Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
1.
Biosens Bioelectron ; 263: 116625, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116630

RESUMEN

Tactile and pain perception are essential for biological skin to interact with the external environment. This complex interplay of sensations allows for the detection of potential threats and appropriate responses to stimuli. However, the challenge is to enable flexible electronics to respond to mechanical stimuli such as biological skin, and researchers have not clearly reported the successful integration of somatic mechanical perception and sensation management functions into neuro-like electronics. In this work, an afferent nerve-like device with a pressure sensor and a perception management module is proposed. The pressure sensor comprises two conductive fabric layers and an ionic hydrogel, forming a capacitor structure that emulates the swift transition from tactile to pain perception under mechanical stimulation. Drawing inspiration from the neuronal "gate control" mechanism, the sensation management module adjusts signals in response to rubbing, accelerating the discharge process and reducing the perception duration, thereby replicating the inhibitory effect of biological neurons on pain following tactile interference. This integrated device, encompassing somatic mechanical perception and sensation management, holds promise for applications in soft robotics, prosthetics, and human-machine interaction.


Asunto(s)
Técnicas Biosensibles , Diseño de Equipo , Humanos , Técnicas Biosensibles/instrumentación , Tacto/fisiología , Dispositivos Electrónicos Vestibles , Piel , Neuronas Aferentes/fisiología , Hidrogeles/química , Percepción del Tacto/fisiología , Percepción del Dolor/fisiología
2.
IEEE Open J Eng Med Biol ; 5: 650-660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184966

RESUMEN

Goal: The goal of this study is to investigate the application of fractional-order calculus in modeling arterial compliance in human vascular aging. Methods: A novel fractional-order modified arterial Windkessel model that incorporates a fractional-order capacitor (FOC) element is proposed to capture the complex and frequency-dependent properties of arterial compliance. The model's performance is evaluated by verifying it using data collected from three different human subjects, with a specific focus on aortic pressure and flow rates. Results: The results show that the FOC model accurately captures the dynamics of arterial compliance, providing a flexible means to estimate central blood pressure distribution and arterial stiffness. Conclusions: This study demonstrates the potential of fractional-order calculus in advancing the modeling and characterization of arterial compliance in human vascular aging. The proposed FOC model can improve our understanding of the physiological changes in arterial compliance associated with aging and help to identify potential interventions for age-related cardiovascular diseases.

3.
ACS Appl Mater Interfaces ; 16(32): 42615-42622, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101798

RESUMEN

Porous materials synthesized through bottom-up approaches, such as metal-organic frameworks and covalent organic frameworks, have attracted attention owing to their design flexibility for functional materials. However, achieving the chemical and thermal stability of these materials for various applications is challenging considering the reversible coordination bonds and irreversible covalent bonds in their frameworks. Thus, ordered carbonaceous frameworks (OCFs) emerge as a promising class of bottom-up materials with good periodicity, thermal and chemical stability, and electrical conductivity. However, a few OCFs have been reported owing to the limited range of precursor molecules. Herein, we designed a hexaazatrinaphthylene-based molecule with enediyne groups as a precursor molecule for synthesizing an OCF. The solid-state Bergman cyclization of enediyne groups at a low temperature formed a microporous polymer and an OCF, exhibiting redox activity and demonstrating their potential for electrochemical applications. The microporous polymer was used as an active material in sodium-ion batteries, while the OCF was used as an electrochemical capacitor. These findings illustrate the utility of the Bergman cyclization reaction for synthesizing microporous polymers and OCFs with a customizable functionality for broad applications.

4.
J Colloid Interface Sci ; 677(Pt A): 577-586, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39111093

RESUMEN

The intriguing characteristics of two-dimensional (2D) heterostructures stem from their unique interfaces, which can improve ion storage capability and rate performance. However, there are still challenges in increasing the proportion of heterogeneous interfaces in materials and understanding the complex interaction mechanisms at these interfaces. Here, we have successfully synthesized confined CoSe2 within the interlayer space of Ti3C2Tx through a simple solvothermal method, resulting in the formation of a superlattice-like heterostructures of CoSe2@Ti3C2Tx. Both density functional theory (DFT) calculations and experimental results show that compared with CoSe2 and Ti3C2Tx, CoSe2@Ti3C2Tx can significantly improve adsorption of Na+ ions, while maintaining low volume expansion and high Na+ ions migration rate. The heterostructure formed by MXene and CoSe2 is a Schottky heterostructure, and its interfacial charge transfer induces a built-in electric field that promotes rapid ion transport. When CoSe2@Ti3C2Tx was used as an anode material, it exhibits a high specific capacity of up to 600.1 mAh/g and an excellent rate performance of 206.3 mAh/g at 20 A/g. By utilizing CoSe2@Ti3C2Tx as the anode and activated carbon (AC) as the cathode, the sodium-ion capacitor of CoSe2@Ti3C2Tx//AC exhibits excellent energy and power density (125.0 Wh kg-1 and 22.5 kW kg-1 at 300.0 W kg-1 and 37.5 Wh kg-1, respectively), as well as a long service life (86.3 % capacity retention over 15,300 cycles at 5 A/g), demonstrating its potential for practical applications.

