Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
ACS Nano ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39405469

RESUMEN

The stimulator of interferon genes (STING) pathway is crucial for tumor immunity, leading to the exploration of STING agonists as potential immunotherapy adjuvants. However, their clinical application faces obstacles including poor pharmacokinetics, transient activation, and an immunosuppressive tumor microenvironment (TME). Addressing these limitations, our study aims to develop an injectable silk fibroin hydrogel-based in situ vaccine. It incorporates a nanoscale STING agonist, an immunogenic cell death (ICD) inducer, and an immunomodulator to ensure their controlled and sustained release. cGAMP nanoparticles (cGAMPnps) with a core-shell structure ensure optimal delivery of cGAMP to dendritic cells (DCs), thereby activating the STING pathway and fostering DC maturation. ICD-associated damage-associated molecular patterns amplify and prolong STING activation via enhanced type I IFN and other inflammatory pathways, along with delayed degradation of cGAMP and STING. Furthermore, the STING-driven vascular normalization by cGAMPnps and ICD, in conjunction with immunomodulators like antiprogrammed cell death protein 1 antibody (anti-PD-1 Ab) or OX40 ligand (OX40L), effectively remodels the immunosuppressive TME. This in situ gel vaccine, when used independently or with surgery as neoadjuvant/adjuvant immunotherapy, enhances DC and CD8+ T-cell activation, suppressing tumor progression and recurrence across various immunologically cold tumor models. It revolutionizes the application of STING agonists in cancer immunotherapy, offering substantial promise for improving outcomes across a broad spectrum of malignancies.

2.
Int J Nanomedicine ; 19: 8769-8778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220196

RESUMEN

Introduction: The tumor microenvironment (TME) of pancreatic cancer is highly immunosuppressive and characterized by a large number of cancer-associated fibroblasts, myeloid-derived suppressor cells, and regulatory T cells. Stimulator of interferon genes (STING) is an endoplasmic reticulum receptor that plays a critical role in immunity. STING agonists have demonstrated the ability to inflame the TME, reduce tumor burden, and confer anti-tumor activity in mouse models. 2'3' cyclic guanosine monophosphate adenosine monophosphate (2'3'-cGAMP) is a high-affinity endogenous ligand of STING. However, delivering cGAMP to antigen-presenting cells and tumor cells within the cytosol remains challenging due to membrane impermeability and poor stability. Methods: In this study, we encapsulated 2'3'-cGAMP in a lipid nanoparticle (cGAMP-LNP) designed for efficient cellular delivery. We assessed the properties of the nanoparticles using a series of in-vitro studies designed to evaluate their cellular uptake, cytosolic release, and minimal cytotoxicity. Furthermore, we examined the nanoparticle's anti-tumor effect in a syngeneic mouse model of pancreatic cancer. Results: The lipid platform significantly increased the cellular uptake of 2'3'-cGAMP. cGAMP-LNP exhibited promising antitumor activity in the syngeneic mouse model of pancreatic cancer. Discussion: The LNP platform shows promise for delivering exogenous 2'3'-cGAMP or its derivatives in cancer therapy.


Asunto(s)
Proteínas de la Membrana , Nanopartículas , Nucleótidos Cíclicos , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Nanopartículas/química , Nanopartículas/administración & dosificación , Nucleótidos Cíclicos/farmacología , Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/farmacocinética , Nucleótidos Cíclicos/administración & dosificación , Proteínas de la Membrana/agonistas , Ratones , Línea Celular Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos C57BL , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Liposomas/química , Liposomas/farmacología , Liposomas/farmacocinética , Liposomas/administración & dosificación
3.
Immunity ; 57(9): 2077-2094.e12, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38906145

RESUMEN

Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.


