Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.221
Filtrar
1.
BMC Pulm Med ; 24(1): 308, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956528

RESUMEN

AIM: To develop a decision-support tool for predicting extubation failure (EF) in neonates with bronchopulmonary dysplasia (BPD) using a set of machine-learning algorithms. METHODS: A dataset of 284 BPD neonates on mechanical ventilation was used to develop predictive models via machine-learning algorithms, including extreme gradient boosting (XGBoost), random forest, support vector machine, naïve Bayes, logistic regression, and k-nearest neighbor. The top three models were assessed by the area under the receiver operating characteristic curve (AUC), and their performance was tested by decision curve analysis (DCA). Confusion matrix was used to show the high performance of the best model. The importance matrix plot and SHapley Additive exPlanations values were calculated to evaluate the feature importance and visualize the results. The nomogram and clinical impact curves were used to validate the final model. RESULTS: According to the AUC values and DCA results, the XGboost model performed best (AUC = 0.873, sensitivity = 0.896, specificity = 0.838). The nomogram and clinical impact curve verified that the XGBoost model possessed a significant predictive value. The following were predictive factors for EF: pO2, hemoglobin, mechanical ventilation (MV) rate, pH, Apgar score at 5 min, FiO2, C-reactive protein, Apgar score at 1 min, red blood cell count, PIP, gestational age, highest FiO2 at the first 24 h, heart rate, birth weight, pCO2. Further, pO2, hemoglobin, and MV rate were the three most important factors for predicting EF. CONCLUSIONS: The present study indicated that the XGBoost model was significant in predicting EF in BPD neonates with mechanical ventilation, which is helpful in determining the right extubation time among neonates with BPD to reduce the occurrence of complications.


Asunto(s)
Extubación Traqueal , Displasia Broncopulmonar , Aprendizaje Automático , Nomogramas , Respiración Artificial , Humanos , Displasia Broncopulmonar/terapia , Recién Nacido , Femenino , Masculino , Respiración Artificial/métodos , Curva ROC , Estudios Retrospectivos , Técnicas de Apoyo para la Decisión , Insuficiencia del Tratamiento , Modelos Logísticos
2.
World J Radiol ; 16(6): 203-210, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38983838

RESUMEN

BACKGROUND: Development of distant metastasis (DM) is a major concern during treatment of nasopharyngeal carcinoma (NPC). However, studies have demonstrated improved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy. Therefore, precise prediction of metastasis in patients with NPC is crucial. AIM: To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging (MRI) reports. METHODS: This retrospective study included 792 patients with non-distant metastatic NPC. A total of 469 imaging variables were obtained from detailed MRI reports. Data were stratified and randomly split into training (50%) and testing sets. Gradient boosting tree (GBT) models were built and used to select variables for predicting DM. A full model comprising all variables and a reduced model with the top-five variables were built. Model performance was assessed by area under the curve (AUC). RESULTS: Among the 792 patients, 94 developed DM during follow-up. The number of metastatic cervical nodes (30.9%), tumor invasion in the posterior half of the nasal cavity (9.7%), two sides of the pharyngeal recess (6.2%), tubal torus (3.3%), and single side of the parapharyngeal space (2.7%) were the top-five contributors for predicting DM, based on their relative importance in GBT models. The testing AUC of the full model was 0.75 (95% confidence interval [CI]: 0.69-0.82). The testing AUC of the reduced model was 0.75 (95%CI: 0.68-0.82). For the whole dataset, the full (AUC = 0.76, 95%CI: 0.72-0.82) and reduced models (AUC = 0.76, 95%CI: 0.71-0.81) outperformed the tumor node-staging system (AUC = 0.67, 95%CI: 0.61-0.73). CONCLUSION: The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC. The number of metastatic cervical nodes was identified as the principal contributing variable.

