Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Intervalo de año de publicación
1.
Materials (Basel) ; 17(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39063758

RESUMEN

We investigated the impact of CaCO3 addition on the density and compressive strength of calcium aluminate cement (CAC)-based cementitious materials in binder jetting additive manufacturing (BJAM). To confirm the formation of a uniform powder bed, we examined the powder flowability and powder bed density for CaCO3 contents ranging from 0 to 20 wt.%. Specifically, powders with avalanche angles between 40.1-45.6° formed a uniform powder bed density with a standard deviation within 1%. Thus, a 3D printing specimen (green body) fabricated via BJAM exhibited dimensional accuracy of less than 1% across the entire plane. Additionally, we measured the hydration characteristics of CAC and the changes in compressive strength over 30 days with the addition of CaCO3. The results indicate that the addition of CaCO3 to CAC-based cementitious materials forms multimodal powders that enhance the density of both the powder bed and the green body. Furthermore, CaCO3 promotes the formation of highly crystalline monocarbonate (C4AcH11) and stable hydrate (C3AH6), effectively inhibiting the conversion of CAC and showing compressive strengths of up to 5.2 MPa. These findings suggest a strong potential for expanding the use of BJAM across various applications, including complex casting molds, cores, catalyst supports, and functional architectural interiors.

2.
Materials (Basel) ; 17(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063843

RESUMEN

The problem of loss of strength caused by the conversion reaction with calcium aluminate cements (CAC) is well known. It has been shown that the addition of ground granulated blast furnace slag (GGBS) to CAC inhibits the conversion process. Different slags can have a different chemical and mineralogical composition depending on their origin and production process, which can significantly influence their reactivity. This work investigated the extent to which the R3 test, developed for Portland cement and based on isothermal calorimetry and/or bound water, was used to predict the reactivity of ground granulated blast furnace slag in a CAC. Mortars and cement pastes with a 30% replacement of slag were tested to evaluate their compressive strength and microstructure. The results show that slags with higher reactivity due to their hydraulic properties lead to a lower compressive strength loss within the first 6 h, a higher strength loss after 24 h due to stratlingite formation and a lower strength loss after 28 days due to pozzolanic reaction and stratlingite formation. The results also confirm that the R3 test was used as a rapid method to predict the effects of slag on the compressive strength of CAC.

3.
Materials (Basel) ; 16(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37109977

RESUMEN

In this paper, the effect of a sodium tripolyphosphate (STPP) addition on the dispersion and hydration of pure calcium aluminate cement (PCAC) was investigated, and the corresponding mechanism of effect was studied. The effects of STPP on the dispersion, rheology, and hydration processes of PCAC and its adsorption capacity on the surface of cement particles were analysed by measuring the 𝜁-potential on the surface of cement particles, the changes in the concentrations of elemental P and Ca2+ ions in a solution at different STPP additions. The experimental results show that STPP easily complexes with Ca2+ ions to produce the complex [CaP3O10]3- adsorbed on the surface of cement particles, which changes the potential on the surface of cement particles and increases the electrostatic repulsive force between cement particles, thus improving the dispersion and rheology of cement. At the same time, the contact area between cement particles and water is reduced, which hinders the hydration process and makes the time of hydration process longer. A comprehensive analysis shows that the best effect of STPP on pure calcium aluminate cements is achieved when the addition of STPP is 0.2%. This study can provide a reference for the addition of water-reducing agents in refractory castables as well as improving the quality of refractory materials.