Asunto(s)
Tolerancia Inmunológica , Interleucina-18 , Macrófagos , Nucleótidos Cíclicos , Interleucina-18/metabolismo , Interleucina-18/inmunología , Animales , Ratones , Nucleótidos Cíclicos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Humanos , Ratones Endogámicos C57BL , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones Noqueados , Ácidos Grasos/metabolismo , Intestinos/inmunología , Inmunidad Innata , Inflamación/inmunología , Inflamación/metabolismo , Glucólisis , Oxidación-Reducción
4.
Adv Sci (Weinh) ; 11(31): e2401634, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38888507

RESUMEN

Radiation enteritis is the most common complication of pelvic radiotherapy, but there is no effective prevention or treatment drug. Apoptotic T cells and their products play an important role in regulating inflammation and maintaining physiological immune homeostasis. Here it is shown that systemically infused T cell-derived apoptotic extracellular vesicles (ApoEVs) can target mice irradiated intestines and alleviate radiation enteritis. Mechanistically, radiation elevates the synthesis of intestinal 2'3' cyclic GMP-AMP (cGAMP) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) proinflammatory pathway. After systemic infusion of ApoEVs, the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) enriches on the surface of ApoEVs hydrolyze extracellular cGAMP, resulting in inhibition of the cGAS-STING pathway activated by irradiation. Furthermore, after ApoEVs are phagocytosed by phagocytes, ENPP1 on ApoEVs hydrolyzed intracellular cGAMP, which serves as an intracellular cGAMP hydrolyzation mode, thereby alleviating radiation enteritis. The findings shed light on the intracellular and extracellular hydrolysis capacity of ApoEVs and their role in inflammation regulation.


Asunto(s)
Apoptosis , Enteritis , Vesículas Extracelulares , Nucleótidos Cíclicos , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Hidrolasas Diéster Fosfóricas/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Ratones , Enteritis/metabolismo , Pirofosfatasas/metabolismo , Nucleótidos Cíclicos/metabolismo , Linfocitos T/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Traumatismos por Radiación/metabolismo , Hidrólisis
5.
mSphere ; 9(7): e0016024, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38920382

RESUMEN

In humans, seasonal influenza viruses cause epidemics. Avian influenza viruses are of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against all influenza strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines, which promotes type I interferons' production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in mice for protective antibody responses. cGAMP MPs adjuvanted COBRA HA vaccines elicited robust antigen-specific antibodies following vaccination. Compared with COBRA HA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI activity elicited by COBRA HA vaccines. The HAI activity was not significantly different between cGAMP MPs adjuvanted monovalent or multivalent COBRA HA vaccines. The cGAMP MPs adjuvanted COBRA vaccine groups had higher antigen-specific IgG2a-binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated diseases caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains. IMPORTANCE: Influenza viruses cause severe respiratory disease, particularly in the very young and the elderly. Next-generation influenza vaccines are needed to protect against new influenza variants. This report used a promising adjuvant, cyclic GMP-AMP (cGAMP), to enhance the elicited antibodies by an improved influenza hemagglutinin candidate and protect against influenza virus infection. Overall, adding adjuvants to influenza vaccines is an effective method to improve vaccines.


Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Nucleótidos Cíclicos , Infecciones por Orthomyxoviridae , Animales , Femenino , Humanos , Ratones , Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Ratones Endogámicos BALB C , Nucleótidos Cíclicos/inmunología , Nucleótidos Cíclicos/administración & dosificación , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología
6.
Cell Rep ; 43(5): 114209, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38749434

RESUMEN

2'3'-Cyclic guanosine monophosphate (GMP)-AMP (cGAMP) is a second messenger synthesized upon detection of cytosolic double-stranded DNA (dsDNA) and passed between cells to facilitate downstream immune signaling. Ectonucleotide pyrophosphatase phosphodiesterase I (ENPP1), an extracellular enzyme, was the only metazoan hydrolase known to regulate cGAMP levels to dampen anti-cancer immunity. Here, we uncover ENPP3 as the second and likely the only other metazoan cGAMP hydrolase under homeostatic conditions. ENPP3 has a tissue expression pattern distinct from ENPP1's and accounts for all cGAMP hydrolysis activity in ENPP1-deficient mice. Importantly, we also show that, as with ENPP1, selectively abolishing ENPP3's cGAMP hydrolysis activity results in diminished cancer growth and metastasis of certain tumor types in a stimulator of interferon genes (STING)-dependent manner. Both ENPP1 and ENPP3 are extracellular enzymes, suggesting the dominant role that extracellular cGAMP must play as a mediator of cell-cell innate immune communication. Our work demonstrates that ENPP1 and ENPP3 non-redundantly dampen extracellular cGAMP-STING signaling, pointing to ENPP3 as a target for cancer immunotherapy.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana , Nucleótidos Cíclicos , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Animales , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Ratones , Proteínas de la Membrana/metabolismo , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Humanos , Ratones Endogámicos C57BL , Hidrólisis , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Transducción de Señal
7.
Chembiochem ; 25(13): e202400321, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38720428

