Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 802
Filtrar
1.
Front Med (Lausanne) ; 11: 1457882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355841

RESUMEN

By engaging in redox processes, ferroptosis plays a crucial role in sepsis-induced acute lung injury (ALI). Although iron stimulates calcium signaling through the stimulation of redox-sensitive calcium pathways, the function of calcium signals in the physiological process of ferroptosis in septic ALI remains unidentified. Iron homeostasis disequilibrium in ferroptosis is frequently accompanied by aberrant calcium signaling. Intracellular calcium overflow can be a symptom of dysregulation of the cellular redox state, which is characterized by iron overload during the early phase of ferroptosis. This can lead to disruptions in calcium homeostasis and calcium signaling. The mechanisms controlling iron homeostasis and ferroptosis are reviewed here, along with their significance in sepsis-induced acute lung injury, and the potential role of calcium signaling in these processes is clarified. We propose that the development of septic acute lung injury is a combined process involving the bidirectional interaction between iron homeostasis and calcium signaling. Our goal is to raise awareness about the pathophysiology of sepsis-induced acute lung injury and investigate the relationship between these mechanisms and ferroptosis. We also aimed to develop calcium-antagonistic therapies that target ferroptosis in septic ALI and improve the quality of survival for patients suffering from acute lung injury.

2.
J Bone Miner Res ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276366

RESUMEN

We report two patients of east African ancestry with the same novel homozygous variant in the parathyroid hormone receptor type 1 (PTH1R). Both patients shared skeletal features including brachydactyly, extensive metacarpal pseudoepiphyses, elongated cone-shaped epiphyses, ischiopubic hypoplasia, deficient sacral ossification, suggestive of Eiken syndrome. Strikingly, both patients exhibited clinically manifest parathyroid hormone (PTH) resistance with hypocalcaemia and elevated serum phosphate levels. These laboratory and clinical abnormalities initially suggested pseudohypoparathyroidism, which is typically associated with GNAS abnormalities. In both patients, however, a homozygous novel PTH1R variant was identified (c.710 T > A; p.IIe237Asn, p.I237N) that is located in the second transmembrane helical domain. Previously, others have reported a patient with a nearby PTH1R mutation (D241E) who presented with similar clinical features, e.g. delayed bone mineralization as well as clinical PTH resistance. Functional analysis of the effects of both novel PTH1R variants (I237N- and D241E-PTH1R) in HEK293 reporter cells transfected with plasmid DNA encoding the wild-type or mutant PTH1Rs demonstrated increased basal cAMP signalling for both variants, with relative blunting of responses to both PTH and PTH-related peptide (PTHrP) ligands. The clinical presentation of PTH resistance and delayed bone mineralization combined with the functional properties of the mutant PTH1Rs suggest that this form of Eiken syndrome results from alterations in PTH1R-mediated signalling in response to both canonical ligands, PTH and PTHrP.


Eiken syndrome is an extremely rare genetic disorder of skeletal development, previously reported in only 7 people in the medical literature. It is due to alterations in the gene for the parathyroid hormone receptor type 1 (PTH1R). This receptor can bind two different hormones; parathyroid hormone (PTH), which is the body's main regulator of the level of calcium in the blood, and parathyroid hormone related peptide (PTHrP), a smaller hormone that regulates bone development. We report two new cases of Eiken syndrome sharing the exact same change in the PTH1R gene. This genetic change has not been previously reported. The patients had many of the typical findings in the skeleton reported in previous cases of Eiken syndrome, but with some variation in the features. However, unlike any previously reported people with Eiken syndrome, the two patients we describe had low levels of calcium in the blood causing significant symptoms. Low calcium has been reported in some cases of Eiken syndrome before, but this has been mild and not associated with symptoms. We wanted to explore how this new mutation affects the function of the PTH receptor, particularly how it might affect the signals generated when the receptor binds to its two different hormones, PTH and PTHrP. We did this by genetically reprogramming a cell line with the new mutation, and then testing those cells' responses to stimulation by the two hormones. We showed that the altered receptor appears to be unable to bind both hormones in a stable fashion, explaining why the patients showed changes both in the skeleton (due mostly to altered PTHrP signalling) and in the blood level of calcium (mostly due to altered PTH signalling).