3.
Front Neurol ; 15: 1418474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966086

RESUMEN

Objectives: Wilson disease (WD) is a rare autosomal recessive disorder caused by a mutation in the ATP7B gene. Neurological symptoms are one of the most common symptoms of WD. This study aims to construct a model that can predict the occurrence of neurological symptoms by combining clinical multidimensional indicators with machine learning methods. Methods: The study population consisted of WD patients who received treatment at the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine from July 2021 to September 2023 and had a Leipzig score ≥ 4 points. Indicators such as general clinical information, imaging, blood and urine tests, and clinical scale measurements were collected from patients, and machine learning methods were employed to construct a prediction model for neurological symptoms. Additionally, the SHAP method was utilized to analyze clinical information to determine which indicators are associated with neurological symptoms. Results: In this study, 185 patients with WD (of whom 163 had neurological symptoms) were analyzed. It was found that using the eXtreme Gradient Boosting (XGB) to predict achieved good performance, with an MCC value of 0.556, ACC value of 0.929, AUROC value of 0.835, and AUPRC value of 0.975. Brainstem damage, blood creatinine (Cr), age, indirect bilirubin (IBIL), and ceruloplasmin (CP) were the top five important predictors. Meanwhile, the presence of brainstem damage and the higher the values of Cr, Age, and IBIL, the more likely neurological symptoms were to occur, while the lower the CP value, the more likely neurological symptoms were to occur. Conclusions: To sum up, the prediction model constructed using machine learning methods to predict WD cirrhosis has high accuracy. The most important indicators in the prediction model were brainstem damage, Cr, age, IBIL, and CP. It provides assistance for clinical decision-making.

4.
Diagnostics (Basel) ; 14(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39001243

RESUMEN

Acute Myocardial Infarction (AMI), a common disease that can have serious consequences, occurs when myocardial blood flow stops due to occlusion of the coronary artery. Early and accurate prediction of AMI is critical for rapid prognosis and improved patient outcomes. Metabolomics, the study of small molecules within biological systems, is an effective tool used to discover biomarkers associated with many diseases. This study intended to construct a predictive model for AMI utilizing metabolomics data and an explainable machine learning approach called Explainable Boosting Machines (EBM). The EBM model was trained on a dataset of 102 prognostic metabolites gathered from 99 individuals, including 34 healthy controls and 65 AMI patients. After a comprehensive data preprocessing, 21 metabolites were determined as the candidate predictors to predict AMI. The EBM model displayed satisfactory performance in predicting AMI, with various classification performance metrics. The model's predictions were based on the combined effects of individual metabolites and their interactions. In this context, the results obtained in two different EBM modeling, including both only individual metabolite features and their interaction effects, were discussed. The most important predictors included creatinine, nicotinamide, and isocitrate. These metabolites are involved in different biological activities, such as energy metabolism, DNA repair, and cellular signaling. The results demonstrate the potential of the combination of metabolomics and the EBM model in constructing reliable and interpretable prediction outputs for AMI. The discussed metabolite biomarkers may assist in early diagnosis, risk assessment, and personalized treatment methods for AMI patients. This study successfully developed a pipeline incorporating extensive data preprocessing and the EBM model to identify potential metabolite biomarkers for predicting AMI. The EBM model, with its ability to incorporate interaction terms, demonstrated satisfactory classification performance and revealed significant metabolite interactions that could be valuable in assessing AMI risk. However, the results obtained from this study should be validated with studies to be carried out in larger and well-defined samples.

5.
BMC Cardiovasc Disord ; 24(1): 359, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004698

RESUMEN

BACKGROUND: Takotsubo syndrome (TTS) is an acute heart failure syndrome with symptoms similar to acute myocardial infarction. TTS is often triggered by acute emotional or physical stress and is a significant cause of morbidity and mortality. Predictors of mortality in patients with TS are not well understood, and there is a need to identify high-risk patients and tailor treatment accordingly. This study aimed to assess the importance of various clinical factors in predicting 30-day mortality in TTS patients using a machine learning algorithm. METHODS: We analyzed data from the nationwide Swedish Coronary Angiography and Angioplasty Registry (SCAAR) for all patients with TTS in Sweden between 2015 and 2022. Gradient boosting was used to assess the relative importance of variables in predicting 30-day mortality in TTS patients. RESULTS: Of 3,180 patients hospitalized with TTS, 76.0% were women. The median age was 71.0 years (interquartile range 62-77). The crude all-cause mortality rate was 3.2% at 30 days. Machine learning algorithms by gradient boosting identified treating hospitals as the most important predictor of 30-day mortality. This factor was followed in significance by the clinical indication for angiography, creatinine level, Killip class, and age. Other less important factors included weight, height, and certain medical conditions such as hyperlipidemia and smoking status. CONCLUSIONS: Using machine learning with gradient boosting, we analyzed all Swedish patients diagnosed with TTS over seven years and found that the treating hospital was the most significant predictor of 30-day mortality.