RESUMEN

Cyclic dinucleotides (CDNs) have garnered popularity over the last decade as immunotherapeutic agents, which activate the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway to trigger an immune response. Many analogs of 2'3'-cGAMP, c-di-GMP, and c-di-AMP have been developed and shown as effective cancer vaccines and immunomodulators for the induction of both the adaptive and innate immune systems. Unfortunately, the effectiveness of these CDNs is limited by their chemical and enzymatic instability. We recently introduced 5'-endo-phosphorothoiate 2'3'-cGAMP analogs as potent STING agonist with improved resistance to cleavage by clinically relevant phosphodiesterases. We herein report the synthesis of locked nucleic acid-functionalized (LNA) endo-S-CDNs and evaluate their ability to activate STING in THP1 monocytes. Interestingly, some of our synthesized LNA 3'3'-endo-S-CDNs can moderately activate hSTING REF haplotype (R232H), which exhibit diminished response to both 2'3'-cGAMP and ADU-S100. Also, we show that one of our most potent endo-S-CDNs has remarkable chemical (oxidants I2 and H2O2) and phosphodiesterase stability.


Asunto(s)
Proteínas de la Membrana , Oligonucleótidos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/agonistas , Humanos , Oligonucleótidos/química , Oligonucleótidos/farmacología , Oligonucleótidos/síntesis química , Nucleótidos Cíclicos/farmacología , Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/metabolismo , Células THP-1
8.
Cell Rep ; 43(5): 114122, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38652659

RESUMEN

DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.


Asunto(s)
Herpesvirus Humano 1 , Nucleótidos Cíclicos , Animales , Humanos , Células HEK293 , Herpes Simple/virología , Herpes Simple/metabolismo , Herpes Simple/inmunología , Herpesvirus Humano 1/fisiología , Nucleótidos Cíclicos/metabolismo , Proteínas Virales/metabolismo
9.
Immunity ; 57(4): 718-730, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599167

RESUMEN

The cGAS-STING intracellular DNA-sensing pathway has emerged as a key element of innate antiviral immunity and a promising therapeutic target. The existence of an innate immune sensor that can be activated by any double-stranded DNA (dsDNA) of any origin raises fundamental questions about how cGAS is regulated and how it responds to "foreign" DNA while maintaining tolerance to ubiquitous self-DNA. In this review, we summarize recent evidence implicating important roles for cGAS in the detection of foreign and self-DNA. We describe two recent and surprising insights into cGAS-STING biology: that cGAS is tightly tethered to the nucleosome and that the cGAMP product of cGAS is an immunotransmitter acting at a distance to control innate immunity. We consider how these advances influence our understanding of the emerging roles of cGAS in the DNA damage response (DDR), senescence, aging, and cancer biology. Finally, we describe emerging approaches to harness cGAS-STING biology for therapeutic benefit.


Asunto(s)
Nucleotidiltransferasas , Transducción de Señal , Nucleotidiltransferasas/metabolismo , Inmunidad Innata , ADN
10.
Front Immunol ; 15: 1340001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680492

RESUMEN

Germinal center (GC) responses are essential for establishing protective, long-lasting immunity through the differentiation of GC B cells (BGC) and plasma cells (BPC), along with the generation of antigen-specific antibodies. Among the various pathways influencing immune responses, the STING (Stimulator of Interferon Genes) pathway has emerged as significant, especially in innate immunity, and extends its influence to adaptive responses. In this study, we examined how the STING ligand cGAMP can modulate these key elements of the adaptive immune response, particularly in enhancing GC reactions and the differentiation of BGC, BPC, and follicular helper T cells (TFH). Employing in vivo models, we evaluated various antigens and the administration of cGAMP in Alum adjuvant, investigating the differentiation of BGC, BPC, and TFH cells, along with the production of antigen-specific antibodies. cGAMP enhances the differentiation of BGC and BPC, leading to increased antigen-specific antibody production. This effect is shown to be type I Interferon-dependent, with a substantial reduction in BPC frequency upon interferon (IFN)-ß blockade. Additionally, cGAMP's influence on TFH differentiation varies over time, which may be critical for refining vaccine strategies. The findings elucidate a complex, antigen-specific influence of cGAMP on T and B cell responses, providing insights that could optimize vaccine efficacy.