3.
Sci Total Environ ; 952: 175968, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39226952

RESUMEN

With increasing socio-economic importance of the rare earth elements and yttrium (REY), Norway has laid out plans for REY mining, from land-based to deep-sea mining, thereby enhancing REY mobility in the marine ecosystem. Little is known about associated environmental consequences, especially in the deep ocean. We explored the toxicity and modes of action of a light (Nd), medium (Gd) and heavy (Yb) REY-Cl3 at four concentrations (3, 30, 300, and 3000 µg L-1) in the Arcto-boreal deep-sea amphipod Tmetonyx cicada. At the highest concentration, REY solubility was limited and increased with atomic weight (Nd < Gd < Yb). Lethal effects were practically restricted to this treatment, with the lighter elements being more acutely toxic than Yb (from ∼50 % mortality in the Gd-group at dissolved 689-504 µg L-1 to <20 % in the Yb-group at ca. 2000 µg L-1), which could be a function of bioavailability. All three REY induced hyperactivity at the low-medium concentrations. Delving into the transcriptome of T. cicada allowed us to determine a whole array of potential (neurotoxic) mechanisms underlying this behaviour. Gd induced the vastest response, affecting serotonin-synthesis; sphingolipid-synthesis; the renin-angiotensin system; mitochondrial and endoplasmic reticulum functioning (Gd, Nd); and lysosome integrity (Gd, Yb); as well as the expression of hemocyanin, potentially governing REY-uptake (Gd, Yb). While Nd and Yb shared only few pathways, suggesting a link between mode of action and atomic weight/radius, almost all discussed mechanisms imply the disruption of organismal Ca-homeostasis. Despite only fragmental genomic information available for crustaceans to date, our results provide novel insight into the toxicophysiology of REY in marine biota. The neurotoxic/behavioural effects in T. cicada at concentrations with potential environmental relevance warn about the possibility of bottom-up ecological consequences in mining exposed fjords and deep-sea ecosystems, calling for follow-up studies and regulatory measures prior to the onset of REY mining in Norway.


Asunto(s)
Anfípodos , Metales de Tierras Raras , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Anfípodos/efectos de los fármacos , Anfípodos/fisiología , Metales de Tierras Raras/toxicidad , Noruega , Conducta Animal/efectos de los fármacos
4.
Pharmacol Res ; 208: 107409, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39284429

RESUMEN

The pathogenesis of liver diseases is multifaceted and intricate, posing a persistent global public health challenge with limited therapeutic options. Therefore, further research into liver diseases is imperative for better comprehension and advancement in treatment strategies. Numerous studies have confirmed the endoplasmic reticulum (ER) and mitochondria as key organelles driving liver diseases. Notably, the mitochondrial-associated ER membranes (MAMs) establish a physical and functional connection between the ER and mitochondria, highlighting the importance of inter-organelle communication in maintaining their functional homeostasis. This review delves into the intricate architecture and regulative mechanism of the integrated MAM that facilitate the physiological transfer of signals and substances between organelles. Additionally, we also provide a detailed overview regarding the varied pathogenic roles of malfunctioning MAM in liver diseases, focusing on its involvement in the progression of ER stress and mitochondrial dysfunction, the regulation of mitochondrial dynamics and Ca2+ transfer, as well as the disruption of lipid and glucose homeostasis. Furthermore, the current challenges and prospects associated with MAM in liver disease research are thoroughly discussed. In conclusion, elucidating the specific structure and function of MAM in different liver diseases may pave the way for novel therapeutic strategies.


Asunto(s)
Retículo Endoplásmico , Hepatopatías , Humanos , Retículo Endoplásmico/metabolismo , Hepatopatías/metabolismo , Hepatopatías/patología , Animales , Mitocondrias/metabolismo , Estrés del Retículo Endoplásmico , Membranas Intracelulares/metabolismo
5.
Sci Total Environ ; 954: 176351, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299314

