined through xylenol orange mineral staining and osteogenic protein analysis. Overall, these promising results suggest the potential of this approach for the development of biomimetic hybrid scaffolds for bone tissue engineering applications.


Asunto(s)
Materiales Biocompatibles , Matriz Ósea , Estimulación Eléctrica , Ensayo de Materiales , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Matriz Ósea/química , Conductividad Eléctrica , Poliésteres/química , Osteogénesis , Tamaño de la Partícula , Células Madre Mesenquimatosas/citología
5.
Artículo en Inglés | MEDLINE | ID: mdl-38869621

RESUMEN

Biosilica (BS) and spongin (SPG) from marine sponges are highlighted for their potential to promote bone regeneration. Moreover, 3D printing is introduced as a technology for producing bone grafts with optimized porous structures, allowing for better cell attachment, proliferation, and differentiation. Thus, this study aimed to characterize the BS and BS/SPG 3D printed scaffolds and to evaluate the biological effects in vitro. The scaffolds were printed using an ink containing 4 wt.% of sodium alginate. The physicochemical characteristics of BS and BS/SPG 3D printed scaffolds were analyzed by SEM, EDS, FTIR, porosity, evaluation of mass loss, and pH measurement. For in vitro analysis, the cellular viability of the MC3T3-E1 cell lineage was assessed using the AlamarBlue® assay and confocal microscopy, while genotoxicity and mineralization potential were evaluated through the micronucleus assay and Alizarin Red S, respectively. SEM analysis revealed spicules in BS, the fibrillar structure of SPG, and material degradation over the immersion period. FTIR indicated peaks corresponding to silicon oxide in BS samples and carbon oxide and amine in SPG samples. BS-SPG scaffolds exhibited higher porosity, while BS scaffolds displayed greater mass loss. pH measurements indicated a significant decrease induced by BS, which was mitigated by SPG over the experimental periods. In vitro studies demonstrated the biocompatibility and non-cytotoxicity of scaffold extracts. .Also, the scaffolds promoted cellular differentiation. The micronucleus test further confirmed the absence of genotoxicity. These findings suggest that 3D printed BS and BS/SPG scaffolds may possess desirable morphological and physicochemical properties, indicating in vitro biocompatibility.

6.
Front Bioeng Biotechnol ; 12: 1372636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707506

RESUMEN

Repair of large bone defects remains challenge for orthopedic clinical treatment. Porous titanium alloys have been widely fabricated by the additive manufacturing, which possess the elastic modulus close to that of human cortical bone, good osteoconductivity and osteointegration. However, insufficient bone regeneration and vascularization inside the porous titanium scaffolds severely limit their capability for repair of large-size bone defects. Therefore, it is crucially important to improve the osteogenic function and vascularization of the titanium scaffolds. Herein, methacrylated gelatin (GelMA) were incorporated with the porous Ti-24Nb-4Zr-8Sn (Ti2448) scaffolds prepared by the electron beam melting (EBM) method (Ti2448-GelMA). Besides, the deferoxamine (DFO) as an angiogenic agent was doped into the Ti2448-GelMA scaffold (Ti2448-GelMA/DFO), in order to promote vascularization. The results indicate that GelMA can fully infiltrate into the pores of Ti2448 scaffolds with porous cross-linked network (average pore size: 120.2 ± 25.1 µm). Ti2448-GelMA scaffolds facilitated the differentiation of MC3T3-E1 cells by promoting the ALP expression and mineralization, with the amount of calcium contents ∼2.5 times at day 14, compared with the Ti2448 scaffolds. Impressively, the number of vascular meshes for the Ti2448-GelMA/DFO group (∼7.2/mm2) was significantly higher than the control group (∼5.3/mm2) after cultivation for 9 h, demonstrating the excellent angiogenesis ability. The Ti2448-GelMA/DFO scaffolds also exhibited sustained release of DFO, with a cumulative release of 82.3% after 28 days. Therefore, Ti2448-GelMA/DFO scaffolds likely provide a new strategy to improve the osteogenesis and angiogenesis for repair of large bone defects.