Asunto(s)
Diferenciación Celular , Centro Germinal , Proteínas de la Membrana , Nucleótidos Cíclicos , Transducción de Señal , Centro Germinal/inmunología , Centro Germinal/metabolismo , Animales , Nucleótidos Cíclicos/metabolismo , Nucleótidos Cíclicos/inmunología , Diferenciación Celular/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Ratones Endogámicos C57BL , Activación de Linfocitos/inmunología , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo
11.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464191

RESUMEN

Influenza viruses cause a common respiratory disease known as influenza. In humans, seasonal influenza viruses can lead to epidemics, with avian influenza viruses of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against seasonal and pre-pandemic influenza virus strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines that promotes type I interferons production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in a mouse model for antibody responses and protection against viral challenge. Serological analysis showed that cGAMP MPs adjuvanted monovalent and multivalent COBRA vaccines elicited robust antigen-specific antibody responses after a prime-boost vaccination and antibody titers were further enhanced after second boost. Compared to COBRA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI antibody responses against COBRA vaccination. The HAI antibody titers were not significantly different between cGAMP MPs adjuvanted monovalent and multivalent COBRA vaccine groups for most of the viruses tested in panels. The cGAMP MPs adjuvanted COBRA vaccines groups had higher antigen-specific IgG2a binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated disease caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains.

12.
Front Microbiol ; 15: 1345617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525075

RESUMEN

Agonists of the stimulator of interferon genes (STING) pathway are being explored as potential immunotherapeutics for the treatment of cancer and as vaccine adjuvants for infectious diseases. Although chemical synthesis of 2'3' - cyclic Guanosine Monophosphate-Adenosine Monophosphate (cGAMP) is commercially feasible, the process results in low yields and utilizes organic solvents. To pursue an efficient and environmentally friendly process for the production of cGAMP, we focused on the recombinant production of cGAMP via a whole-cell biocatalysis platform utilizing the murine cyclic Guanosine monophosphate-Adenosine monophosphate synthase (mcGAS). In E. coli BL21(DE3) cells, recombinant expression of mcGAS, a DNA-dependent enzyme, led to the secretion of cGAMP to the supernatants. By evaluating the: (1) media composition, (2) supplementation of divalent cations, (3) temperature of protein expression, and (4) amino acid substitutions pertaining to DNA binding; we showed that the maximum yield of cGAMP in the supernatants was improved by 30% from 146 mg/L to 186 ± 7 mg/mL under optimized conditions. To simplify the downstream processing, we developed and validated a single-step purification process for cGAMP using anion exchange chromatography. The method does not require protein affinity chromatography and it achieved a yield of 60 ± 2 mg/L cGAMP, with <20 EU/mL (<0.3 EU/µg) of endotoxin. Unlike chemical synthesis, our method provides a route for the recombinant production of cGAMP without the need for organic solvents and supports the goal of moving toward shorter, more sustainable, and more environmentally friendly processes.

13.
Eur J Med Chem ; 268: 116286, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432057

RESUMEN

Extracellular nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as a type II transmembrane glycoprotein. It plays a crucial role in various biological processes, such as bone mineralization, cancer cell proliferation, and immune regulation. Consequently, ENPP1 has garnered attention as a promising target for pharmacological interventions. Despite its potential, the development of clinical-stage ENPP1 inhibitors for solid tumors, diabetes, and silent rickets remains limited. However, there are encouraging findings from preclinical trials involving small molecules exhibiting favorable therapeutic effects and safety profiles. This perspective aims to shed light on the structural properties, biological functions and the relationship between ENPP1 and diseases. Additionally, it focuses on the structure-activity relationship of ENPP1 inhibitors, with the intention of guiding the future development of new and effective ENPP1 inhibitors.