RESUMEN

Phthalates (PAEs), especially di (2-ethylhexyl) phthalate (DEHP), are generally considered to have adverse impact on nervous system. The residue of DEHP in the environment has gradually become a widely concerned environmental problem due to its widespread use in plastic items. Lycopene (LYC) as the readily available natural antioxidant is considered to have the potential to alleviate exogenous poisons-induced nerve damage. However, there is currently a lack of strategies to alleviate the neurotoxicity caused by DEHP, and it is also unknown whether LYC can alleviate the neurotoxicity caused by DEHP. The experiment demonstrated that LYC had the potential to mitigate DEHP-induced mitochondrial damage in cerebellum. DEHP induced the disorder of Ca2+ transport in cerebellum, thereby resulting in the imbalance of protein homeostasis. Such disruption in protein homeostasis further results in the overactivation of mitochondrial unfolded protein response (UPRmt) and mitochondrial injury. Mechanistically, LYC could alleviate the imbalance of calcium homeostasis and protein homeostasis induced by DEHP via regulating inositol 1, 4, 5-trisphosphate receptor type1 (IP3R1) and sarco/endoplasmic reticulum Ca (2+)-ATPase 2 (SERCA2), further alleviating mitochondrial damage in cerebellum. Subsequently, the present study suggested the mechanism of cerebellar injury induced by DEHP, and provided a novel approach to treating DEHP-induced neurotoxicity.

6.
FASEB J ; 38(17): e23861, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39247969

RESUMEN

Recently, amyloid-ß oligomers (AßOs) have been studied as the primary pathogenic substances in Alzheimer's disease (AD). Our previous study revealed that the Aß expression level is closely related to ARC progression. Here, we demonstrated that the accumulation of AßOs in the lens epithelium of age-related cataract (ARC) patients increased during ARC progression and that this alteration was consistent with the changes in mitochondrial function, oxidative stress, and cellular apoptosis. In vitro, human lens epithelial cells (HLECs) treated with AßOs exhibited Ca2+ dyshomeostasis, impaired mitochondrial function, elevated oxidative stress levels, and increased apoptosis. Moreover, the proapoptotic effect of AßOs was alleviated after the uptake of mitochondrial Ca2+ was inhibited. These results establish that AßOs may promote HLEC apoptosis by inducing mitochondrial Ca2+ overload, thus preliminarily revealing the possible association between the accumulation of AßOs and other pathological processes in ARC.


Asunto(s)
Péptidos beta-Amiloides , Apoptosis , Catarata , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Catarata/metabolismo , Catarata/patología , Células Cultivadas , Células Epiteliales/metabolismo , Cristalino/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo
7.
Proc Natl Acad Sci U S A ; 121(39): e2400531121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39292746

RESUMEN

It is well established that DNA Damage Regulated Autophagy Modulator 1 (DRAM1), a lysosomal protein and a target of p53, participates in autophagy. The cellular functions of DRAM1 beyond autophagy remain elusive. Here, we show p53-dependent upregulation of DRAM1 in mitochondrial damage-induced Parkinson's disease (PD) models and exacerbation of disease phenotypes by DRAM1. We find that the lysosomal location of DRAM1 relies on its intact structure including the cytosol-facing C-terminal domain. Excess DRAM1 disrupts endoplasmic reticulum (ER) structure, triggers ER stress, and induces protective ER-phagy. Mechanistically, DRAM1 interacts with stromal interacting molecule 1 (STIM1) to tether lysosomes to the ER and perturb STIM1 function in maintaining intracellular calcium homeostasis. STIM1 overexpression promotes cellular health by restoring calcium homeostasis, ER stress response, ER-phagy, and AMP-activated protein kinase (AMPK)-Unc-51 like autophagy activating kinase 1 (ULK1) signaling in cells with excess DRAM1. Thus, by promoting organelle contact between lysosomes and the ER, DRAM1 modulates ER structure and function and cell survival under stress. Our results suggest that DRAM1 as a lysosomal protein performs diverse roles in cellular homeostasis and stress response. These findings may have significant implications for our understanding of the role of the p53/DRAM1 axis in human diseases, from cancer to neurodegenerative diseases.