5.
Int J Biol Macromol ; 276(Pt 1): 134152, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098457

RESUMEN

Fiber-shaped Zn-ion capacitors (FSZICs) have shown great potential in wearable electronics due to their long cycle life, high energy density, and good flexibility. Nevertheless, it is still a critical challenge to develop a conductive fiber with long size and high mechanical properties as the FSZIC cathode using sustainable and low-cost materials. Herein, regenerated cellulose (RC) -based conductive microfibers are prepared by a simple, continuous, and scalable wet spinning process. The 3D nanoporous networks of RC caused by physical self-cross-linking allow MXene and MnO2 to be uniformly and firmly embedded. The rapid extrusion and limited drying result in the highly aligned structure of the fibers, endowing the hybrid fiber with an ultra-high tensile strength (145.83 Mpa) and Young's modulus (1672.11 Mpa). MXene/MnO2-RC-based FSZIC demonstrates a high specific capacitance of 110.01 mF cm-3, an energy density of 22.0 mWh cm-3 at 0.57 A cm-3 and excellent cycling stability with 90.5 % capacity retention after 5000 cycles. This work would lead to a great potential of cellulose for application in next-generation green and wearable electronics.


Asunto(s)
Celulosa , Capacidad Eléctrica , Compuestos de Manganeso , Óxidos , Zinc , Celulosa/química , Compuestos de Manganeso/química , Óxidos/química , Zinc/química , Dispositivos Electrónicos Vestibles , Resistencia a la Tracción
6.
Carbohydr Polym ; 343: 122444, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174124

RESUMEN

Hydrogel electrolytes, renowned for their mechanical robustness and versatility, are crucial in ensuring stable energy output in flexible energy storage devices. This work presents a dual cross-linked cellulose-based hydrogel electrolyte with chemical cross-linking from covalent bonding and physical cross-linking from hydrogen bonding. This electrolyte demonstrated outstanding mechanical strength and porous structure with abundant hydroxyl groups, which facilitates the migration of Zn2+ and suppresses the formation of undesirable zinc dendrite, thereby enhancing the ion conductivity (18.46 ± 0.39 mS cm-1 at room temperature) and extending electrochemical stability window (0-2.23 V). Zn||Zn symmetric cells based on this electrolyte demonstrated stable stripping/plating cycles of 3000 h at a current density of 1 mA cm-2. Furthermore, the corresponding flexible zinc-ion hybrid capacitor retains a 90.3 % capacity over 100,000 cycles at 10 A g-1, while remaining functional across various folding angles. Hence, this biomass-derived hydrogel electrolyte holds promise for flexible energy storage device applications.

7.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39001082

RESUMEN

Capacitors are crucial components in power electronic converters, responsible for harmonic elimination, energy buffering, and voltage stabilization. However, they are also the most susceptible to damage due to their operational environment. Accurate temperature estimation of capacitors is essential for monitoring their condition and ensuring the reliability of the converter system. This paper presents a novel method for estimating the core temperature of capacitors using a long short-term memory (LSTM) algorithm. The approach incorporates a continued training mechanism to adapt to variable load conditions in converters. Experimental results demonstrate the proposed method's high accuracy and robustness, making it suitable for real-time capacitor temperature monitoring in practical applications.

8.
Small ; : e2404581, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989685

RESUMEN

Printing technology enables the integration of chemically exfoliated perovskite nanosheets into high-performance microcapacitors. Theoretically, the capacitance value can be further enhanced by designing and constructing multilayer structures without increasing the device size. Yet, issues such as interlayer penetration in multilayer heterojunctions constructed using inkjet printing technology further limit the realization of this potential. Herein, a series of multilayer configurations, including Ag/(Ca2NaNb4O13/Ag)n and graphene/(Ca2NaNb4O13/graphene)n (n = 1-3), are successfully inkjet-printed onto diverse rigid and flexible substrates through optimized ink formulations, inkjet printing parameters, thermal treatment conditions, and rational multilayer structural design using high-k perovskite nanosheets, graphene nanosheets and silver. The dielectric performance is optimized by fine-tuning the number of dielectric layers and modifying the electrode/dielectric interface. As a result, the graphene/(Ca2NaNb4O13/graphene)3 multilayer ceramic capacitors exhibit a remarkable capacitance density of 346 ± 12 nF cm-2 and a high dielectric constant of 193 ± 18. Additionally, these devices demonstrate moderate insulation properties, flexibility, thermal stability, and chemical sensitivity. This work shed light on the potential of multilayer structural design in additive manufacturing of high-performance 2D material-based ceramic capacitors.