4.
Materials (Basel) ; 16(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36769959

RESUMEN

Across the world, any activity associated with the nuclear fuel cycle such as nuclear facility operation and decommissioning that produces radioactive materials generates ultramodern civilian radioactive waste, which is quite hazardous to human health and the ecosystem. Therefore, the development of effectual and commanding management is the need of the hour to make certain the sustainability of the nuclear industries. During the management process of waste, its immobilization is one of the key activities conducted with a view to producing a durable waste form which can perform with sustainability for longer time frames. The cementation of radioactive waste is a widespread move towards its encapsulation, solidification, and finally disposal. Conventionally, Portland cement (PC) is expansively employed as an encapsulant material for storage, transportation and, more significantly, as a radiation safeguard to vigorous several radioactive waste streams. Cement solidification/stabilization (S/S) is the most widely employed treatment technique for radioactive wastes due to its superb structural strength and shielding effects. On the other hand, the eye-catching pros of cement such as the higher mechanical strength of the resulting solidified waste form, trouble-free operation and cost-effectiveness have attracted researchers to employ it most commonly for the immobilization of radionuclides. In the interest to boost the solidified waste performances, such as their mechanical properties, durability, and reduction in the leaching of radionuclides, vast attempts have been made in the past to enhance the cementation technology. Additionally, special types of cement were developed based on Portland cement to solidify these perilous radioactive wastes. The present paper reviews not only the solidification/stabilization technology of radioactive wastes using cement but also addresses the challenges that stand in the path of the design of durable cementitious waste forms for these problematical functioning wastes. In addition, the manuscript presents a review of modern cement technologies for the S/S of radioactive waste, taking into consideration the engineering attributes and chemistry of pure cement, cement incorporated with SCM, calcium sulpho-aluminate-based cement, magnesium-based cement, along with their applications in the S/S of hazardous radioactive wastes.

5.
Materials (Basel) ; 16(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36676391

RESUMEN

Calcium aluminate cement (CAC) has been explored as a sustainable alternative to Portland cement, the most widely used type of cement. However, the hydration reaction and mechanical properties of CAC can be influenced by various factors such as water content, Li2CO3 content, and age. Due to the complex interactions between the precursors in CAC, traditional analytical models have struggled to predict CAC binders' compressive strength and porosity accurately. To overcome this limitation, this study utilizes machine learning (ML) to predict the properties of CAC. The study begins by using thermodynamic simulations to determine the phase assemblages of CAC at different ages. The XGBoost model is then used to predict the compressive strength, porosity, and hydration products of CAC based on the mixture design and age. The XGBoost model is also used to evaluate the influence of input parameters on the compressive strength and porosity of CAC. Based on the results of this analysis, a closed-form analytical model is developed to predict the compressive strength and porosity of CAC accurately. Overall, the study demonstrates that ML can be effectively used to predict the properties of CAC binders, providing a valuable tool for researchers and practitioners in the field of cement science.

6.
Materials (Basel) ; 15(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35888423

RESUMEN

In this work, the hydration of calcium aluminate cement (CAC, Al2O3 ≥ 70%) paste with nano admixtures (0, 0.05%, 0.1% and 0.2%) of nano-silica (NS) and carbon nano-cones (NC) when W/CAC = 0.35 was investigated. The methods of calorimetry, thermal analysis, X-ray diffraction (XRD), IR spectroscopy, and scanning electron microscopy (SEM) were used. In addition, the physical and mechanical properties of hardened cement pastes were determined after 3 days of hardening. NS was found to shorten the induction period of CAC hydration and accelerate the time of the secondary heat release effect, especially in the specimens with the highest NS content. The incorporation of NC (up to 0.2%) slows down the hydration process. After 3 days of hydration, the formation of hydration products, such as C2AH8, CAH10, C3AH6 and AH3 hydrates, was observed in CAC pastes, however, the quantitative compositions were different depending on the kind of nano admixture and its amount. SEM results obtained show differences in the effect of NS and NC on the formation of the structure of cement paste during its hardening. Significant changes in CAC paste microstructure were caused by the addition of NS and NC admixtures. Compressive strength was found to increase with the increase of NS and the optimal NS content was found to be 0.10 wt.%. The modification of the cement paste with an NS admixture results in a higher amount of hydrates, lower total porosity, and a higher amount of the smallest pores in the microstructure of the sample. NS and NC influence the hydration behaviour of CAC in different ways, which causes characteristic changes in the microstructure and properties of hardened samples.