7.
Acta Biomater ; 180: 115-127, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38642786

RESUMEN

Bone has the capacity to regenerate itself for relatively small defects; however, this regenerative capacity is diminished in critical-size bone defects. The development of synthetic materials has risen as a distinct strategy to address this challenge. Effective synthetic materials to have emerged in recent years are bioceramic implants, which are biocompatible and highly bioactive. Yet nothing suitable for the repair of large bone defects has made the transition from laboratory to clinic. The clinical success of bioceramics has been shown to depend not only on the scaffold's intrinsic material properties but also on its internal porous geometry. This study aimed to systematically explore the implications of varying channel size, shape, and curvature in tissue scaffolds on in vivo bone regeneration outcomes. 3D printed bioceramic scaffolds with varying channel sizes (0.3 mm to 1.5 mm), shapes (circular vs rectangular), and curvatures (concave vs convex) were implanted in rabbit femoral defects for 8 weeks, followed by histological evaluation. We demonstrated that circular channel sizes of around 0.9 mm diameter significantly enhanced bone formation, compared to channel with diameters of 0.3 mm and 1.5 mm. Interestingly, varying channel shapes (rectangular vs circular) had no significant effect on the volume of newly formed bone. Furthermore, the present study systematically demonstrated the beneficial effect of concave surfaces on bone tissue growth in vivo, reinforcing previous in silico and in vitro findings. This study demonstrates that optimizing architectural configurations within ceramic scaffolds is crucial in enhancing bone regeneration outcomes. STATEMENT OF SIGNIFICANCE: Despite the explosion of work on developing synthetic scaffolds to repair bone defects, the amount of new bone formed by scaffolds in vivo remains suboptimal. Recent studies have illuminated the pivotal role of scaffolds' internal architecture in osteogenesis. However, these investigations have mostly remained confined to in silico and in vitro experiments. Among the in vivo studies conducted, there has been a lack of systematic analysis of individual architectural features. Herein, we utilized bioceramic 3D printing to conduct a systematic exploration of the effects of channel size, shape, and curvature on bone formation in vivo. Our results demonstrate the significant influence of channel size and curvature on in vivo outcomes. These findings provide invaluable insights into the design of more effective bone scaffolds.


Asunto(s)
Cerámica , Osteogénesis , Andamios del Tejido , Impresión Tridimensional , Cerámica/química , Andamios del Tejido/química , Andamios del Tejido/normas , Osteogénesis/fisiología , Animales , Conejos , Masculino , Propiedades de Superficie
8.
Ann Biomed Eng ; 52(6): 1518-1533, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38530536

RESUMEN

The primary goal of bone tissue engineering is to restore and rejuvenate bone defects by using a suitable three-dimensional scaffold, appropriate cells, and growth hormones. Various scaffolding methods are used to fabricate three-dimensional scaffolds, which provide the necessary environment for cell activity and bone formation. Multiple materials may be used to create scaffolds with hierarchical structures that are optimal for cell growth and specialization. This study examines a notion for creating an optimal framework for bone regeneration using a combination of the robocasting method and the electrospinning approach. Research indicates that the integration of these two procedures enhances the benefits of each method and provides a rationale for addressing their shortcomings via this combination. The hybrid approach is anticipated to provide a manufactured scaffold that can effectively replace bone defects while possessing the necessary qualities for bone regeneration.