Asunto(s)
Angiografía Coronaria , Sistema de Registros , Cardiomiopatía de Takotsubo , Humanos , Femenino , Suecia/epidemiología , Masculino , Anciano , Cardiomiopatía de Takotsubo/mortalidad , Cardiomiopatía de Takotsubo/diagnóstico por imagen , Cardiomiopatía de Takotsubo/terapia , Cardiomiopatía de Takotsubo/diagnóstico , Cardiomiopatía de Takotsubo/fisiopatología , Factores de Riesgo , Persona de Mediana Edad , Factores de Tiempo , Medición de Riesgo , Aprendizaje Automático , Pronóstico , Valor Predictivo de las Pruebas , Anciano de 80 o más Años , Hospitales
6.
Sci Rep ; 14(1): 16400, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013923

RESUMEN

In order to further promote the application of cementitious sand gravel (CSG), the mechanical properties and variation rules of CSG material under triaxial test were studied. Considering the influence of fly ash content, water-binder ratio, sand rate and lateral confining pressure, 81 cylinder specimens were designed and made for conventional triaxial test, and the influence laws of stress-strain curve, failure pattern, elastic modulus, energy dissipation and damage evolution of specimens were analyzed. The results showed that the peak of stress-strain curve increased with the increase of confining pressure, and the peak stress, peak strain and energy dissipation all increased significantly, but the damage variable D decreased with the increase of confining pressure. Under triaxial compression, the specimen was basically sheared failure from the bonding surface, and the aggregate generally did not break. Sand rate had a significant effect on the peak stress of CSG, and decreased with the increase of sand rate. Under the conditions of the same cement content, fly ash content and confining pressure, the optimal water-binder ratio 1.2 existed when the sand rate was 0.2 and 0.3. After analyzing and processing the stress-strain curve of triaxial test, a Cuckoo Search-eXtreme Gradient Boosting (CS-XGBoost) curve prediction model was established, and the model was evaluated by evaluation indexes R2, RMSE and MAE. The average R2 of the XGBoost model based on initial parameters under 18 different output features was 0.8573, and the average R2 of the CS-XGBoost model was 0.9516, an increase of 10.10%. Moreover, the prediction curve was highly consistent with the test curve, indicating that the CS algorithm had significant advantages. The CS-XGBoost model could accurately predict the triaxial stress-strain curve of CSG.

7.
Sci Total Environ ; 947: 174533, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972412

RESUMEN

Redox conditions play a crucial role in determining the fate of many contaminants in groundwater, impacting ecosystem services vital for both the aquatic environment and human water supply. Geospatial machine learning has previously successfully modelled large-scale redox conditions. This study is the first to consolidate the complementary information provided by sediment color and water chemistry to enhance our understanding of redox conditions in Denmark. In the first step, the depth to the first redox interface is modelled using sediment color from 27,042 boreholes. In the second step, the depth of the first redox interface is compared against water chemistry data at 22,198 wells to classify redox complexity. The absence of nitrate containing water below the first redox interface is referred to as continuous redox conditions. In contrast, discontinuous redox conditions are identified by the presence of nitrate below the first redox interface. Both models are built using 20 covariate maps, encompassing diverse hydrologically relevant information. The first redox interface is modelled with a mean error of 0.0 m and a root-mean-squared error of 8.0 m. The redox complexity model attains an accuracy of 69.8 %. Results indicate a mean depth to the first redox interface of 8.6 m and a standard deviation of 6.5 m. 60 % of Denmark is classified as discontinuous, indicating complex redox conditions, predominantly collocated in clay rich glacial landscapes. Both maps, i.e., first redox interface and redox complexity are largely driven by the water table and hydrogeology. The developed maps contribute to our understanding of subsurface redox processes, supporting national-scale land-use and water management.