7.
Odontology ; 110(3): 535-544, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35044577

RESUMEN

The purpose of this study was to investigate whether the root perforation repair with mineral aggregate-based cements affects the retention of customized fiberglass posts to bovine intraradicular dentin. Sixty-four bovine mandibular incisors had their root canals endodontically treated and prepared for fiberglass posts luting. Teeth were randomly distributed into four groups (n = 16), according to the cement used for the perforations repair (MTA HP; calcium aluminate cement-CAC; and CAC + calcium carbonate nanoparticles-nano-CaCO3) and control group (no perforation). The groups were redistributed according to the fiberglass posts luting protocol (n = 8): total-etching (TE) (MTA HP/TE; CAC/TE; CAC + CaCO3/TE and control/TE) and self-etching (SE) (MTA HP/SE; CAC/SE; CAC + CaCO3/SE and control/SE). Roots were sectioned into 1.3 mm-thick dentin slices obtaining samples that were submitted to the push-out test in Universal Testing Machine (Instron, Model 4444-0.5 mm/min). The fractured samples were analyzed under stereomicroscope and Scanning Electron Microscope (SEM). CAC/TE and CAC/SE groups had significant difference between the cervical and middle thirds (p < 0.05). When the root thirds were not considered, CAC/SE had the lowest bond strength and differed statistically from CAC/TE and CAC + CaCO3/TE groups, which had the highest mean bond strength values (p < 0.05). The root perforations repair did not affect the bond strength of resin cement/customized fiberglass posts to bovine dentin. The increase in bond strength is luting protocol dependent.


Asunto(s)
Recubrimiento Dental Adhesivo , Técnica de Perno Muñón , Animales , Bovinos , Recubrimiento Dental Adhesivo/métodos , Cavidad Pulpar , Dentina , Vidrio/química , Ensayo de Materiales , Minerales/farmacología , Cementos de Resina/química
8.
Materials (Basel) ; 16(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36614528

RESUMEN

The main objective of this paper was to investigate the heat transfer of modified lightweight refractory concrete at the microscopic scale. In this work, such material was treated as a porous composite based on the compound of calcium aluminate cement and aluminosilicate cenospheres. The presence of air inclusions within the cenospheres was an essential factor in the reduction in thermal performance. Due to the intricacy of the subject investigated, our research employed numerical, theoretical, and experimental approaches. Scanning electron microscopy (SEM) imaging was performed to study the composite microstructure with a special focus on geometry, dimensions, and the distribution of cenospheres. Based on the experimental analysis, simplified geometrical models were generated to reproduce the main features of the composite matrix and cenospheres. A finite element framework was used to determine the effective thermal conductivity of such domains as well as the thermal stresses generated in the sample during the heat flow. A considerable difference in thermal properties was revealed by comparing the simulation results of the pure composite matrix and the samples, indicating a varying arrangement of cenosphere particles. The numerical results were complemented by a theoretical study that applied analytical models derived from the two-phase mixture theory-parallel and Landauer. A satisfactory agreement between numerical and theoretical results was achieved; however, the extension of both presented approaches is required.

9.
Polymers (Basel) ; 13(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960936

RESUMEN

Cement composites (CC) are among the composites most widely used in the construction industry, such as a durable waterproof and fire-resistant concrete layer, slope protection, and application in retaining wall structures. The use of 3D fabric embedded in the cement media can improve the mechanical properties of the composites. The use of calcium aluminate cement (CAC) can accelerate the production process of the CC and further contribute to improving the mechanical properties of the cement media. The purpose of this study is to promote the use of these cementitious composites by deepening the knowledge of their tensile properties and investigating the factors that may affect them. Therefore, 270 specimens (three types of stitch structure, two directions of the fabric, three water temperature values, five curing ages, with three repetitions) were made, and the tensile properties, absorbed energy, and the inversion effects were evaluated. The results showed that the curing conditions of the reinforced cementitious composite in water with temperature values of 7, 23, and 50 °C affect the tensile behavior. The tensile strength of the CCs cured in water with a temperature of 23 °C had the highest tensile strength, while 7 and 50 °C produced a lower tensile strength. The inversion effect has been observed in CC at 23 °C between 7 and 28 days, while this effect has not occurred in other curing temperature values. By examining three commercial types of stitches in fabrics and the performance of the reinforced cementitious composites in the warp direction, it was found that the structure of the "Tuck Stitch" has higher tensile strength and absorbed energy compared to "Knit stitch" and "Miss Stitch". The tensile strength and fracture energy of the CC reinforced with "Tuck Stitch" fabric in the warp direction, by curing in 23 °C water for 7 days, were found to be 2.81 MPa and 1.65 × 103 KJ/m3, respectively. These results may be helpful in selecting the design and curing parameters for the purposes of maximizing the tensile properties of textile CAC composites.