Asunto(s)
Calcio , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Homeostasis , Lisosomas , Proteínas de la Membrana , Molécula de Interacción Estromal 1 , Proteína p53 Supresora de Tumor , Lisosomas/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 1/genética , Humanos , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Estrés del Retículo Endoplásmico/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Ratones , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
8.
Sci Total Environ ; 954: 176441, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307359

RESUMEN

Resmethrin, a type I pyrethroid insecticide, is frequently used globally in residential and farmland areas to control pests. Owing to the repeated administration of resmethrin, and particularly because of its lipophilic nature, residues have been detected in various environments, crops, and livestock. Previous studies have shown the adverse effects of resmethrin, including neurotoxicity and hepatotoxicity. However, the toxic effects of resmethrin on the female reproductive system have rarely been investigated. In the present study, we used two cell types, porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells, to examine the toxic effects of resmethrin on implantation and its mechanisms. Our study showed that resmethrin exposure induced apoptosis and inhibited cell cycle progression, thereby reducing the viability of both cell types. In addition, calcium homeostasis was disrupted following resmethrin treatment, and disrupted calcium homeostasis impaired the mitochondrial membrane potential and mitochondrial respiration. In addition to mitochondrial dysfunction, GRP75 and ER stress-related proteins were upregulated. Furthermore, the AKT and MAPK cascades were altered, and reactive oxygen species production and inflammation occurred after resmethrin treatment. Ultimately, through various mechanisms, resmethrin decreased the migratory abilities, and it could diminish the crosstalk between the two cell lines and lower the probability of successful implantation. Overall, we demonstrated that resmethrin interfered with the implantation process by triggering various toxic mechanisms. This study presents, for the first time, evidence regarding the mechanisms through which resmethrin exerts toxic effects on the female reproductive system, thereby raising awareness regarding the potential implications of its widespread use.

9.
Cancers (Basel) ; 16(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39199583

RESUMEN

SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.

10.
J Clin Med ; 13(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39201039

RESUMEN

Background/Objectives: The effect of glucagon-like peptide-1 receptor (GLP-1R) agonists on calcium homeostasis is poorly understood. This study aimed to investigate the association between GLP-1R agonist use and the risk of hypocalcemia and/or hypercalcemia, as well as other clinical outcomes. Methods: A retrospective cohort study used de-identified patient data from the TriNetX Global Collaborative Network, including 15,655 adult patients prescribed GLP-1R agonists and 15,655 propensity-matched controls. Outcomes included hypocalcemia, hypercalcemia, emergency visits, hospitalizations, cardiovascular events, and all-cause mortality. Results: GLP-1R agonist use was associated with a reduced risk of hypocalcemia (2.7% vs. 5.5%, RR 0.49, 95% CI: 0.44-0.55) but an increased risk of hypercalcemia (2.3% vs. 1.1%, RR 2.02, 95% CI: 1.69-2.42). The effect on hypocalcemia was most pronounced during the first six months of treatment. Among individual agents, tirzepatide showed the most pronounced effect, reducing hypocalcemia risk by 63% while increasing hypercalcemia risk by 85%. Semaglutide demonstrated similar effects, while dulaglutide and liraglutide showed modest effects. Furthermore, GLP-1R agonist use was associated with reduced risks of emergency visits (RR 0.57, 95% CI: 0.54-0.60), hospitalizations (RR 0.40, 95% CI: 0.36-0.44), cardiovascular events, and all-cause mortality (HR 0.27, 95% CI: 0.21-0.36). Conclusions: GLP-1R agonists exhibit a complex influence on calcium homeostasis, reducing hypocalcemia risk while increasing hypercalcemia risk. Beyond calcium regulation, these medications significantly reduce healthcare utilization, improve cardiovascular outcomes, and decrease mortality. Further research is needed to elucidate the mechanisms behind the differential effects of individual GLP-1R agonists, particularly tirzepatide, to optimize personalized treatment approaches and long-term safety.

