Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Eur J Neurosci ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113267

RESUMEN

Brain iron increases in several neurodegenerative diseases are associated with disease progression. However, the causes of increased brain iron remain unclear. This study investigates relationships between subcortical iron, systemic iron and inflammatory status. Brain magnetic resonance imaging (MRI) scans and blood plasma samples were collected from cognitively healthy females (n = 176, mean age = 61.4 ± 4.5 years, age range = 28-72 years) and males (n = 152, mean age = 62.0 ± 5.1 years, age range = 32-74 years). Regional brain iron was quantified using quantitative susceptibility mapping. To assess systemic iron, haematocrit, ferritin and soluble transferrin receptor were measured, and total body iron index was calculated. To assess systemic inflammation, C-reactive protein (CRP), neutrophil:lymphocyte ratio (NLR), macrophage colony-stimulating factor 1 (MCSF), interleukin 6 (IL6) and interleukin 1ß (IL1ß) were measured. We demonstrated that iron levels in the right hippocampus were higher in males compared with females, while iron in the right caudate was higher in females compared with males. There were no significant associations observed between subcortical iron levels and blood markers of iron and inflammatory status indicating that such blood measures are not markers of brain iron. These results suggest that brain iron may be regulated independently of blood iron and so directly targeting global iron change in the treatment of neurodegenerative disease may have differential impacts on blood and brain iron.

2.
Cureus ; 16(8): e67331, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39165621

RESUMEN

Aceruloplasminemia (ACP) is a rare genetic disorder that manifests in adulthood due to mutations in the CP (ceruloplasmin) gene, causing iron accumulation and neurodegeneration. Clinically, ACP presents with a range of symptoms, including mild microcytic anemia, diabetes mellitus, liver disease, retinopathy, progressive neurological symptoms such as cerebellar ataxia, involuntary movements, parkinsonism, mood and behavior disorders, and cognitive impairment. We present the case of a 53-year-old female with a history of first-degree consanguinity and a sister with anemia. At six years old, she developed asthenia, leading to multiple hospitalizations for acute hemolytic anemia requiring transfusions and iron therapy. She exhibited later memory disturbances, slowed comprehension, social withdrawal, and school discontinuation. At the age of 51, she developed gait disturbances, unexplained falls, and cognitive decline. One year later, cranial CT revealed a chronic bilateral subdural hematoma. On admission at 53, she had anarthria, right hemiparesis, diffuse rigidity, mouth dystonia, oculomotor paralysis, and intellectual deterioration. MRI showed superficial cortical and leptomeningeal hemosiderin deposits and bilateral signal anomalies in various deep brain regions. EEG revealed paroxysmal anomalies and abdominal MRI indicated hepatic iron overload. Laboratory tests confirmed ACP. This case highlights the rare and severe neurological and systemic manifestations of ACP, emphasizing the importance of early diagnosis and intervention in such degenerative diseases to prevent irreversible neurological complications.

3.
Nutrients ; 16(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39125438

RESUMEN

Current evidence suggests that iron deficiency (ID) plays a key role in the pathogenesis of conditions presenting with restlessness such as attention deficit hyperactivity disorder (ADHD) and restless legs syndrome (RLS). In clinical practice, ID and iron supplementation are not routinely considered in the diagnostic work-up and/or as a treatment option in such conditions. Therefore, we conducted a scoping literature review of ID guidelines. Of the 58 guidelines included, only 9 included RLS, and 3 included ADHD. Ferritin was the most frequently cited biomarker, though cutoff values varied between guidelines and depending on additional factors such as age, sex, and comorbidities. Recommendations surrounding measurable iron biomarkers and cutoff values varied between guidelines; moreover, despite capturing the role of inflammation as a concept, most guidelines often did not include recommendations for how to assess this. This lack of harmonization on the interpretation of iron and inflammation biomarkers raises questions about the applicability of current guidelines in clinical practice. Further, the majority of ID guidelines in this review did not include the ID-associated disorders, ADHD and RLS. As ID can be associated with altered movement patterns, a novel consensus is needed for investigating and interpreting iron status in the context of different clinical phenotypes.