10.
Materials (Basel) ; 14(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34443153

RESUMEN

This paper discusses studies regarding the impact of fine-ground glass additives on the hydration and properties of alumina cement pastes and mortars. Fine-ground glass was added to pastes and mortars instead of high-alumina cement and calcium aluminate cement in quantities of 5% and 10%. The findings are inconclusive as to the impact of glass on the properties of tested alumina cement types. The effect produced via the addition of glass instead of cement depends on the type of alumina cement used. Adding fine-ground glass to high-alumina cement enhances the paste's density while improving paste and mortar strength. Using the same additive for calcium aluminate cement reduces its density and strength. The addition of glass to high-alumina cement adversely affects its strength at higher temperatures.

11.
Materials (Basel) ; 14(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34300773

RESUMEN

One commonly used cement type for thermal applications is CAC containing 38-40% alumina, although the postheated behavior of this cement subjected to elevated temperature has not been studied yet. Here, through extensive experimentation, the postheated mineralogical and physicochemical features of calcium aluminate cement concrete (CACC) were examined via DTA/TGA, X-ray diffraction (XRD), and scanning electron microscopy (SEM) imaging and the variation in the concrete physical features and the compressive strength deterioration with temperature rise were examined through ultrasonic pulse velocity (UPV) values. In addition, other mechanical features that were addressed were the residual tensile strength and elastic modulus. According to the XRD test results, with the temperature rise, the dehydration of the C3AH6 structure occurred, which, in turn, led to the crystallization of the monocalcium dialuminate (CA2) and alumina (Al2O3) structures. The SEM images indicated specific variations in morphology that corresponded to concrete deterioration due to heat.

12.
Materials (Basel) ; 14(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34300971

RESUMEN

Mineral additions can eliminate the conversion in calcium aluminate hydrates and thus inhibit the future strength retraction of calcium aluminate cement (CAC). However, the impacts of these additions on the protection capacity of CAC concrete in relation to the corrosion of embedded steel reinforcement remains unclear. This paper focused on the corrosion behavior of steel reinforcement in slag, limestone powder, or calcium nitrate-modified CAC mortars via XRD and electrochemical methods (corrosion potential, electrochemical impedance, and linear polarization evaluation). The results indicate that strätlingite (C2ASH8), which is formed in slag-modified CAC, has poor chloride-binding ability, leading to decline in corrosion resistance of the steel reinforcement. The electrochemical parameters of specimens immersed in NaCl solution suddenly drop at 14 days, which is 28 days earlier than that of the references. In contrast, the Ca2[Al(OH)6]20.5CO3OH·H2O (CaAl·CO32--LDH) and 3CaO·Al2O3·Ca(NO3)2·12H2O (NO3-AFm) in limestone powder and calcium nitrate-modified CAC mortar show great chloride-binding ability, thereby improving the corrosion resistance of the steel reinforcement. The electrochemical parameters of specimens modified with calcium nitrate maintain a slow decreasing trend within 90 days.