11.
Mater Today Bio ; 28: 101162, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39175654

RESUMEN

Fibrotic scarring and impaired myocardial calcium homeostasis serve as the two main factors in the pathology of heart failure following myocardial infarction (MI), leading to poor prognosis and death in patients. Serca2a is a target of interest in gene therapy for MI-induced heart failure via the regulation of intracellular calcium homeostasis and, subsequently, enhancing myocardial contractility. A recent study also reported that Serca2a ameliorates pulmonary fibrosis by blocking nuclear factor kB (NF-kB)/interleukin-6 (IL-6)-induced (SMAD)/TGF-ß signaling activation, while the effect in MI-induced myocardial fibrosis remains to be addressed. Here, we loaded Serca2a plasmids into type 1 collagen-targeting nanoparticles to synthesize the GKWHCTTKFPHHYCLY-Serca2a-Liposome (GSL-NPs) for targeted treatment of myocardial infarction. We showed that GSL-NPs were effectively targeted in the scar area in MI-induced mice within tail-vein delivery for 48 h. Treatment with GSL-NPs improved cardiac functions and shrank fibrotic scars after MI in mice by up-regulating Serca2a. In cardiac fibroblasts, GSL-NPs alleviated hypoxia-induced fibrotic progression partly by inhibiting NF-kB activation. Furthermore, treatment with GSL-NPs protected cardiomyocyte calcium homeostasis and enhanced myocardial contractility during hypoxia. Together, we demonstrate that type I collagen-targeted liposome delivery of Serca2a may benefit patients with myocardial infarction by inhibiting fibrotic scarring as well as modulation of calcium homeostasis.

12.
Int Immunopharmacol ; 141: 112930, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146786

RESUMEN

Cardiovascular diseases (CVDs) represent a significant public health concern because of their associations with inflammation, oxidative stress, and abnormal remodeling of the heart and blood vessels. In this review, we discuss the intricate interplay between mitochondria-associated membranes (MAMs) and cardiovascular inflammation, highlighting their role in key cellular processes such as calcium homeostasis, lipid metabolism, oxidative stress management, and ERS. We explored how these functions impact the pathogenesis and progression of various CVDs, including myocardial ischemia-reperfusion injury, atherosclerosis, diabetic cardiomyopathy, cardiovascular aging, heart failure, and pulmonary hypertension. Additionally, we examined current therapeutic strategies targeting MAM-related pathways and proteins, emphasizing the potential of MAMs as therapeutic targets. Our review aims to provide new insights into the mechanisms of cardiovascular inflammation and propose novel therapeutic approaches to improve cardiovascular health outcomes.


Asunto(s)
Enfermedades Cardiovasculares , Inflamación , Membranas Mitocondriales , Humanos , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Inflamación/metabolismo , Inflamación/inmunología , Membranas Mitocondriales/metabolismo , Estrés Oxidativo , Mitocondrias/metabolismo , Membranas Asociadas a Mitocondrias
13.
Eur J Pharmacol ; 982: 176909, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154826

RESUMEN

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic bladder inflammation characterized by the main symptoms of urinary frequency, urgency, and pelvic pain. The hypersensitivity of bladder afferent neurons is considered a significant pathophysiologic mechanism in IC/PBS. Serotonin (5-HT, 5-hydroxytryptamine) receptors are known to be involved in the regulation of the micturition reflex and hyperalgesia, but the effect of 5-HT receptors on cystitis remains unknown. In this study, a rat model of interstitial cystitis induced by intraperitoneal injection of cyclophosphamide (CYP) was used to investigate the role of 5-HT receptors on cystitis. The histology and urodynamics exhibited chronic cystitis and overactive bladder in CYP-treated rats. Notably, among 5-HT1A, 5-HT2A and 5-HT7 receptors, the expression of 5-HT2A receptor was significantly increased in bladder afferent neurons in CYP-treated rats. Intrathecal administration of the 5-HT2A receptor antagonist M100907 could alleviate bladder overactivity and hyperalgesia in CYP-induced cystitis rats. Neuronal calcium imaging of bladder afferent neurons revealed increased calcium influx induced by the 5-HT2A receptor agonist or capsaicin in cystitis rats, which could be inhibited by M100907. Moreover, RNA sequencing indicated that differentially expressed genes were enriched in inflammation-related pathways and cellular calcium homeostasis. These findings suggest that the 5-HT2A receptor is involved in the hypersensitivity of bladder afferent neurons in CYP-induced cystitis, and M100907 could alleviate bladder overactivity and hyperalgesia in CYP-induced cystitis by inhibiting neuronal hypersensitivity in the afferent pathways. The 5-HT2A receptor may be a potential therapeutic target for the treatment of IC/BPS.