Asunto(s)
Regeneración Ósea , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Humanos , Ingeniería de Tejidos/métodos , Animales , Huesos , Osteogénesis
9.
J Biomed Mater Res A ; 112(9): 1472-1483, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38477071

RESUMEN

Critical-sized bone defects pose a significant challenge in advanced healthcare due to limited bone tissue regenerative capacity. The complex interplay of numerous overlapping variables hinders the development of multifunctional biocomposites. Phytochemicals show promise in promoting bone growth, but their dose-dependent nature and physicochemical properties halt clinical use. To develop a comprehensive solution, a 3D-printed (3DP) extrusion-based tricalcium phosphate-polycaprolactone (TCP-PCL) scaffold is augmented with quercetin and potassium chloride (KCl). This composite material demonstrates a compressive strength of 30 MPa showing promising stability for low load-bearing applications. Quercetin release from the scaffold follows a biphasic pattern that persists for up to 28 days, driven via diffusion-mediated kinetics. The incorporation of KCl allows for tunable degradation rates of scaffolds and prevents the initial rapid release. Functionalization of scaffolds facilitates the attachment and proliferation of human fetal osteoblasts (hfOB), resulting in a 2.1-fold increase in cell viability. Treated scaffolds exhibit a 3-fold reduction in osteosarcoma (MG-63) cell viability as compared to untreated substrates. Ruptured cell morphology and decreased mitochondrial membrane potential indicate the antitumorigenic potential. Scaffolds loaded with quercetin and quercetin-KCl (Q-KCl) demonstrate 76% and 89% reduction in bacterial colonies of Staphylococcus aureus, respectively. This study provides valuable insights as a promising strategy for bone tissue engineering (BTE) in orthopedic repair.


Asunto(s)
Fosfatos de Calcio , Poliésteres , Impresión Tridimensional , Quercetina , Ingeniería de Tejidos , Andamios del Tejido , Quercetina/farmacología , Quercetina/química , Humanos , Poliésteres/química , Ingeniería de Tejidos/métodos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Andamios del Tejido/química , Huesos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
10.
Acta Biomater ; 177: 506-524, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360290

RESUMEN

The application of 3D printing to calcium phosphates has opened unprecedented possibilities for the fabrication of personalized bone grafts. However, their biocompatibility and bioactivity are counterbalanced by their high brittleness. In this work we aim at overcoming this problem by developing a self-hardening ink containing reactive ceramic particles in a polycaprolactone solution instead of the traditional approach that use hydrogels as binders. The presence of polycaprolactone preserved the printability of the ink and was compatible with the hydrolysis-based hardening process, despite the absence of water in the ink and its hydrophobicity. The microstructure evolved from a continuous polymeric phase with loose ceramic particles to a continuous network of hydroxyapatite nanocrystals intertwined with the polymer, in a configuration radically different from the polymer/ceramic composites obtained by fused deposition modelling. This resulted in the evolution from a ductile behavior, dominated by the polymer, to a stiffer behavior as the ceramic phase reacted. The polycaprolactone binder provides two highly relevant benefits compared to hydrogel-based inks. First, the handleability and elasticity of the as-printed scaffolds, together with the proven possibility of eliminating the solvent, opens the door to implanting the scaffolds freshly printed once lyophilized, while in a ductile state, and the hardening process to take place inside the body, as in the case of calcium phosphate cements. Second, even with a hydroxyapatite content of more than 92 wt.%, the flexural strength and toughness of the scaffolds after hardening are twice and five times those of the all-ceramic scaffolds obtained with the hydrogel-based inks, respectively. STATEMENT OF SIGNIFICANCE: Overcoming the brittleness of ceramic scaffolds would extend the applicability of synthetic bone grafts to high load-bearing situations. In this work we developed a 3D printing ink by replacing the conventional hydrogel binder with a water-free polycaprolactone solution. The presence of polycaprolactone not only enhanced significantly the strength and toughness of the scaffolds while keeping the proportion of bioactive ceramic phase larger than 90 wt.%, but it also conferred flexibility and manipulability to the as-printed scaffolds. Since they are able to harden upon contact with water under physiological conditions, this opens up the possibility of implanting them immediately after printing, while they are still in a ductile state, with clear advantages for fixation and press-fit in the bone defect.