13.
Braz. dent. j ; 32(3): 21-31, May-June 2021. tab, graf
Artículo en Inglés | LILACS, BBO | ID: biblio-1345507

RESUMEN

Abstract This study assessed the fracture resistance of simulated immature teeth reinforced with calcium aluminate cement (CAC) or mineral trioxide aggregate (MTA) containing calcium carbonate nanoparticles (nano-CaCO3). The microstructural arrangement of the cements and their chemical constitution were also evaluated. Forty-eight canines simulating immature teeth were distributed into 6 groups (n=8): Negative control - no apical plug or root canal filling; CAC - apical plug with CAC; CAC/nano-CaCO3 - apical plug with CAC+5% nano-CaCO3; MTA - apical plug with MTA; MTA/nano-CaCO3 - apical plug with MTA+5% nano-CaCO3; and Positive control - root canal filling with MTA. The fracture resistance was evaluated in a universal testing machine. Samples of the cements were analyzed under Scanning Electron Microscope (SEM) to determine their microstructural arrangement. Chemical analysis of the cements was performed by Energy Dispersive X-ray Spectroscopy (EDS). The fracture resistance of CAC/nano-CaCO3 was significantly higher than the negative control (p<0.05). There was no significant difference among the other groups (p>0.05). Both cements had a more regular microstructure with the addition of nano-CaCO3. MTA samples had more calcium available in soluble forms than CAC. The addition of nano-CaCO3 to CAC increased the fracture resistance of teeth in comparison with the non-reinforced teeth. The microstructure of both cements containing nano-CaCO3 was similar, with a more homogeneous distribution of lamellar- and prismatic-shaped crystals. MTA had more calcium available in soluble forms than CAC.


Resumo Este estudo avaliou a resistência à fratura de dentes imaturos simulados reforçados com cimento de aluminato de cálcio (CAC) ou trióxido agregado mineral (MTA) contendo nanopartículas de carbonato de cálcio (nano-CaCO3). O arranjo microestrutural dos cimentos e sua constituição química também foram avaliados. Quarenta e oito caninos simulando dentes imaturos foram distribuídos em 6 grupos (n=8): Controle negativo - sem plug apical ou obturação do canal radicular; CAC - plug apical com CAC; CAC/nano-CaCO3 - plug apical com CAC + 5% nano-CaCO3; MTA - plug apical com MTA; MTA/nano-CaCO3 - plug apical com MTA + 5% nano-CaCO3; e Controle positivo - obturação dos canais radiculares com MTA. A resistência à fratura foi avaliada em máquina universal de ensaios. Amostras dos cimentos foram analisadas em Microscópio Eletrônico de Varredura (MEV) para determinar seu arranjo microestrutural. A análise química dos cimentos foi realizada por Espectroscopia de Energia Dispersiva de Raio-X (EDS). A resistência à fratura de CAC/nano-CaCO3 foi significativamente maior do que o controle negativo (p<0,05). Não houve diferença significativa entre os outros grupos (p>0,05). Ambos os cimentos apresentaram microestrutura mais regular com a adição de nano-CaCO3. As amostras de MTA apresentaram mais cálcio disponível em formas solúveis do que CAC. A adição de nano-CaCO3 ao CAC aumentou a resistência à fratura dos dentes em comparação aos dentes não reforçados. A microestrutura de ambos os cimentos contendo nano-CaCO3 foi semelhante, com uma distribuição mais homogênea de cristais de formato lamelar e prismático. MTA apresentou mais cálcio disponível nas formas solúveis do que CAC.


Asunto(s)
Humanos , Materiales de Obturación del Conducto Radicular , Fracturas de los Dientes , Óxidos , Obturación del Conducto Radicular , Silicatos , Compuestos de Calcio , Compuestos de Aluminio , Ápice del Diente , Cementos Dentales , Combinación de Medicamentos
14.
J Esthet Restor Dent ; 33(7): 999-1009, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33929073