Asunto(s)
Ciclofosfamida , Cistitis , Neuronas Aferentes , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A , Vejiga Urinaria , Animales , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/inervación , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo , Neuronas Aferentes/metabolismo , Neuronas Aferentes/efectos de los fármacos , Receptor de Serotonina 5-HT2A/metabolismo , Ratas , Cistitis/inducido químicamente , Cistitis/metabolismo , Cistitis/patología , Femenino , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Cistitis Intersticial/inducido químicamente , Cistitis Intersticial/metabolismo , Cistitis Intersticial/tratamiento farmacológico , Cistitis Intersticial/patología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Vejiga Urinaria Hiperactiva/inducido químicamente , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria Hiperactiva/fisiopatología , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Modelos Animales de Enfermedad
14.
Am J Physiol Cell Physiol ; 327(3): C830-C843, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39099424

RESUMEN

ATP and benzoylbenzoyl-ATP (BzATP) increase free cytosolic Ca2+ concentration ([Ca2+]i) in conjunctival goblet cells (CGCs) resulting in mucin secretion. The purpose of this study was to investigate the source of the Ca2+i mobilized by ATP and BzATP. First-passage cultured rat CGCs were incubated with Fura-2/AM, and [Ca2+]i was measured under several conditions with ATP and BzATP stimulation. The following conditions were used: 1) preincubation with the Ca2+ chelator EGTA, 2) preincubation with the SERCA inhibitor thapsigargin (10-6 M), which depletes ER Ca2+ stores, 3) preincubation with phospholipase C (PLC) or protein kinase A (PKA) inhibitor, or 4) preincubation with the voltage-gated calcium channel antagonist nifedipine (10-5 M) and the ryanodine receptor (RyR) antagonist dantrolene (10-5 M). Immunofluorescence microscopy (IF) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to investigate RyR presence in rat and human CGCs. ATP-stimulated peak [Ca2+]i was significantly lower after chelating Ca2+i with 2 mM EGTA in Ca2+-free buffer. The peak [Ca2+]i increase in CGCs preincubated with thapsigargin, the PKA inhibitor H89, nifedipine, and dantrolene, but not the PLC inhibitor, was reduced for ATP at 10-5 M and BzATP at 10-4 M. Incubating CGCs with dantrolene alone decreased [Ca2+]i and induced CGC cell death at a high concentration. RyR3 was detected in rat and human CGCs with IF and RT-qPCR. We conclude that ATP- and BzATP-induced Ca2+i increases originate from the ER and that RyR3 may be an essential regulator of CGC [Ca2+]i. This study contributes to the understanding of diseases arising from defective Ca2+ signaling in nonexcitable cells.NEW & NOTEWORTHY ATP and benzoylbenzoyl-ATP (BzATP) induce mucin secretion through an increase in free cytosolic calcium concentration ([Ca2+]i) in conjunctival goblet cells (CGCs). The mechanisms through which ATP and BzATP increase [Ca2+]i in CGCs are unclear. Ryanodine receptors (RyRs) are fundamental in [Ca2+]i regulation in excitable cells. Herein, we find that ATP and BzATP increase [Ca2+]i through the activation of protein kinase A, voltage-gated calcium channels, and RyRs, and that RyRs are crucial for nonexcitable CGCs' Ca2+i homeostasis.


Asunto(s)
Adenosina Trifosfato , Calcio , Células Caliciformes , Canal Liberador de Calcio Receptor de Rianodina , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Calcio/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Células Caliciformes/efectos de los fármacos , Células Caliciformes/metabolismo , Ratas , Células Cultivadas , Conjuntiva/metabolismo , Conjuntiva/efectos de los fármacos , Agonistas Purinérgicos/farmacología , Ratas Sprague-Dawley , Señalización del Calcio/efectos de los fármacos , Humanos , Masculino , Fosfolipasas de Tipo C/metabolismo
15.
Biomolecules ; 14(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39062487

RESUMEN

Zinc (Zn) and copper (Cu) are essential for normal brain functions. In particular, Zn and Cu are released to synaptic clefts during neuronal excitation. Synaptic Zn and Cu regulate neuronal excitability, maintain calcium (Ca) homeostasis, and play central roles in memory formation. However, in pathological conditions such as transient global ischemia, excess Zn is secreted to synaptic clefts, which causes neuronal death and can eventually trigger the pathogenesis of a vascular type of senile dementia. We have previously investigated the characteristics of Zn-induced neurotoxicity and have demonstrated that low concentrations of Cu can exacerbate Zn neurotoxicity. Furthermore, during our pharmacological approaches to clarify the molecular pathways of Cu-enhanced Zn-induced neurotoxicity, we have revealed the involvement of Ca homeostasis disruption. In the present review, we discuss the roles of Zn and Cu in the synapse, as well as the crosstalk between Zn, Cu, and Ca, which our study along with other recent studies suggest may underlie the pathogenesis of vascular-type senile dementia.