Asunto(s)
Durapatita , Andamios del Tejido , Andamios del Tejido/química , Tinta , Biomimética , Poliésteres , Hidrogeles/química , Impresión Tridimensional , Agua , Ingeniería de Tejidos
11.
Biomech Model Mechanobiol ; 23(3): 987-1012, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38416219

RESUMEN

Recently, 3D-printed biodegradable scaffolds have shown great potential for bone repair in critical-size fractures. The differentiation of the cells on a scaffold is impacted among other factors by the surface deformation of the scaffold due to mechanical loading and the wall shear stresses imposed by the interstitial fluid flow. These factors are in turn significantly affected by the material properties, the geometry of the scaffold, as well as the loading and flow conditions. In this work, a numerical framework is proposed to study the influence of these factors on the expected osteochondral cell differentiation. The considered scaffold is rectangular with a 0/90 lay-down pattern and a four-layered strut made of polylactic acid with a 5% steel particle content. The distribution of the different types of cells on the scaffold surface is estimated through a scalar stimulus, calculated by using a mechanobioregulatory model. To reduce the simulation time for the computation of the stimulus, a probabilistic machine learning (ML)-based reduced-order model (ROM) is proposed. Then, a sensitivity analysis is performed using the Shapley additive explanations to examine the contribution of the various parameters to the framework stimulus predictions. In a final step, a multiobjective optimization procedure is implemented using genetic algorithms and the ROM, aiming to identify the material parameters and loading conditions that maximize the percentage of surface area populated by bone cells while minimizing the area corresponding to the other types of cells and the resorption condition. The results of the performed analysis highlight the potential of using ROMs for the scaffold design, by dramatically reducing the simulation time while enabling the efficient implementation of sensitivity analysis and optimization procedures.


Asunto(s)
Huesos , Aprendizaje Automático , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Huesos/fisiología , Probabilidad , Estrés Mecánico , Humanos , Simulación por Computador , Poliésteres
12.
Heliyon ; 10(4): e26005, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38375289

RESUMEN

The present study investigated the influence of pore size of strut-based Diamond and surface-based Gyroid structures for their suitability as medical implants. Samples were made additively from laser powder bed fusion process with a relative density of 0.3 and pore sizes ranging from 300 to 1300 µm. They were subsequently examined for their manufacturability and mechanical properties. In addition, non-Newtonian computational fluid dynamics and discrete phase models were conducted to assess pressure drop and cell seeding efficiency. The results showed that both Diamond and Gyroid had higher as-built densities with smaller pore sizes. However, Gyroid demonstrated better manufacturability as its relative density was closer to the as-designed one. In addition, based on mechanical testing, the elastic modulus was largely unaffected by pore size, but post-yielding behaviors differed, especially in Diamond. High mechanical sensitivity in Diamond could be explained partly by Finite Element simulations, which revealed stress localization in Diamond and more uniform stress distribution in Gyroid. Furthermore, we defined the product of the normalized specific surface, normalized pressure drop, and cell seeding efficiency as the indicator of an optimal pore size, in which this factor identified an optimal pore size of approximately 500 µm for both Diamond and Gyroid. Besides, based on such criterion, Gyroid exhibited greater applicability as bone scaffolds. In summary, this study provides comprehensive assessment of the effect of pore size and demonstrates the efficient estimation of an in-silico framework for evaluating lattice structures as medical implants, which could be applied to other lattice architectures.

13.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38251117

RESUMEN

A large amount of research in orthopedic and maxillofacial domains is dedicated to the development of bioactive 3D scaffolds. This includes the search for highly resorbable compounds, capable of triggering cell activity and favoring bone regeneration. Considering the phosphocalcic nature of bone mineral, these aims can be achieved by the choice of amorphous calcium phosphates (ACPs). Because of their metastable property, these compounds are however to-date seldom used in bulk form. In this work, we used a non-conventional "cold sintering" approach based on ultrafast low-pressure RT compaction to successfully consolidate ACP pellets while preserving their amorphous nature (XRD). Complementary spectroscopic analyses (FTIR, Raman, solid-state NMR) and thermal analyses showed that the starting powder underwent slight physicochemical modifications, with a partial loss of water and local change in the HPO42- ion environment. The creation of an open porous structure, which is especially adapted for non-load bearing bone defects, was also observed. Moreover, the pellets obtained exhibited sufficient mechanical resistance allowing for manipulation, surgical placement and eventual cutting/reshaping in the operation room. Three-dimensional porous scaffolds of cold-sintered reactive ACP, fabricated through this low-energy, ultrafast consolidation process, show promise toward the development of highly bioactive and tailorable biomaterials for bone regeneration, also permitting combinations with various thermosensitive drugs.