RESUMEN

OBJECTIVES: To assess the discoloration of teeth treated with the different phases of calcium aluminate cement (CAC), in comparison with the conventional CAC and mineral trioxide aggregate (MTA). MATERIALS AND METHODS: Fifty bovine incisors were prepared and filled. Two millimeters of the filling was removed to fabricate a cervical plug with the following cements (n=10): CA(CaO.Al2 O3 ); CA2 (CaO.2Al2 O3 ); C12 A7 (12CaO.7Al2 O3 ); CAC and MTA. The initial color measurement was performed and after 7, 15, 30, 45, 90, 180, and 365 days new color measurements were performed to determine the color (ΔE00 ), lightness (ΔL'), chroma (ΔC'), hue differences (ΔH'), and the whiteness index (WID ). RESULTS: ΔE00 was significant for groups (p = 0.036) and periods (p < 0.05). The greater ΔE00 was observed after 365 days for CAC (12.8). C12 A7 (7.2) had the smallest ΔE00 . ΔL' and ΔC' were significant for groups and periods (p < 0.05). ΔH' was significant for periods (p < 0.05). After 365 days, significant reduction in lightness was observed for all groups. For CA, CA2 , CAC, and MTA groups, the WID values decreased over time (p < 0.05). CONCLUSIONS: The tested cements changed the color behavior of the samples, resulting in greater teeth darkening over time. CLINICAL SIGNIFICANCE: There is no long-term study assessing the discoloration induced by the different phases of CAC.


Asunto(s)
Decoloración de Dientes , Compuestos de Aluminio/efectos adversos , Animales , Compuestos de Calcio/efectos adversos , Bovinos , Color , Cementos Dentales/efectos adversos , Materiales Dentales , Combinación de Medicamentos , Óxidos/efectos adversos , Silicatos/efectos adversos , Decoloración de Dientes/inducido químicamente
15.
Materials (Basel) ; 13(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228038

RESUMEN

The effects of sodium hexametaphosphate (SHMP) addition on the dispersion and hydration of calcium aluminate cement were investigated, and the relevant mechanisms discussed. The content of SHMP and the adsorption capacity of SHMP on the surface of cement particles were estimated using plasma adsorption spectroscopy and the residual concentration method. The rheological behavior of hydrate, ζ-potential value of cement particles, phase transformation and the microstructure of the samples were determined by coaxial cylinder rheometer, zeta probe, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that SHMP readily reacted with Ca2+, forming complexes [Ca2(PO3)6]2- ions which were subsequently adsorbed onto the surfaces of cement particles. When the content of SHMP was 0.05%, the adsorption ratio reached 99%. However, it decreased to 89% upon further increasing the addition of SHMP to 0.4%. The complexes [Ca2(PO3)6]2- adsorbed onto the surfaces of cement particles inhibited the concentration of Ca2+ and changed ζ-potential, resulting in enhanced electrostatic repulsive force between the cement particles and reduced viscosity of cement-water slurry. The experimental results indicate that the complexes [Ca2(PO3)6]2- covering the surfaces of cement particles led to a delayed hydration reaction, i.e., they extended the hydration time of the cement particles, and that the optimal addition of SHMP was found to be about 0.2%.

16.
Materials (Basel) ; 13(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872478

RESUMEN

Concrete wastewater infrastructures are important to modern society but are susceptible to sulfuric acid attack when exposed to an aggressive environment. Fibre-reinforced mortar has been adopted as a promising coating and lining material for degraded reinforced concrete structures due to its unique crack control and excellent anti-corrosion ability. This paper aims to evaluate the performance of polyethylene (PE) fibre-reinforced calcium aluminate cement (CAC)-ground granulated blast furnace slag (GGBFS) blended strain-hardening mortar after sulfuric acid immersion, which represented the aggressive sewer environment. Specimens were exposed to 3% sulfuric acid solution for up to 112 days. Visual, physical and mechanical performance such as water absorption ability, sorptivity, compressive and direct tensile strength were evaluated before and after sulfuric acid attack. In addition, micro-structure changes to the samples after sulfuric acid attack were also assessed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to further understand the deterioration mechanism. The results show that overall fibre-reinforced calcium aluminate cement (CAC)-based samples performed significantly better than fibre-reinforced ordinary Portland cement (OPC)-based samples as well as mortar samples in sulfuric acid solution in regard to visual observations, penetration depth, direct tensile strength and compressive reduction. Gypsum generation in the cementitious matrix of both CAC and OPC-based systems was the main reason behind the deterioration mechanism after acid attack exposure. Moreover, laboratory sulfuric acid testing has been proven for successfully screening the cementitious material against an acidic environment. This method can be considered to design the service life of concrete wastewater pipes.