Asunto(s)
Calcio , Cobre , Demencia Vascular , Sinapsis , Zinc , Zinc/metabolismo , Humanos , Cobre/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Calcio/metabolismo , Demencia Vascular/metabolismo , Demencia Vascular/patología , Demencia Vascular/etiología , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología
16.
Clin Pathol ; 17: 2632010X241265854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070950

RESUMEN

Objectives: The study was carried out to assess the effect of zinc supplementation on changes in calcium homeostasis, and parathyroid gland, bone, and skeletal muscle histology in rats exposed to subchronic oral glyphosate-based herbicide (GBH, GOBARA®) toxicity. Methods: Sixty male Wistar rats in 6 equal groups (DW, Z, G1, G2, ZG1, ZG2) were used: DW and Z were given 2 mL/kg distilled water and 50 mg/kg of zinc chloride (2%), respectively; G1 and G2 received 187.5 mg/kg and 375 mg/kg of glyphosate (in GBH), respectively; ZG1 and ZG2 were pretreated with 50 mg/kg of zinc chloride before receiving glyphosate, 1 hour later, at 187.5 and 375 mg/kg, respectively. Treatments were by gavage once daily for 16 weeks. Serum calcium, vitamin D, and parathormone were estimated. Histopathological examination of parathyroid gland, femoral bone and biceps femoris muscle was done. Results: GBH exposure caused significant (P = .0038) decrease in serum calcium concentration in G1, significant (P = .0337) decrease in serum vitamin D concentration in G1, significant increases in parathormone in G1 (P = .0168) and G2 (P = .0079) compared to DW. Significant (P > .05) changes did not occur in the other parameters of G2 compared to DW. Dose-dependent effect in GBH exposure was not observed after comparing G1 and G2. Necrotic changes occurred in parathyroid gland cells, osteocytes, and muscle cells in G1 and G2. In ZG1 and ZG2, significant (P > .05) variations in the parameters were not observed and tissue lesions were absent. Conclusion: Subchronic GBH exposure impaired calcium homeostasis observed as hypocalcemia, hypovitaminemia D, and secondary hyperparathyroidism and caused tissue damage in parathyroid gland, bone, and muscle of rats and these were mitigated by zinc chloride pretreatment.

17.
FASEB J ; 38(14): e23825, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39031532

RESUMEN

Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wild-type (WT) mice, we determined whether loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD R1/2A pathology.


Asunto(s)
Calcio , Calpaína , Ratones Noqueados , Proteínas Musculares , Músculo Esquelético , Condicionamiento Físico Animal , Animales , Calpaína/metabolismo , Ratones , Calcio/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Masculino , Ratones Endogámicos C57BL , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/genética , Señalización del Calcio
18.
Ecotoxicol Environ Saf ; 282: 116679, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981393

RESUMEN

Di(2-ethylhexyl) phthalate (DEHP) is a widely recognized environmental endocrine disruptor that potentially impacts female reproductive function, although the specific mechanisms leading to such impairment remain unclear. A growing body of research has revealed that the endoplasmic reticulum and mitochondrial function significantly influence oocyte quality. The structure of mitochondria-associated endoplasmic reticulum membranes (MAMs) is crucial for facilitating the exchange of Ca2+, lipids, and metabolites. This study aimed to investigate the alterations in the composition and function of MAMs after DEHP exposure and to elucidate the underlying mechanisms of ovarian toxicity. The female mice were exposed to DEHP at doses of 5 and 500 mg/kg/day for one month. The results revealed that DEHP exposure led to reduced serum anti-Müllerian hormone levels and increased atretic follicles in mice. DEHP induced endoplasmic reticulum stress and disrupted calcium homeostasis in oocytes. Furthermore, DEHP impaired the mitochondrial function of oocytes and reduced their membrane potential, and promoting apoptosis. Similar results were observed in human granulosa cells after exposure to mono-(2-ethylhexyl) phthalate (MEHP, metabolites of DEHP) in vitro. Proteomic analysis and transmission electron microscopy revealed modifications in the functional proteins and structure of the MAMs, and the suppression of oxidative phosphorylation pathways. The findings of this investigation provide a new perspective on the mechanism underlying the reproductive toxicity of DEHP in females.