8.
Sci Total Environ ; : 174462, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992374

RESUMEN

This comprehensive study unveils the vast global potential of microalgae as a sustainable bioenergy source, focusing on the utilization of marginal lands and employing advanced machine learning techniques to predict biomass productivity. By identifying approximately 7.37 million square kilometers of marginal lands suitable for microalgae cultivation, this research uncovers the extensive potential of these underutilized areas, particularly within equatorial and low-latitude regions, for microalgae bioenergy development. This approach mitigates the competition for food resources and conserves freshwater supplies. Utilizing cutting-edge machine learning algorithms based on robust datasets from global microalgae cultivation experiments spanning 1994 to 2017, this study integrates essential environmental variables to map out a detailed projection of potential yields across a variety of landscapes. The analysis further delineates the bioenergy and carbon sequestration potential across two effective cultivation methods: Photobioreactors (PBRs), and Open Ponds, with PBRs showcasing exceptional productivity, with a global average daily biomass productivity of 142.81mgL-1d-1, followed by Open Ponds at 122.57mgL-1d-1. Projections based on optimal PBR conditions suggest an annual yield of 99.54 gigatons of microalgae biomass. This yield can be transformed into 64.70 gigatons of biodiesel, equivalent to 58.68 gigatons of traditional diesel, while sequestering 182.16 gigatons of CO2, equating to approximately 4.5 times the global CO2 emissions projected for 2023. Notably, Australia leads in microalgae biomass production, with an annual output of 16.19 gigatons, followed by significant contributions from Kazakhstan, Sudan, Brazil, the United States, and China, showcasing the diverse global potential for microalgae bioenergy across varying ecological and geographical landscapes. Through this rigorous investigation, the study emphasizes the strategic importance of microalgae cultivation in achieving sustainable energy solutions and mitigating climate change, while also acknowledging the scalability challenges and the necessity for significant economic and energy investments.

9.
Chemphyschem ; : e202400629, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982718

RESUMEN

Electrode materials are essential in the electrochemical process of storing charge in supercapacitors and have a significant impact on the cost and capacitive performance of the final product. Hence, it is imperative to make precise predictions regarding the capacitance of electrode materials in order to further the development of supercapacitors. MgCo2O4, with a theoretical capacitance of up to 3122 F g-1, holds immense research value as an electrode material. The objective of this study is to predict the capacitance of MgCo2O4 with high accuracy. This will be achieved by extracting numerous data from published papers and using some parameters as input features. The Recursive Feature Elimination (RFE) method was employed, using Random Forest (RF), Extreme Gradient Boosting (XGBoost) and Regression Tree (RT) as selectors to identify the optimal feature subset. Then, combining them with these three regression models to construct nine machine learning (ML) models. After performance evaluation and outlier analysis, the XGB-RFE-XGB model achieved R-squared (R²), root mean squared error (RMSE), and mean absolute error (MAE) of 0.95, 111.83 F g-1 and 68.25 F g-1, respectively, demonstrating its stability and reliability. Therefore, the XGB-RFE-XGB model can be used as a reliable predictive tool in subsequent experimental designs.