Asunto(s)
Biomarcadores , Deficiencias de Hierro , Guías de Práctica Clínica como Asunto , Síndrome de las Piernas Inquietas , Humanos , Síndrome de las Piernas Inquietas/diagnóstico , Biomarcadores/sangre , Ferritinas/sangre , Sueño/fisiología , Trastorno por Déficit de Atención con Hiperactividad , Anemia Ferropénica/diagnóstico , Hierro/sangre
4.
Eur J Radiol ; 178: 111598, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996737

RESUMEN

PURPOSE: This review aims to explore the role of Quantitative Susceptibility Mapping (QSM) in the early detection of neurodegenerative diseases, particularly Alzheimer's disease (AD) and Lewy body dementia (LBD). By examining QSM's ability to map brain iron deposition, we seek to highlight its potential as a diagnostic tool for preclinical dementia. METHODOLOGY: QSM techniques involve the advanced processing of MRI phase images to reconstruct tissue susceptibility, employing methods such as spherical mean value filtering and Tikhonov regularization for accurate background field removal. This review discusses how these methodologies enable the precise quantification of iron and other elements within the brain. RESULTS: QSM has demonstrated effectiveness in identifying early pathological changes in key brain regions, including the hippocampus, basal ganglia, and substantia nigra. These regions are significantly impacted in the early stages of AD and LBD. Studies reviewed indicate that QSM can detect subtle neurodegenerative changes, providing valuable insights into disease progression. However, challenges remain in standardizing QSM processing algorithms to ensure consistent results across different studies. CONCLUSION: QSM emerges as a promising tool for early dementia detection, offering precise measurements of brain iron deposition and other critical biomarkers. The review underscores the importance of refining QSM methodologies and integrating them with other imaging modalities to improve early diagnosis and management of neurodegenerative diseases. Future research should focus on standardizing QSM techniques and exploring their synergistic use with other neuroimaging methods to enhance its clinical utility.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Diagnóstico Precoz , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Demencia/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/metabolismo , Mapeo Encefálico/métodos
5.
Front Mol Neurosci ; 17: 1427815, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915936

RESUMEN

Objective: To assess the potential of ferroptosis and ferritinophagy in migraine pathogenesis. Background: Ferroptosis and ferritinophagy are related to increased cellular iron concentration and have been associated with the pathogenesis of several neurological disorders, but their potential in migraine pathogenesis has not been explored. Increased iron deposits in some deep brain areas, mainly periaqueductal gray (PAG), are reported in migraine and they have been associated with the disease severity and chronification as well as poor response to antimigraine drugs. Results: Iron deposits may interfere with antinociceptive signaling in the neuronal network in the brain areas affected by migraine, but their mechanistic role is unclear. Independently of the location, increased iron concentration may be related to ferroptosis and ferritinophagy in the cell. Therefore, both phenomena may be related to increased iron deposits in migraine. It is unclear whether these deposits are the reason, consequence, or just a correlate of migraine. Still, due to migraine-related elevated levels of iron, which is a prerequisite of ferroptosis and ferritinophagy, the potential of both phenomena in migraine should be explored. If the iron deposits matter in migraine pathogenesis, they should be mechanically linked with the clinical picture of the disease. As iron is an exogenous essential trace element, it is provided to the human body solely with diet or supplements. Therefore, exploring the role of iron in migraine pathogenesis may help to determine the potential role of iron-rich/poor dietary products as migraine triggers or relievers. Conclusion: Ferroptosis and ferritinophagy may be related to migraine pathogenesis through iron deposits in the deep areas of the brain.

6.
Cureus ; 16(4): e58127, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38741870

RESUMEN

Beta-propeller protein-associated neurodegeneration (BPAN), a subtype of neurodegeneration with brain iron accumulation, is caused by variants in the WDR45 gene. In this paper, we describe a patient with an atypical presentation of BPAN whose whole exome sequencing revealed a previously unattested truncating variant in the WDR45 gene (c.830+3G>C/p.Leu278Ter), the pathogenicity of which was verified by RNA transcriptomics. A number of uncommon neuroanatomic and clinical findings in our patient are discussed, expanding the phenotype associated with BPAN. This unique case challenges existing genotype-phenotype correlations and highlights the role of X chromosome skewing in shaping the clinical spectrum of BPAN.