Asunto(s)
Dietilhexil Ftalato , Disruptores Endocrinos , Retículo Endoplásmico , Mitocondrias , Ovario , Femenino , Animales , Dietilhexil Ftalato/toxicidad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Ovario/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Oocitos/efectos de los fármacos , Células de la Granulosa/efectos de los fármacos , Reproducción/efectos de los fármacos , Calcio/metabolismo , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Hormona Antimülleriana/metabolismo
19.
Eur J Med Chem ; 276: 116715, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39083983

RESUMEN

In the last years, 5-pyrazolyl ureas and 5-aminopyrazoles have been investigated for their antiangiogenetic properties and their potential interaction with the ubiquitous Ca2+ binding protein Calreticulin. Based on the structure of the active compounds I and GeGe-3, novel 5-arylamino pyrazoles 2 and 3 were synthesized through a stepwise procedure. In MTT assays, all the new derivatives proved to be non-cytotoxic against eight different tumor cell lines, normal fibroblasts, and endothelial cells. Furthermore, selected derivatives showed relevant antiangiogenetic properties, resulting more effective than reference molecules I and GeGe-3 in inhibiting HUVEC endothelial tube formation. 5-Arylamino pyrazoles 2a and 2d were identified as the most interesting compounds and significantly prevented tube formation of tumor secretome-stimulated HUVEC. Furthermore, the two compounds inhibited HUVEC migration in wound healing assay and altered cell invasion capability. Additionally, 2a and 2d strongly affected Ca2+ mobilization and cytoskeletal organization of HUVEC cells, being as active as the reference compound GeGe-3. Differently from previous studies, molecular docking simulations suggested a poor affinity of 2a towards Calreticulin, one of the interacting partners of the lead compound GeGe-3. Collectively, this new amino-pyrazole library further extends the structure-activity relationships of the previously prepared derivatives and confirmed the biological attractiveness of this chemical scaffold as antiangiogenetic agents.


Asunto(s)
Inhibidores de la Angiogénesis , Calcio , Células Endoteliales de la Vena Umbilical Humana , Simulación del Acoplamiento Molecular , Pirazoles , Humanos , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Calcio/metabolismo , Relación Estructura-Actividad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Estructura Molecular , Calreticulina/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Neovascularización Patológica/tratamiento farmacológico , Angiogénesis
20.
J Exp Bot ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082751

RESUMEN

Water-to-land transition is a hallmark of terrestrialization for land plants and requires molecular adaptation to resist water deficiency. Lineages- or species-specific genes are widespread across eukaryotes, and yet the majority of those are functionally unknown and not annotated. Recent studies have revealed that some of such genes could play a role in adapting to environmental stress responses. Here, we identified a novel gene PpBCG1 (Bryophyte Co-retained Gene 1) in the moss Physcomitrium patens that was responsive to dehydration and rehydration. Under de- and rehydration treatments, PpBCG1 was significantly co-expressed with the dehydrin-encoding gene PpDHNA. Microarray data revealed that PpBCG1 was highly expressed in tissues of spores, female organ archegonia, and mature sporophytes. In addition, the Ppbcg1 mutant showed reduced ability of dehydration tolerance, whose plants were accompanied by a relatively low level of chlorophyll content during recovery. Comprehensive transcriptomics uncovered a detailed set of regulatory processes that were affected by the PpBCG1 disruption. Moreover, experimental evidence showed that PpBCG1 might function in the antioxidant activity, abscisic acid (ABA) pathway, and intracellular calcium (Ca2+) homeostasis to resist desiccation. Together, our study provides insights into the roles of one bryophyte co-retained gene in the desiccation tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...