Asunto(s)
Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas , Humanos , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/química , Calcificación Fisiológica , Pirofosfatasas
14.
FEBS Lett ; 598(8): 839-863, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453162

RESUMEN

Cyclic nucleotides are the most diversified category of second messengers and are found in all organisms modulating diverse pathways. While cAMP and cGMP have been studied over 50 years, cyclic di-nucleotide signaling in eukaryotes emerged only recently with the anti-viral molecule 2´3´cGAMP. Recent breakthrough discoveries have revealed not only the astonishing chemical diversity of cyclic nucleotides but also surprisingly deep-rooted evolutionary origins of cyclic oligo-nucleotide signaling pathways and structural conservation of the proteins involved in their synthesis and signaling. Here we discuss how enzyme-centered approaches have paved the way for the identification of several cyclic nucleotide signals, focusing on the advantages and challenges associated with deciphering the activation mechanisms of such enzymes.


Asunto(s)
Nucleótidos Cíclicos , Nucleótidos Cíclicos/metabolismo , Humanos , Animales , Transducción de Señal , GMP Cíclico/metabolismo , AMP Cíclico/metabolismo
15.
Biosci Rep ; 44(4)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38530250

RESUMEN

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is activated by binding to DNA. Activated cGAS produces 2'3'-cGAMP, which subsequently binds to the adaptor protein STING (stimulator of interferon genes). This interaction triggers the cGAS/STING signaling pathway, leading to the production of type I interferons. Three types of DNA, namely double-stranded DNA longer than 40 base pairs, a 70-nucleotide single-stranded HIV-1 DNA known as SL2, and Y-form DNA with unpaired guanosine trimers (G3 Y-form DNA), induce interferon production by activating cGAS/STING signaling. However, the extent of cGAS activation by each specific DNA type remains unclear. The comparison of cGAS stimulation by various DNAs is crucial for understanding the mechanisms underlying cGAS-mediated type I interferon production in the innate immune response. Here, we revealed that cGAS produces 2'3'-cGAMP at a significantly lower rate in the presence of single-stranded SL2 DNA than in the presence of double-stranded DNA or G3 Y-form DNA. Furthermore, the guanine-to-cytosine mutations and the deletion of unpaired guanosine trimers significantly reduced the 2'3'-cGAMP production rate and the binding of cGAS to Y-form DNA. These studies will provide new insights into the cGAS-mediated DNA-sensing in immune response.


Asunto(s)
VIH-1 , Interferón Tipo I , VIH-1/genética , ADN de Cadena Simple/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , ADN/genética , ADN/metabolismo , Inmunidad Innata , Interferón Tipo I/genética , Guanosina
16.
Eur J Med Chem ; 267: 116211, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38359537

RESUMEN

The cancer immunotherapies involved in cGAS-STING pathway have been made great progress in recent years. STING agonists exhibit broad-spectrum anti-tumor effects with strong immune response. As a negative regulator of the cGAS-STING pathway, ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) can hydrolyze extracellular 2', 3'-cGAMP and reduce extracellular 2', 3'-cGAMP concentration. ENPP1 has been validated to play important roles in diabetes, cancers, and cardiovascular disease and now become a promising target for tumor immunotherapy. Several ENPP1 inhibitors under development have shown good anti-tumor effects alone or in combination with other agents in clinical and preclinical researches. In this review, the biological profiles of ENPP1 were described, and the structures and the structure-activity relationships (SAR) of the known ENPP1 inhibitors were summarized. This review also provided the prospects and challenges in the development of ENPP1 inhibitors.


Asunto(s)
Neoplasias , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Nucleotidiltransferasas/metabolismo , Inmunoterapia
17.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377349

RESUMEN

Viruses represent a major threat to all animals, which defend themselves through induction of a large set of virus-stimulated genes that collectively control the infection. In vertebrates, these genes include interferons that play a critical role in the amplification of the response to infection. Virus- and interferon-stimulated genes include restriction factors targeting the different steps of the viral replication cycle, in addition to molecules associated with inflammation and adaptive immunity. Predictably, antiviral genes evolve dynamically in response to viral pressure. As a result, each animal has a unique arsenal of antiviral genes. Here, we exploit the capacity to experimentally activate the evolutionarily conserved stimulator of IFN genes (STING) signaling pathway by injection of the cyclic dinucleotide 2'3'-cyclic guanosine monophosphate-adenosine monophosphate into flies to define the repertoire of STING-regulated genes in 10 Drosophila species, spanning 40 million years of evolution. Our data reveal a set of conserved STING-regulated factors, including STING itself, a cGAS-like-receptor, the restriction factor pastel, and the antiviral protein Vago, but also 2 key components of the antiviral RNA interference pathway, Dicer-2, and Argonaute2. In addition, we identify unknown species- or lineage-specific genes that have not been previously associated with resistance to viruses. Our data provide insight into the core antiviral response in Drosophila flies and pave the way for the characterization of previously unknown antiviral effectors.