8.
J Psychiatr Res ; 173: 200-209, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547742

RESUMEN

Iron deficiency may play a role in the pathophysiology of Attention Deficit/Hyperactivity Disorder (ADHD). Due to its preponderant function in monoamine catecholamine and myelin synthesis, brain iron concentration may be of primary interest in the investigation of iron dysregulation in ADHD. This study reviewed current evidence of brain iron abnormalities in children and adolescents with ADHD using magnetic resonance imaging methods, such as relaxometry and quantitative susceptibility mapping, to assess brain iron estimates. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A literature search was performed for studies published between January 1, 2008 and July 7, 2023 in Medline, Scopus and Proquest. Regions of interest, brain iron index values and phenotypical information were extracted from the relevant studies. Risk of bias was assessed using a modified version of the National Heart, Lung, and Blood Institute quality assessment tool. Seven cross-sectional studies comparing brain iron estimates in children with ADHD with neurotypical children were included. Significantly reduced brain iron content in medication-naïve children with ADHD was a consistent finding. Two studies found psychostimulant use may increase and normalize brain iron concentration in children with ADHD. The findings were consistent across the studies despite differing methodologies and may lay the early foundation for the recognition of a potential biomarker in ADHD, although longitudinal prospective neuroimaging studies using larger sample sizes are required. Lastly, the effects of iron supplementation on brain iron concentration in children with ADHD need to be elucidated.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Encéfalo , Hierro , Neuroimagen , Humanos , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Niño , Hierro/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Adolescente , Imagen por Resonancia Magnética
10.
J Neurosci Res ; 102(2): e25303, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361408

RESUMEN

Lipocalin-2 (LCN2) is essential for the regulation of neuroinflammation and cellular uptake of iron. This study aimed to evaluate plasma LCN2 levels and explore their correlation with clinical and neuroimaging features in Parkinson's disease (PD) patients. Enzyme-linked immunosorbent assay (ELISA) was used to measure plasma LCN2 levels in 120 subjects. Evaluation of motor symptoms and nonmotor symptoms in PD patients was assessed by the associated scales. Voxel-based morphometry (VBM) was used to evaluate brain volume alterations, and quantitative susceptibility mapping (QSM) was used to quantitatively analyze brain iron deposition in 46 PD patients. Plasma LCN2 levels were significantly higher in PD patients than those in healthy controls. LCN2 levels were negatively correlated with Montreal Cognitive Assessment (MoCA) scores, total brain gray matter volume (GMV), and GMV/total intracranial volume (TIV) ratio, but positively correlated with Hamilton Anxiety Rating Scale (HAMD) scores and mean QSM values of the bilateral substantial nigra (SN). Receiver operating characteristic (ROC) curves confirmed that plasma LCN2 levels had good predictive accuracy for PD. The results suggest that plasma LCN2 levels have potential as a biomarker for the diagnosis of PD. LCN2 may be a therapeutic target for neuroinflammation and brain iron deposition.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Lipocalina 2 , Enfermedades Neuroinflamatorias , Imagen por Resonancia Magnética/métodos , Neuroimagen , Hierro/metabolismo
11.
J Nutr Health Aging ; 28(4): 100190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368845