10.
Nanomaterials (Basel) ; 14(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38998758

RESUMEN

In recent years, smart windows have attracted widespread attention due to their ability to respond to external stimuli such as light, heat, and electricity, thereby intelligently adjusting the ultraviolet, visible, and near-infrared light in solar radiation. VO2(M) undergoes a reversible phase transition from an insulating phase (monoclinic, M) to a metallic phase (rutile, R) at a critical temperature of 68 °C, resulting in a significant difference in near-infrared transmittance, which is particularly suitable for use in energy-saving smart windows. However, due to the multiple valence states of vanadium ions and the multiphase characteristics of VO2, there are still challenges in preparing pure-phase VO2(M). Machine learning (ML) can learn and generate models capable of predicting unknown data from vast datasets, thereby avoiding the wastage of experimental resources and reducing time costs associated with material preparation optimization. Hence, in this paper, four ML algorithms, namely multi-layer perceptron (MLP), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB), were employed to explore the parameters for the successful preparation of VO2(M) films via magnetron sputtering. A comprehensive performance evaluation was conducted on these four models. The results indicated that XGB was the top-performing model, achieving a prediction accuracy of up to 88.52%. A feature importance analysis using the SHAP method revealed that substrate temperature had an essential impact on the preparation of VO2(M). Furthermore, characteristic parameters such as sputtering power, substrate temperature, and substrate type were optimized to obtain pure-phase VO2(M) films. Finally, it was experimentally verified that VO2(M) films can be successfully prepared using optimized parameters. These findings suggest that ML-assisted material preparation is highly feasible, substantially reducing resource wastage resulting from experimental trial and error, thereby promoting research on material preparation optimization.

11.
Sci Total Environ ; 948: 174584, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977098

RESUMEN

Acid-modified biochar is a modified biochar material with convenient preparation, high specific surface area, and rich pore structure. It has great potential for application in the heavy metal remediation, soil amendments, and carrying catalysts. Specific surface area (SSA), average pore size (APS), and total pore volume (TPV) are the key properties that determine its adsorption capacity, reactivity, and water holding capacity, and an intensive study of these properties is essential to optimize the performance of biochar. But the complex interactions among the preparation conditions obstruct finding the optimal modification strategy. This study collected dataset through bibliometric analysis and used four typical machine learning models to predict the SSA, APS, and TPV of acid-modified biochar. The results showed that the extreme gradient boosting (XGB) was optimal for the test results (SSA R2 = 0.92, APS R2 = 0.87, TPV R2 = 0.96). The model interpretation revealed that the modification conditions were the major factors affecting SSA and TPV, and the pyrolysis conditions were the major factors affecting APS. Based on the XGB model, the modification conditions of biochar were optimized, which revealed the ideal preparation conditions for producing the optimal biochar (SSA = 727.02 m2/g, APS = 5.34 nm, TPV = 0.68 cm3/g). Moreover, the biochar produced under specific conditions verified the generalization ability of the XGB model (R2 = 0.99, RMSE = 12.355). This study provides guidance for optimizing the preparation strategy of acid-modified biochar and promotes its potentiality for industrial application.

12.
Sensors (Basel) ; 24(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931566

RESUMEN

Mapping soil properties in sub-watersheds is critical for agricultural productivity, land management, and ecological security. Machine learning has been widely applied to digital soil mapping due to a rapidly increasing number of environmental covariates. However, the inclusion of many environmental covariates in machine learning models leads to the problem of multicollinearity, with poorly understood consequences for prediction performance. Here, we explored the effects of variable selection on the prediction performance of two machine learning models for multiple soil properties in the Haihun River sub-watershed, Jiangxi Province, China. Surface soils (0-20 cm) were collected from a total of 180 sample points in 2022. The optimal covariates were selected from 40 environmental covariates using a recursive feature elimination algorithm. Compared to all-variable models, the random forest (RF) and extreme gradient boosting (XGBoost) models with variable selection improved in prediction accuracy. The R2 values of the RF and XGBoost models increased by 0.34 and 0.47 for the soil organic carbon, by 0.67 and 0.62 for the total phosphorus, and by 0.43 and 0.62 for the available phosphorus, respectively. The models with variable selection presented reduced global uncertainty, and the overall uncertainty of the RF model was lower than that of the XGBoost model. The soil properties showed high spatial heterogeneity based on the models with variable selection. Remote sensing covariates (particularly principal component 2) were the major factors controlling the distribution of the soil organic carbon. Human activity covariates (mainly land use) and organism covariates (mainly potential evapotranspiration) played a predominant role in driving the distribution of the soil total and soil available phosphorus, respectively. This study indicates the importance of variable selection for predicting multiple soil properties and mapping their spatial distribution in sub-watersheds.