14.
J Mech Behav Biomed Mater ; 150: 106258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000162

RESUMEN

In bone tissue engineering (BTE), defects in large bones remain the greatest issue which can be addressed using bone scaffolds. In this work, blends of heat cured polymethylmethacrylate (HC PMMA) and various weight percentages of poly-ether-ketone-ketone (PEKK) (0, 2, 4, 8, and 10%) were made using a porogen leaching process. The blends were then subjected to tensile, compression and bending tests to select the optimum blend. Based on the results obtained, HC PMMA blended with 2 wt% PEKK was selected to produce the bio-porous blends. Here, the porosity was imparted using tartaric acid (C4H6O6) and sodium hydrogen carbonate (NaHCO3) as porogen leaching components. Porous blends resulted were then reinforced with a nano titanium dioxide powder (nTiO2) at different weight percentages of (0, 1, 3, and 5). The results showed that porous composites made of (HC PMMA: 2 wt% PEKK) blend reinforced with 5 wt % nTiO2 exhibit the highest strength values under various loadings. The FTIR identified the functional groups of the bone scaffold components. The mean pore size and pore depth were measured using atomic force microscopy (AFM) analysis and the values are 92.6 nm and 42.78 nm, respectively. The good distribution of the PEKK and nTiO2 within the HC PMMA and the uniform porous structure with multi-scale pores between 535 nm and 1.187 mm were confirmed by the AFM data and SEM images, respectively. This research expected that the porous composite (HC PMMA: 2% PEKK: 5% nTiO2) is a good candidate for bone scaffold applications.


Asunto(s)
Cetonas , Polimetil Metacrilato , Polimetil Metacrilato/química , Cetonas/química , Éter , Calor , Ingeniería de Tejidos , Porosidad , Éteres de Etila , Éteres , Andamios del Tejido/química
15.
Front Bioeng Biotechnol ; 11: 1305936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107615

RESUMEN

Modern orthopaedic implants use lattice structures that act as 3D scaffolds to enhance bone growth into and around implants. Stochastic scaffolds are of particular interest as they mimic the architecture of trabecular bone and can combine isotropic properties and adjustable structure. The existing research mainly concentrates on controlling the mechanical and biological performance of periodic lattices by adjusting pore size and shape. Still, less is known on how we can control the performance of stochastic lattices through their design parameters: nodal connectivity, strut density and strut thickness. To elucidate this, four lattice structures were evaluated with varied strut densities and connectivity, hence different local geometry and mechanical properties: low apparent modulus, high apparent modulus, and two with near-identical modulus. Pre-osteoblast murine cells were seeded on scaffolds and cultured in vitro for 28 days. Cell adhesion, proliferation and differentiation were evaluated. Additionally, the expression levels of key osteogenic biomarkers were used to assess the effect of each design parameter on the quality of newly formed tissue. The main finding was that increasing connectivity increased the rate of osteoblast maturation, tissue formation and mineralisation. In detail, doubling the connectivity, over fixed strut density, increased collagen type-I by 140%, increased osteopontin by 130% and osteocalcin by 110%. This was attributed to the increased number of acute angles formed by the numerous connected struts, which facilitated the organization of cells and accelerated the cell cycle. Overall, increasing connectivity and adjusting strut density is a novel technique to design stochastic structures which combine a broad range of biomimetic properties and rapid ossification.