RESUMEN

OBJECTIVES: Iron is important for neurogenesis, synaptic development, and neurotransmitter synthesis. Serum ferritin (SF) is a reliable marker for assessing iron stores. Therefore, we evaluated the cognitive function associated with SF levels. We also assessed brain iron content using R2* Magnetic Resonance Imaging (MRI) and its association with SF levels. DESIGN: Data from three cross-sectional observational studies were used. Aging Imageomics (n = 1030) was conducted on aged subjects. Health Imageomics (n = 971) and IR0NMET (n = 175) were conducted in middle-aged subjects. SETTING AND PARTICIPANTS: Participants were enrolled at Dr. Josep Trueta University Hospital facilities. The three cohorts included a total of 2176 subjects (mean age, 52 years; 48% men). MEASUREMENTS: SF levels were measured by standard laboratory methods. Total Digits Span (TDS), and Phonemic Verbal Fluency (PVF) were used to assess executive function. Language function was assessed by semantic verbal fluency (SVF), attention by the Symbol Digit Modalities Test, and memory by the Memory Binding Tests - Total Free Recall and Total Delayed Free Recall. MRI was used to assess the iron content of the brain by R2*. RESULTS: In subjects aged 65 years or older, SF levels were associated with increased TDS (ß = 0.003, p = 0.02), PVF (ß = 0.004, p = 0.01), and SVF (ß = 0.004, p = 0.002) scores. After stratification by sex, these findings were significant only in men, where SF was associated with increased TDS (ß = 0.003, p = 0.01), PVF (ß = 0.004, p = 0.03), and SVF (ß = 0.004, p = 0.009) scores. In middle-aged subjects, SF was also associated with increased SVF scores (ß = 0.005, p = 0.011). Lastly, in men, SF levels were negatively associated with R2*, a surrogate marker of brain iron content, in both the left frontal inferior opercular area (r = -0.41, p = 0.005) and the right frontal inferior opercular area (r = -0.44, p = 0.002). CONCLUSIONS: SF is significantly and positively associated with cognition. In older people with low SF levels, iron supplementation may be a promising therapy to improve cognition.


Asunto(s)
Envejecimiento , Encéfalo , Cognición , Ferritinas , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Ferritinas/sangre , Estudios Transversales , Persona de Mediana Edad , Cognición/fisiología , Envejecimiento/fisiología , Anciano , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/sangre , Hierro/sangre , Biomarcadores/sangre , Función Ejecutiva/fisiología , Pruebas Neuropsicológicas
12.
J Pediatr Endocrinol Metab ; 37(3): 271-275, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38353247

RESUMEN

OBJECTIVES: The fatty acid 2-hydroxylase gene (FA2H) compound heterozygous or homozygous variants that cause spastic paraplegia type 35 (SPG35) (OMIM # 612319) are autosomal recessive HSPs. FA2H gene variants in humans have been shown to be associated with not only SPG35 but also leukodystrophy and neurodegeneration with brain iron accumulation. CASE PRESENTATION: A patient with a spastic gait since age seven was admitted to the paediatric metabolism department. She was born to consanguineous, healthy Turkish parents and had no family history of neurological disease. She had normal developmental milestones and was able to walk at 11 months. At age seven, she developed a progressive gait disorder with increased muscle tone in her lower limbs, bilateral ankle clonus and dysdiadochokinesis. She had frequent falls and deteriorating school performance. Despite physiotherapy, her spastic paraplegia was progressive. Whole exome sequencing (WES) identified a homozygous NM_024306.5:c.460C>T missense variant in the FA2H gene, of which her parents were heterozygous carriers. A brain MRI showed a slight reduction in the cerebellar volume with no iron deposits. CONCLUSIONS: Pathogenic variants of the FA2H gene have been linked to neurodegeneration with iron accumulation in the brain, leukodystrophy and SPG35. When patients developed progressive gait deterioration since early childhood even if not exhibited hypointensity in the basal ganglia detected by neuroimaging, FA2H-related neurodegeneration with brain iron accumulation should be ruled out. FA2H/SPG35 disease is characterised by notable clinical and imaging variability, as well as phenotypic diversity.


Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso , Paraplejía Espástica Hereditaria , Niño , Femenino , Humanos , Preescolar , Mutación , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Oxigenasas de Función Mixta/genética , Imagen por Resonancia Magnética , Linaje , Paraplejía , Hierro
13.
Cell Commun Signal ; 22(1): 84, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291511

RESUMEN

BACKGROUND: Alzheimer's disease (AD), affecting many elders worldwide, is characterized by A-beta and tau-related cognitive decline. Accumulating evidence suggests that brain iron accumulation is an important characteristic of AD. However, the function and mechanism of the iron-mediated gut-brain axis on AD is still unclear. METHODS: A Caenorhabditis elegans model with tau-overexpression and a high-Fe diet mouse model of cognitive impairment was used for probiotic function evaluation. With the use of qPCR, and immunoblotting, the probiotic regulated differential expression of AD markers and iron related transporting genes was determined. Colorimetric kits, IHC staining, and immunofluorescence have been performed to explore the probiotic mechanism on the development of gut-brain links and brain iron accumulation. RESULTS: In the present study, a high-Fe diet mouse model was used for evaluation in which cognitive impairment, higher A-beta, tau and phosphorylated (p)-tau expression, and dysfunctional phosphate distribution were observed. Considering the close crosstalk between intestine and brain, probiotics were then employed to delay the process of cognitive impairment in the HFe mouse model. Pediococcus acidilactici (PA), but not Bacillus subtilis (BN) administration in HFe-fed mice reduced brain iron accumulation, enhanced global alkaline phosphatase (AP) activity, accelerated dephosphorylation, lowered phosphate levels and increased brain urate production. In addition, because PA regulated cognitive behavior in HFe fed mice, we used the transgenic Caenorhabditis elegans with over-expressed human p-tau for model, and then PA fed worms became more active and longer lived than E.coli fed worms, as well as p-tau was down-regulated. These results suggest that brain iron accumulation influences AD risk proteins and various metabolites. Furthermore, PA was shown to reverse tau-induced pathogenesis via iron transporters and AP-urate interaction. CONCLUSIONS: PA administration studies demonstrate that PA is an important mediator of tau protein reduction, p-tau expression and neurodegenerative behavior both in Caenorhabditis elegans and iron-overload mice. Finally, our results provide candidates for AP modulation strategies as preventive tools for promoting brain health. Video Abstract.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Pediococcus acidilactici , Ratones , Animales , Humanos , Anciano , Pediococcus acidilactici/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Caenorhabditis elegans/metabolismo , Ácido Úrico , Ratones Transgénicos , Enfermedad de Alzheimer/metabolismo , Hierro , Fosfatos
14.
Brain ; 147(4): 1389-1398, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37831662

RESUMEN

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is an ultraorphan neurogenetic disease from the group of neurodegeneration with brain iron accumulation (NBIA) disorders. Here we report cross-sectional and longitudinal data to define the phenotype, to assess disease progression and to estimate sample sizes for clinical trials. We enrolled patients with genetically confirmed MPAN from the Treat Iron-Related Childhood-Onset Neurodegeneration (TIRCON) registry and cohort study, and from additional sites. Linear mixed-effect modelling (LMEM) was used to calculate annual progression rates for the Unified Parkinson's Disease Rating Scale (UPDRS), Barry-Albright Dystonia (BAD) scale, Schwab and England Activities of Daily Living (SE-ADL) scale and the Pediatric Quality of Life Inventory (PedsQL). We investigated 85 MPAN patients cross-sectionally, with functional outcome data collected in 45. Median age at onset was 9 years and the median diagnostic delay was 5 years. The most common findings were gait disturbance (99%), pyramidal involvement (95%), dysarthria (90%), vision disturbances (82%), with all but dysarthria presenting early in the disease course. After 16 years with the disease, 50% of patients were wheelchair dependent. LMEM showed an annual progression rate of 4.5 points in total UPDRS. The total BAD scale score showed no significant progression over time. The SE-ADL scale and the patient- and parent-reported PedsQL showed a decline of 3.9%, 2.14 and 2.05 points, respectively. No patient subpopulations were identified based on longitudinal trajectories. Our cross-sectional results define the order of onset and frequency of symptoms in MPAN, which will inform the diagnostic process, help to shorten diagnostic delay and aid in counselling patients, parents and caregivers. Our longitudinal findings define the natural history of MPAN, reveal the most responsive outcomes and highlight the need for an MPAN-specific rating approach. Our sample size estimations inform the design of upcoming clinical trials.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedades Neurodegenerativas , Niño , Humanos , Disartria , Estudios de Cohortes , Actividades Cotidianas , Estudios Transversales , Diagnóstico Tardío , Calidad de Vida , Mutación/genética , Enfermedades Neurodegenerativas/genética , Fenotipo , Proteínas de la Membrana/genética , Membranas Mitocondriales
15.
Mov Disord ; 39(2): 411-423, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947042