13.
Diagnostics (Basel) ; 14(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928664

RESUMEN

The Expanded Disability Status Scale (EDSS) is the most popular method to assess disease progression and treatment effectiveness in patients with multiple sclerosis (PwMS). One of the main problems with the EDSS method is that different results can be determined by different physicians for the same patient. In this case, it is necessary to produce autonomous solutions that will increase the reliability of the EDSS, which has a decision-making role. This study proposes a machine learning approach to predict EDSS scores using aerobic capacity data from PwMS. The primary goal is to reduce potential complications resulting from incorrect scoring procedures. Cardiovascular and aerobic capacity parameters of individuals, including aerobic capacity, ventilation, respiratory frequency, heart rate, average oxygen density, load, and energy expenditure, were evaluated. These parameters were given as input to CatBoost, gradient boosting (GBM), extreme gradient boosting (XGBoost), and decision tree (DT) machine learning methods. The most significant EDSS results were determined with the XGBoost algorithm. Mean absolute error, root mean square error, mean square error, mean absolute percent error, and R square values were obtained as 0.26, 0.4, 0.26, 16, and 0.68, respectively. The XGBoost based machine learning technique was shown to be effective in predicting EDSS based on aerobic capacity and cardiovascular data in PwMS.

14.
Micromachines (Basel) ; 15(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38930708

RESUMEN

Under certain circumstances, a high-speed railway may require constant acceleration or emergency braking, in which case the inverter may experience short-term overload conditions and the current passing through the IGBT will go beyond the rated design tolerance. Under overload conditions, the IGBT loss will increase instantly, raising the power semiconductor device's junction temperature in the process. This research examines the boosting-gate-voltage-driven IGBT control technology. It increases the gate drive voltage and the IGBT current capacity and decreases the conduction voltage drop of IGBT under short-term overload conditions, reducing the instantaneous loss and temperature rise undulation of IGBT. The working characteristics of IGBT devices are studied, and the influence of gate drive voltage on device loss and temperature rise fluctuations is analyzed. Based on the emergency acceleration and brake conditions of the actual train operation, the short-term overload characteristics of the inverter are analyzed. The optimization analysis of the boosting gate voltage under emergency conditions is carried out, and the IGBT drive circuit with gate voltage pumping function is designed. The effectiveness of the driving circuit is verified through PSpice simulation and actual switching characteristic test. According to the analysis of experimental data, it can be verified that increasing the gate voltage technology can reduce IGBT losses.

15.
Prim Care Diabetes ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944562

RESUMEN

BACKGROUND AND AIM: It is crucial to identify a diabetes diagnosis early. Create a predictive model utilizing machine learning (ML) to identify new cases of diabetes in primary health care (PHC). METHODS: A case-control study utilizing data on PHC visits for sex-, age, and PHC-matched controls. Stochastic gradient boosting was used to construct a model for predicting cases of diabetes based on diagnostic codes from PHC consultations during the year before index (diagnosis) date and number of consultations. Variable importance was estimated using the normalized relative influence (NRI) score. Risks of having diabetes were calculated using odds ratios of marginal effects (ORME). Four groups by age and sex were studied, age-groups 35-64 years and ≥ 65 years in men and women, respectively. RESULTS: The most important predictive factors were hypertension with NRI 21.4-29.7 %, and obesity 4.8-15.2 %. The NRI for other top ten diagnoses and administrative codes generally ranged 1.0-4.2 %. CONCLUSIONS: Our data confirm the known risk patterns for predicting a new diagnosis of diabetes, and the need to test blood glucose frequently. To assess the full potential of ML for risk prediction purposes in clinical practice, future studies could include clinical data on life-style patterns, laboratory tests and prescribed medication.