9.
J Colloid Interface Sci ; 675: 1091-1099, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39032375

RESUMEN

Well-orchestrated carbon nanostructure with superb stable framework and high surface accessibility is crucial for zinc-ion hybrid capacitors (ZIHCs). Herein, a hydrogen-bonded micelle self-assembly strategy is proposed for morphology-controllable synthesis of conjugated microporous polymers (CMPs) derived carbon to boost zinc ion storage capability. In the strategy, F127 micellar assembly through intermolecular hydrogen bonds serves as structure-directed agents, directing CMPs' oligomers grow into nanospherical assembly. The nanospherical carbon frameworks derived from CMPs (CNS-2) have shown maximized surface accessibility due to their plentiful tunable porosity and hierarchical porous structure with abundant mesoporous interconnected channels, and superb stability originating from CMPs' robust framework, thus the CNS-2-based ZIHCs exhibit ultrahigh energy density of 163 Wh kg-1 and ultralong lifespan with 93 % capacity retention after 200, 000 cycles at 20 A g-1. Charged ion storage efficiency also lies in dual-ion alternate uptake of Zn2+ and CF3SO3- as well as chemical redox of Zn2+ with carbonyl/pyridine motifs forming O-Zn-N bonds. Maximized surface accessibility and dual-ion storage mechanism ensure excellent electrochemical performance. Thus, the hydrogen-bond-guide micelle self-assembly strategy has provided a facile way to design nanoarchitectures of CMPs derived carbon for advanced cathodes of ZIHCs.

10.
Materials (Basel) ; 17(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39063765

RESUMEN

To address the bottleneck associated with the slow ion transport kinetics observed in the porosity of activated carbons (ACs), hierarchically structured pore sizes were introduced on ACs used for electric double-layer capacitors (EDLCs) to promote ion transport kinetics under fast-rate charge-discharge conditions. In this study, we synthesized cellophane noodle-derived activated carbon (CNAC) with tailored porous structures, including the pore volume fraction of macro/meso/micropores and the specific surface area. The porous structures were effectively modulated by adjusting the KOH concentration during chemical activation. In addition, optimized KOH activation in CNAC modulated the chemical bonding ratios of C=O, pyrrolic-N, and graphitic-N. Given the hierarchically designed porous structure and chemical bonding states, the CNAC fabricated with optimized KOH activation exhibited a superior ultrafast rate capability in EDLCs (132.0 F/g at 10 A/g).

11.
Materials (Basel) ; 17(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063916

RESUMEN

Electrostatic capacitors, with the advantages of high-power density, fast charging-discharging, and outstanding cyclic stability, have become important energy storage devices for modern power electronics. However, the insulation performance of the dielectrics in capacitors will significantly deteriorate under the conditions of high temperatures and electric fields, resulting in limited capacitive performance. In this paper, we report a method to improve the high-temperature energy storage performance of a polymer dielectric for capacitors by incorporating an extremely low loading of 0.5 wt% carbon quantum dots (CQDs) into a fluorene polyester (FPE) polymer. CQDs possess a high electron affinity energy, enabling them to capture migrating carriers and exhibit a unique Coulomb-blocking effect to scatter electrons, thereby restricting electron migration. As a result, the breakdown strength and energy storage properties of the CQD/FPE nanocomposites are significantly enhanced. For instance, the energy density of 0.5 wt% CQD/FPE nanocomposites at room temperature, with an efficiency (η) exceeding 90%, reached 9.6 J/cm3. At the discharge energy density of 0.5 wt%, the CQD/FPE nanocomposites remained at 4.53 J/cm3 with an efficiency (η) exceeding 90% at 150 °C, which surpasses lots of reported results.