RESUMEN

BACKGROUND: The unique neurovascular structure of the retina has provided an opportunity to observe brain pathology in many neurological disorders. However, such studies on neurodegeneration with brain iron accumulation (NBIA) disorders are lacking. OBJECTIVES: To investigate NBIA's neurological and ophthalmological manifestations. METHODS: This cross-sectional study was conducted on genetically confirmed NBIA patients and an age-gender-matched control group. The thickness of retinal layers, central choroidal thickness (CCT), and capillary plexus densities were measured by spectral domain-optical coherence tomography (SD-OCT) and OCT angiography, respectively. The patients also underwent funduscopy, electroretinography (ERG), visual evoked potential (VEP), and neurological examination (Pantothenate-Kinase Associated Neurodegeneration-Disease Rating Scale [PKAN-DRS]). The generalized estimating equation model was used to consider inter-eye correlations. RESULTS: Seventy-four patients' and 80 controls' eyes were analyzed. Patients had significantly decreased visual acuity, reduced inner or outer sectors of almost all evaluated layers, increased CCT, and decreased vessel densities, with abnormal VEP and ERG in 32.4% and 45.9%, respectively. There were correlations between visual acuity and temporal peripapillary nerve fiber layer (positive) and between PKAN-DRS score and disease duration (negative), and scotopic b-wave amplitudes (positive). When considering only the PKAN eyes, ONL was among the significantly decreased retinal layers, with no differences in retinal vessel densities. Evidence of pachychoroid was only seen in patients with Kufor Rakeb syndrome. CONCLUSION: Observing pathologic structural and functional neurovascular changes in NBIA patients may provide an opportunity to elucidate the underlying mechanisms and differential retinal biomarkers in NBIA subtypes in further investigations. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedades Neurodegenerativas , Neurodegeneración Asociada a Pantotenato Quinasa , Humanos , Estudios Transversales , Potenciales Evocados Visuales , Retina/diagnóstico por imagen , Retina/patología , Encéfalo , Enfermedades Neurodegenerativas/patología , Tomografía de Coherencia Óptica , Hierro
16.
NMR Biomed ; 37(3): e5072, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009303

RESUMEN

Several magnetic resonance imaging (MRI) measures for quantifying endogenous nonheme brain iron have been proposed. These correspond to distinct physical properties with varying sensitivities and specificities to iron. Moreover, they may depend not only on tissue iron concentration, but also on the intravoxel spatial pattern of iron deposition, which is complex in many brain regions. Here, the three MRI brain iron measures of R 2 * , magnetic field correlation (MFC), and magnetic susceptibility are compared in several deep gray matter regions for both healthy participants (HPs) and individuals with cocaine use disorder (CUD). Their concordance is assessed from their correlations with each other and their relative dependencies on age. In addition, associations between the iron measures and microstructure in adjacent white matter regions are investigated by calculating their correlations with diffusion MRI measures from the internal capsule, and associations with cognition are determined by using results from a battery of standardized tests relevant to CUD. It is found that all three iron measures are strongly correlated with each other for the considered gray matter regions, but with correlation coefficients substantially less than one indicating important differences. The age dependencies of all three measures are qualitatively similar in most regions, except for the red nucleus, where the susceptibility has a significantly stronger correlation with age than R 2 * . Weak to moderate correlations are seen for the iron measures with several of the diffusion and cognitive measures, with the strongest correlations being obtained for R 2 * . The iron measures differ little between the HP and CUD groups, although susceptibility is significantly lower in the red nucleus for the CUD group. For the comparisons made, the iron measures behave similarly in most respects, but with notable quantitative differences. It is suggested that these differences may be, in part, attributable to a higher sensitivity to the spatial pattern of iron deposition for R 2 * and MFC than for susceptibility. This is supported most strongly by a sharp contrast between the values of the iron measures in the globus pallidus relative to those in the red nucleus. The observed correlations of the iron measures with diffusion and cognitive scores point to possible connections between gray matter iron, white matter microstructure, and cognition.