Asunto(s)
Drosophila , Inmunidad Innata , Animales , Nucleótidos Cíclicos , Antivirales/farmacología
18.
Structure ; 32(4): 433-439.e4, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38325369

RESUMEN

The cGAS-STING pathway is a crucial part of innate immunity; it serves to detect DNA in the cytoplasm and to defend against certain cancers, viruses, and bacteria. We designed and synthesized fluorinated carbocyclic cGAMP analogs, MD1203 and MD1202D (MDs), to enhance their stability and their affinity for STING. These compounds demonstrated exceptional activity against STING. Despite their distinct chemical modifications relative to the canonical cyclic dinucleotides (CDNs), crystallographic analysis revealed a binding mode with STING that was consistent with the canonical CDNs. Importantly, MDs were resistant to cleavage by viral poxin nucleases and MDs-bound poxin adopted an unliganded-like conformation. Moreover, MDs complexed with poxin showed a conformation distinct from cGAMP bound to poxin, closely resembling their conformation when bound to STING. In conclusion, the development of MD1203 and MD1202D showcases their potential as potent STING activators with remarkable stability against poxin-mediated degradation-a crucial characteristic for future development of antivirals.


Asunto(s)
Neoplasias , Nucleótidos Cíclicos , Humanos , Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/química , Inmunidad Innata
19.
Mol Oncol ; 18(5): 1259-1277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400597

RESUMEN

Oncolytic viruses (OVs) can selectively replicate in tumor cells and remodel the microenvironment of immunologically cold tumors, making them a promising strategy to evoke antitumor immunity. Similarly, agonists of the stimulator of interferon genes (STING)-interferon (IFN) pathway, the main cellular antiviral system, provide antitumor benefits by inducing the activation of dendritic cells (DC). Considering how the activation of the STING-IFN pathway could potentially inhibit OV replication, the use of STING agonists alongside OV therapy remains largely unexplored. Here, we explored the antitumor efficacy of combining an HSV-1-based OV, C-REV, with a membrane-impermeable STING agonist, 2'3'-GAMP. Our results demonstrated that tumor cells harbor a largely defective STING-IFN pathway, thereby preventing significant antiviral IFN induction regardless of the permeability of the STING agonist. In vivo, the combination therapy induced more proliferative KLRG1-high PD1-low CD8+ T-cells and activated CD103+ DC in the tumor site and increased tumor-specific CD44+ CD8+ T-cells in the lymph node. Overall, the combination therapy of C-REV with 2'3'-cGAMP elicited antitumor immune memory responses and significantly enhanced systemic antitumor immunity in both treated and non-treated distal tumors.


Asunto(s)
Herpesvirus Humano 1 , Proteínas de la Membrana , Nucleótidos Cíclicos , Viroterapia Oncolítica , Animales , Femenino , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Terapia Combinada/métodos , Células Dendríticas/inmunología , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Ratones Endogámicos C3H
20.
Cell Commun Signal ; 22(1): 3, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169382

RESUMEN

Primary subarachnoid hemorrhage (SAH) is a type of acute stroke, accounting for approximately 10% of cases, with high disability and mortality rate. Early brain injury (EBI) is a critical factor in determining SAH mortality; however, there are no effective treatment interventions for EBI. Based on our results, the transmission of cyclic GMP-AMP (cGAMP) from neurons to microglia is a key molecular event that triggers type I interferon response, amplifies neuroinflammation, and leads to neuronal apoptosis. Abnormal intracytoplasmic mitochondrial DNA (mtDNA) is the initiating factor of the cGAS-cGAMP-STING signaling axis. Overall, the cGAS-cGAMP-STING signaling axis is closely associated with neuroinflammation after subarachnoid hemorrhage. Targeting cGAS triggered by cytoplasmic mtDNA may be useful for comprehensive clinical treatment of patients after SAH. Further studies targeting cGAS-specific antagonists for treating SAH are warranted. Video Abstract.


Asunto(s)
Interferón Tipo I , Hemorragia Subaracnoidea , Humanos , Microglía , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Nucleotidiltransferasas/genética , ADN Mitocondrial , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...