16.
Sci Rep ; 14(1): 13953, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886458

RESUMEN

Predicting postpartum hemorrhage (PPH) before delivery is crucial for enhancing patient outcomes, enabling timely transfer and implementation of prophylactic therapies. We attempted to utilize machine learning (ML) using basic pre-labor clinical data and laboratory measurements to predict postpartum Hemoglobin (Hb) in non-complicated singleton pregnancies. The local databases of two academic care centers on patient delivery were incorporated into the current study. Patients with preexisting coagulopathy, traumatic cases, and allogenic blood transfusion were excluded from all analyses. The association of pre-delivery variables with 24-h post-delivery hemoglobin level was evaluated using feature selection with Elastic Net regression and Random Forest algorithms. A suite of ML algorithms was employed to predict post-delivery Hb levels. Out of 2051 pregnant women, 1974 were included in the final analysis. After data pre-processing and redundant variable removal, the top predictors selected via feature selection for predicting post-delivery Hb were parity (B: 0.09 [0.05-0.12]), gestational age, pre-delivery hemoglobin (B:0.83 [0.80-0.85]) and fibrinogen levels (B:0.01 [0.01-0.01]), and pre-labor platelet count (B*1000: 0.77 [0.30-1.23]). Among the trained algorithms, artificial neural network provided the most accurate model (Root mean squared error: 0.62), which was subsequently deployed as a web-based calculator: https://predictivecalculators.shinyapps.io/ANN-HB . The current study shows that ML models could be utilized as accurate predictors of indirect measures of PPH and can be readily incorporated into healthcare systems. Further studies with heterogenous population-based samples may further improve the generalizability of these models.


Asunto(s)
Algoritmos , Hemoglobinas , Aprendizaje Automático , Humanos , Femenino , Hemoglobinas/análisis , Hemoglobinas/metabolismo , Embarazo , Adulto , Hemorragia Posparto/sangre , Periodo Posparto/sangre , Parto Obstétrico
17.
J Biol Chem ; 300(7): 107431, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825006

RESUMEN

Antibiotic-resistant Enterobacterales pose a major threat to healthcare systems worldwide, necessitating the development of novel strategies to fight such hard-to-kill bacteria. One potential approach is to develop molecules that force bacteria to hyper-activate prodrug antibiotics, thus rendering them more effective. In the present work, we aimed to obtain proof-of-concept data to support that small molecules targeting transcriptional regulators can potentiate the antibiotic activity of the prodrug metronidazole (MTZ) against Escherichia coli under aerobic conditions. By screening a chemical library of small molecules, a series of structurally related molecules were identified that had little inherent antibiotic activity but showed substantial activity in combination with ineffective concentrations of MTZ. Transcriptome analyses, functional genetics, thermal shift assays, and electrophoretic mobility shift assays were then used to demonstrate that these MTZ boosters target the transcriptional repressor MarR, resulting in the upregulation of the marRAB operon and its downstream MarA regulon. The associated upregulation of the flavin-containing nitroreductase, NfsA, was then shown to be critical for the booster-mediated potentiation of MTZ antibiotic activity. Transcriptomic studies, biochemical assays, and electron paramagnetic resonance measurements were then used to show that under aerobic conditions, NfsA catalyzed 1-electron reduction of MTZ to the MTZ radical anion which in turn induced lethal DNA damage in E. coli. This work reports the first example of prodrug boosting in Enterobacterales by transcriptional modulators and highlights that MTZ antibiotic activity can be chemically induced under anaerobic growth conditions.

18.
Sci Rep ; 14(1): 12453, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849379

RESUMEN

The use of deicers in urban areas, on runways and aircrafts has raised concerns about their environmental impact. Understanding the ice-melting mechanism is crucial for developing environmentally friendly deicers, yet it remains challenging. This study employs machine learning to investigate the ice penetration capacity (IPC) of 21 salts and 16 organic solvents as deicers. Relationships between their IPC and various physical properties were analysed using extreme gradient boosting (XGBoost) and Shapley additive explanation (SHAP). Three key ice-melting mechanisms were identified: (1) freezing-point depression, (2) interactions between deicers and H2O molecules and (3) infiltration of ions into ice crystals. SHAP analysis revealed different ice-melting factors and mechanisms for salts and organic solvents, suggesting a potential advantage in combining the two. A mixture of propylene glycol (PG) and sodium formate demonstrated superior environmental impact and IPC. The PG and sodium formate mixture exhibited higher IPC when compared to six commercially available deicers, offering promise for sustainable deicing applications. This study provides valuable insights into the ice-melting process and proposes an effective, environmentally friendly deicer that combines the strengths of organic solvents and salts, paving the way for more sustainable practices in deicing.