Asunto(s)
Cocaína , Hierro , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Mapeo Encefálico
17.
Brain Neurorehabil ; 16(3): e25, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38047104

RESUMEN

Pantothenate kinase-associated neurodegeneration (PKAN) is a rare autosomal recessive disorder characterized by progressive motor symptoms, such as dystonia and spasticity. Classical PKAN is the most common subtype of neurodegeneration with brain iron accumulation (NBIA). Currently, there is no established treatment for PKAN. However, baclofen and botulinum toxin have been reported to improve motor symptoms and ease care in these patients. Additionally, Deferiprone is a well-tolerated iron chelator that has been shown to be effective in reducing brain iron accumulation. In this case report, we present the case of a seven-year-old boy who presented to our ward with spastic gait and extrapyramidal signs. Brain magnetic resonance imaging was performed, which showed features of neurodegeneration secondary to brain iron accumulation with a specific appearance of the eye-of-the-tiger sign. Genetic testing was positive for a homozygous mutation in PANK2, and the diagnosis of early-stage classical PKAN was made. This case report highlights the potent efficacy of baclofen, botulinum toxin, and deferiprone in slowing down the disease progression at an early stage and improving the severity of symptoms.

18.
Gut Microbes ; 15(2): 2290318, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38059755

RESUMEN

Iron is required for the replication and growth of almost all bacterial species and in the production of myelin and neurotransmitters. Increasing clinical studies evidence that the gut microbiota plays a critical role in iron metabolism and cognition. However, the understanding of the complex iron-microbiome-cognition crosstalk remains elusive. In a recent study in the Aging Imageomics cohort (n = 1,030), we identified a positive association of serum ferritin (SF) with executive function (EF) as inferred from the semantic verbal fluency (SVF,) the total digit span (TDS) and the phonemic verbal fluency tests (PVF). Here, we explored the potential mechanisms by analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively. Different bacterial species belonging to the Proteobacteria phylum (Klebsiella pneumoniae, Klebsiella michiganensis, Unclassified Escherichia) were negatively associated both with SF and executive function. At the functional level, an enrichment of microbial pathways involved in phenylalanine, arginine, and proline metabolism was identified. Consistently, phenylacetylglutamine, a metabolite derived from microbial catabolism of phenylalanine, was negatively associated with SF, EF, and semantic memory. Other metabolites such as ureidobutyric acid and 19,20-DiHDPA, a DHA-derived oxylipin, were also consistently and negatively associated with SF, EF, and semantic memory, while plasma eicosapentaenoic acid was positively associated. The associations of SF with cognition could be mediated by the gut microbiome through microbial-derived metabolites.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Espectrometría de Masas en Tándem , Cognición , Bacterias/genética , Metaboloma , Fenilalanina , Hierro , Ferritinas
19.
Oxf Med Case Reports ; 2023(12): omad134, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38145266

RESUMEN

Pantothenate kinase-associated neurodegeneration (or previously known as Hallervorden-Spatz syndrome) is a very rare disorder that typically manifests in a child with neurological signs such as gait difficulties, dysarthria, and hyperreflexia, associated potentially with psychiatric symptoms such as cognitive decline. It demonstrates on MRI the typical 'eye of the tiger' appearance, which is due to gliosis and accumulation of iron in the globi pallidi. Other differentials can mimic this appearance on MRI, it is therefore important to search for the involvement of other basal ganglia nuclei and the cerebral cortex, and also to consider the clinical and biological context.

20.
Antioxidants (Basel) ; 12(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38001850

RESUMEN

Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...