16.
J Funct Biomater ; 14(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37888161

RESUMEN

Additively manufactured synthetic bone scaffolds have emerged as promising candidates for the replacement and regeneration of damaged and diseased bones. By employing optimal pore architecture, including pore morphology, sizes, and porosities, 3D-printed scaffolds can closely mimic the mechanical properties of natural bone and withstand external loads. This study aims to investigate the deformation pattern exhibited by polymeric bone scaffolds fabricated using the PolyJet (PJ) 3D printing technique. Cubic and hexagonal closed-packed uniform scaffolds with porosities of 30%, 50%, and 70% are utilized in finite element (FE) models. The crushable foam plasticity model is employed to analyze the scaffolds' mechanical response under quasi-static compression. Experimental validation of the FE results demonstrates a favorable agreement, with an average percentage error of 12.27% ± 7.1%. Moreover, the yield strength and elastic modulus of the scaffolds are evaluated and compared, revealing notable differences between cubic and hexagonal closed-packed designs. The 30%, 50%, and 70% porous cubic pore-shaped bone scaffolds exhibit significantly higher yield strengths of 46.89%, 58.29%, and 66.09%, respectively, compared to the hexagonal closed-packed bone scaffolds at percentage strains of 5%, 6%, and 7%. Similarly, the elastic modulus of the 30%, 50%, and 70% porous cubic pore-shaped bone scaffolds is 42.68%, 59.70%, and 58.18% higher, respectively, than the hexagonal closed-packed bone scaffolds at the same percentage strain levels. Furthermore, it is observed in comparison with our previous study the µSLA-printed bone scaffolds demonstrate 1.5 times higher elastic moduli and yield strengths compared to the PJ-printed bone scaffolds.

17.
Materials (Basel) ; 16(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834620

RESUMEN

Whey protein isolate (WPI) hydrogels are attractive biomaterials for application in bone repair and regeneration. However, their main limitation is low mechanical strength. Therefore, to improve these properties, the incorporation of ceramic phases into hydrogel matrices is currently being performed. In this study, novel whey protein isolate/calcium silicate (WPI/CaSiO3) hydrogel biomaterials were prepared with varying concentrations of a ceramic phase (CaSiO3). The aim of this study was to investigate the effect of the introduction of CaSiO3 to a WPI hydrogel matrix on its physicochemical, mechanical, and biological properties. Our Fourier Transform Infrared Spectroscopy results showed that CaSiO3 was successfully incorporated into the WPI hydrogel matrix to create composite biomaterials. Swelling tests indicated that the addition of 5% (w/v) CaSiO3 caused greater swelling compared to biomaterials without CaSiO3 and ultimate compressive strength and strain at break. Cell culture experiments demonstrated that WPI hydrogel biomaterials enriched with CaSiO3 demonstrated superior cytocompatibility in vitro compared to the control hydrogel biomaterials without CaSiO3. Thus, this study revealed that the addition of CaSiO3 to WPI-based hydrogel biomaterials renders them more promising for bone tissue engineering applications.

18.
Biomater Adv ; 154: 213622, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742556

RESUMEN

Bone homeostasis is predicated by osteoblast and osteoclast cell cycles where gene expressions are responsible for their differentiation from human mesenchymal stem cells (hMSC) and monocytes, respectively. The pro-osteogenic potential of an hMSC-monocyte co-culture can be measured through complementary DNA (mRNA synthesis) within the nucleus, known as quantitative polymerase chain reaction (qPCR). Through this technique, the effects of garlic extract (allicin) release from calcium phosphate bone scaffolds on gene expression of bone forming and bone remodeling cells was explored. Results show this complex biomaterial system enhances hMSC differentiation through the upregulation of bone-forming proteins. Osteoblastic gene markers alkaline phosphatase (ALP) and osteocalcin (BGLAP), are respectively upregulated by 3-fold and 1.6-fold by day 14. These mature osteoblasts then upregulate the receptor activator of nuclear factor-kB ligand (RANKL) which recruits osteoclast cells, as captured by a nearly 2-fold higher osteoclast expression of tartrate-resistance acid-phosphatase (ACP5). This also activates antagonist osteoprotegerin (OPG) expression in osteoblasts, decreasing osteoclast resorption potential and ACP5 expression by day 21. The pro-osteogenic environment with garlic extract release is further quantified by a 4× increase in phosphatase activity and visibly captured in immunofluorescent tagged confocal images. Also corroborated by enhanced collagen formation in a preliminary in vivo rat distal femur model, this work collectively reveals how garlic extract can enhance bioceramic scaffolds for bone tissue regenerative applications.