19.
Heliyon ; 10(11): e31882, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841483

RESUMEN

Background: TNFRSF4 plays a significant role in cancer progression, especially in hepatocellular carcinoma (HCC). This study aims to investigate the prognostic value of TNFRSF4 expression in patients with HCC and to develop a predictive pathomics model for its expression. Methods: A cohort of patients with HCC retrieved from the TCGA database was analyzed using RNA-seq analysis to determine TNFRSF4 expression and its impact on overall survival (OS). Additionally, hematoxylin-eosin staining analysis was performed to construct a pathomics model for predicting TNFRSF4 expression. Then, pathway enrichment analysis was conducted, immune checkpoint markers were investigated, and immune cell infiltration was examined to explore the underlying biological mechanism of the pathomics score. Results: TNFRSF4 expression was significantly higher in tumor tissues than in normal tissues. TNFRSF4 expression also exhibited significant correlations with various clinical variables, including pathologic stage III/IV and R1/R2/RX residual tumor. Furthermore, elevated TNFRSF4 expression was associated with unfavorable OS. Interestingly, in the subgroup analysis, elevated TNFRSF4 expression was identified as a significant risk factor for OS in male patients. The newly developed pathomics model successfully predicted TNFRSF4 expression with good performance and revealed a significant association between high pathomics scores and worse OS. In male patients, high pathomics scores were also associated with a higher risk of mortality. Moreover, pathomics scores were also involved in specific hallmarks, immune-related characteristics, and apoptosis-related genes in HCC, such as epithelial-mesenchymal transition, Tregs, and BAX expression. Conclusions: Our findings suggest that TNFRSF4 expression and the newly devised pathomics scores hold potential as prognostic markers for OS in patients with HCC. Additionally, gender influenced the association between these markers and patient outcomes.

20.
Med Biol Eng Comput ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874706

RESUMEN

The work elucidates the importance of accurate Parkinson's disease classification within medical diagnostics and introduces a novel framework for achieving this goal. Specifically, the study focuses on enhancing disease identification accuracy utilizing boosting methods. A standout contribution of this work lies in the utilization of a light gradient boosting machine (LGBM) coupled with hyperparameter tuning through grid search optimization (GSO) on the Parkinson's disease dataset derived from speech recording signals. In addition, the Synthetic Minority Over-sampling Technique (SMOTE) has also been employed as a pre-processing technique to balance the dataset, enhancing the robustness and reliability of the analysis. This approach is a novel addition to the study and underscores its potential to enhance disease identification accuracy. The datasets employed in this work include both gender-specific and combined cases, utilizing several distinctive feature subsets including baseline, Mel-frequency cepstral coefficients (MFCC), time-frequency, wavelet transform (WT), vocal fold, and tunable-Q-factor wavelet transform (TQWT). Comparative analyses against state-of-the-art boosting methods, such as AdaBoost and XG-Boost, reveal the superior performance of our proposed approach across diverse datasets and metrics. Notably, on the male cohort dataset, our method achieves exceptional results, demonstrating an accuracy of 0.98, precision of 1.00, sensitivity of 0.97, F1-Score of 0.98, and specificity of 1.00 when utilizing all features with GSO-LGBM. In comparison to AdaBoost and XGBoost, the proposed framework utilizing LGBM demonstrates superior accuracy, achieving an average improvement of 5% in classification accuracy across all feature subsets and datasets. These findings underscore the potential of the proposed methodology to enhance disease identification accuracy and provide valuable insights for further advancements in medical diagnostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...