17.
Carbohydr Polym ; 236: 116038, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32172854

RESUMEN

The hydration of calcium aluminate cement (CAC) in the presence of sodium alginate which is known to slightly retard Portland cement, was studied using heat flow calorimetry and mortar strength testing. Most surprisingly, addition of alginate resulted in an earlier occurrence of the maximal heat release as well as an increased early strength, thus confirming that in CAC alginate acts as accelerator. The thickening effect of alginate was effectively compensated using a superplasticizer while retaining its accelerating property. An investigation of the pore solution composition indicated that in the presence of alginate the concentration of calcium ions was reduced. Such effect normally causes retardation of cement hydration and should delay the formation of C-A-H phases. Apparently, the strong calcium ion complexing ability of alginate promotes the formation of C-A-H via e.g. a templating effect. A combined application of alginates and lithium salts presents a viable option to reduce the lithium consumption in CAC acceleration.

18.
J Hazard Mater ; 382: 120990, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31479822

RESUMEN

The application of an innovative solidification/stabilization (S/S) process was investigated for the remediation of Pb contaminated soil. The performance of Pb stabilization was evaluated by comparing the use of calcium aluminate cement (CAC) and an alkali activated metakaolin binder vs the Ordinary Portland Cement (OPC). The phase composition of the stabilized products was investigated by XRD and correlated to the internal microstructure obtained by SEM-EDX imaging. Leaching tests were performed to ascertain the effectiveness of the proposed binders in the S/S of the contaminated soil, and Pb release was evaluated for each binding system. The overall results proved that multiple mechanisms are involved in Pb retention and that key parameters regulating the stabilization performance are strongly dependent on the type of applied binder system. Pb was found to be associated to C-S-H in the case of OPC, whereas ettringite played a key role in the retention of this contaminant using the CAC binder. The use of a NaOH activated metakaolin resulted in almost total retention of Pb, despite a lack of solidification, highlighting the importance of pH in the regulation of the leaching behavior.

19.
Materials (Basel) ; 12(19)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554321

RESUMEN

In this paper, we comparitvley studied acetic acid attacks on geopolymer (GP-M), calcium aluminate (CAC-M), and Portland cement (PC-M)-based mortars. Consequent formations of deteriorated or transition layers surrounding the unaltered core material was classified in these three mortars, according to different degradation levels depending on what binder type was involved. Apart from mass loss, hardness, and deterioration depth, their microstructural alterations were analyzed using test methods such as scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), mercury intrusion porosimetry (MIP), powder X-ray diffraction (XRD), and thermogravimetric analysis-differential scanning calorimeter (TGA-DSC), which showed the different mechanisms for each binder type. Elemental maps revealed the decalcification (PC-M and CAC-M) and depolymerization (GP-M) that occurred across the mortar sections. The mass loss, hardness, and porosity were the least affected for GP-M, followed by CAC-M. These results points out that geopolymer-based mortars have improved acid resistance, which can be used as a potential alternative to conventional cement concretes that have been exposed to agro-industrial environments.

20.
Materials (Basel) ; 12(18)2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31540143

RESUMEN

In this paper, the mechanical and fracture properties of fly ash geopolymer concrete (FAGC) mixed with calcium aluminate cement (CAC) were explored. Fly ash was partially replaced by CAC with 2.5%, 5% and 7.5%. The results exhibit that the mechanical and fracture behaviors of FAGC are significantly influenced by CAC content. Based on the formation of more aluminum-rich gels, C-(A)-S-H and C-S-H gels, with the increase of CAC content, the compressive strength, splitting tensile strength and elastic modulus improved. Meanwhile, the peak load and effective fracture toughness show a monotone increasing trend. In addition, because C-S-H gels absorbed more energy, the fracture energy of FAGC increases. The maximal peak load, double-K fracture toughness and fracture energy reached up to1.79 kN, 4.27 MPam0.5, 10.1 MPam0.5 and 85.8 N/m with CAC content of 7.5%, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...