Asunto(s)
Fosfatasa Alcalina , Ajo , Ratas , Animales , Humanos , Fosfatasa Alcalina/genética , Monocitos/metabolismo , Técnicas de Cocultivo , Ajo/metabolismo , Huesos/metabolismo
19.
Acta Biomater ; 170: 580-595, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673232

RESUMEN

Bone repair is a major challenge in regenerative medicine, e.g. for large defects. There is a need for bioactive, highly percolating bone substitutes favoring bone ingrowth and tissue healing. Here, a modern 3D printing approach (VAT photopolymerization) was exploited to fabricate hydroxyapatite (HA) scaffolds with a Gyroid-"Triply periodic minimal surface" (TPMS) porous structure (65% porosity, 90.5% HA densification) inspired from trabecular bone. Percolation and absorption capacities were analyzed in gaseous and liquid conditions. Mechanical properties relevant to guided bone regeneration in non-load bearing sites, as for maxillofacial contour reconstruction, were evidenced from 3-point bending tests and macrospherical indentation. Scaffolds were implanted in a clinically-relevant large animal model (sheep femur), over 6 months, enabling thorough analyses at short (4 weeks) and long (26 weeks) time points. In vivo performances were systematically compared to the bovine bone-derived Bio-OssⓇ standard. The local tissue response was examined thoroughly by semi-quantitative histopathology. Results demonstrated the absence of toxicity. Bone healing was assessed by bone dynamics analysis through epifluorescence using various fluorochromes and quantitative histomorphometry. Performant bone regeneration was evidenced with similar overall performances to the control, although the Gyroid biomaterial slightly outperformed Bio-OssⓇ at early healing time in terms of osteointegration and appositional mineralization. This work is considered a pilot study on the in vivo evaluation of TPMS-based 3D porous scaffolds in a large animal model, for an extended period of time, and in comparison to a clinical standard. Our results confirm the relevance of such scaffolds for bone regeneration in view of clinical practice. STATEMENT OF SIGNIFICANCE: Bone repair, e.g. for large bone defects or patients with defective vascularization is still a major challenge. Highly percolating TPMS porous structures have recently emerged, but no in vivo data were reported on a large animal model of clinical relevance and comparing to an international standard. Here, we fabricated TPMS scaffolds of HA, determined their chemical, percolation and mechanical features, and ran an in-depth pilot study in the sheep with a systematic comparison to the Bio-OssⓇ reference. Our results clearly show the high bone-forming capability of such scaffolds, with outcomes even better than Bio-OssⓇ at short implantation time. This preclinical work provides quantitative data validating the relevance of such TMPS porous scaffolds for bone regeneration in view of clinical evaluation.

20.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37630871

RESUMEN

Bioactive glasses (BGs) are especially useful materials in soft and bone tissue engineering and even in dentistry. They can be the solution to many medical problems, and they have a huge role in the healing processes of bone fractures. Interestingly, they can also promote skin regeneration and wound healing. Bioactive glasses are able to attach to the bone tissues and form an apatite layer which further initiates the biomineralization process. The formed intermediate apatite layer makes a connection between the hard tissue and the bioactive glass material which results in faster healing without any complications or side effects. This review paper summarizes the most recent advancement in the preparation of diverse types of BGs, such as silicate-, borate- and phosphate-based bioactive glasses. We discuss their physical, chemical, and mechanical properties detailing how they affect their biological performances. In order to get a deeper insight into the state-of-the-art in this area, we also consider their medical applications, such as bone regeneration, wound care, and dental/bone implant coatings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...