12.
Micromachines (Basel) ; 15(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064418

RESUMEN

Conventional dry electrodes often yield unstable results due to the presence of parasitic capacitance between the flat electrode surface and the non-uniform skin interface. To address this issue, a gel is typically placed between the electrodes to minimize parasitic capacitance. However, this approach has the drawbacks of being unsuitable for repeated use, limited lifetime due to gel evaporation, and the possibility of developing skin irritation. This is particularly problematic in underserved areas since, due to the cost of disposable wet electrodes, they often sterilize and reuse dry electrodes. In this study, we propose a method to neutralize the effects of parasitic capacitance by attaching high-value capacitors to the electrodes in parallel, specifically when applied to pulse wave monitoring through bioimpedance. Skin capacitance can also be mitigated due to the serial connection, enabling stable reception of arterial pulse signals through bioimpedance circuits. A high-frequency structure simulator (HFSS) was first used to simulate the capacitance when injection currents flow into the arteries through the bioimpedance circuits. We also used the simulation to investigate the effects of add-on capacitors. Lastly, we conducted preliminary comparative analyses between wet electrodes and dry electrodes in vivo with added capacitance values ranging from 100 pF to 1 µF, altering capacitance magnitudes by factors of 100. As a result, we obtained a signal-to-noise ratio (SNR) that was 8.2 dB higher than that of dry electrodes. Performance was also shown to be comparable to wet electrodes, with a reduction of only 0.4 dB using 1 µF. The comparative results demonstrate that the addition of capacitors to the electrodes has the potential to allow for performance similar to that of wet electrodes for bioimpedance pulse rate monitoring and could potentially be used for other applications of dry electrodes.

13.
J Colloid Interface Sci ; 677(Pt A): 120-129, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39083889

RESUMEN

Aiming at the key problem of Na+ insertion difficulty and low charge transfer efficiency of activated carbon materials. It is an effective strategy to increase the lattice spacing and defect concentration by doping to reduce the ion diffusion resistance and improve the kinetics. Hence, anthracitic coal is used to prepare activated carbon (AC) and B,P-doped activated carbon (B,P-AC) as the cathode and anode materials for high-performance all-carbon SICs, respectively. AC cathode material has high specific surface area and reasonable micropore structure, which shows excellent capacitance performance. B,P-AC anode material has the advantages of extremely high specific surface area (1856.1 m2/g), expanded interlayer spacing (0.40 nm) and uniform distribution of B and P heteroatoms. Hence, B,P-AC anode achieves a highly reversible Na+ storage capacity of 243 mAh/g at a current density of 0.05 A/g. Density functional theory (DFT) calculations further verify that B,P-AC has stronger Na+ storage performance. The final assembled B,P-AC//AC SIC offers a high energy density of 109.78 Wh kg-1 and a high-power density of 10.03 kW kg-1. The high-performance coal-derived activated carbon of this work provides a variety of options for industrial production of electrode materials for sodium ion capacitors.

14.
Sci Rep ; 14(1): 15971, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987299

RESUMEN

Direct AC-AC converters are strong candidates in the power converting system to regulate grid voltage against the perturbation in the line voltage and to acquire frequency regulation at discrete step levels in variable speed drivers for industrial systems. All such applications require the inverted and non-inverted form of the input voltage across the output with voltage-regulating capabilities. The required value of the output frequency is gained with the proper arrangement of the number of positive and negative pulses of the input voltage across the output terminals. The period of each such pulse for low-frequency operation is almost the same as the half period of the input grid or utility voltage. These output pulses are generated by converting the positive and negative input half cycles in noninverting and inverting forms as per requirement. There is no control complication to generate control signals used to adjust the load frequency as the operating period of the switching devices is normally greater than the period of the source voltage. However, high-frequency pulse width modulated (PWM) control signals are used to regulate the output voltage. The size of the inductor and capacitor is inversely related to the value of the switching frequency. Similarly, the ripple contents of voltage and currents in these filtering components are also inversely linked with PWM frequency. These constraints motivate the circuit designer to select high PWM frequency. However, the alignment of the high-frequency control input with the variation in the input source voltage is a big challenge for a design engineer as the switching period of a high-frequency signal normally lies in the microsecond. It is also required to operate some high-frequency devices for various half cycles of the source voltage, creating control complications as the polarities of the half cycles are continuously changing. This requires at least the generation of two high-frequency signals for different intervals. The interruption of the filtering inductor current is a big source of high voltage surges in circuits where the high-frequency transistors operate in a complementary way. This may be due to internal defects in the switching transistors or some unnecessary inherent delay in their control signals. In this research work, a simplified AC-AC converter is developed that does not need alignment of high-frequency control with the polarity of the source voltage. With this approach, high-frequency signals can be generated with the help of any analog or digital control system. By applying this technique, only one high-frequency control signal is generated and applied in AC circuits, as in a DC converter, without applying a highly sensitive polarity sensing circuit. So, controlling complications is drastically simplified. The circuit and configuration always avoid the current interruption problem of filtering the inductor. The proposed control and circuit topology are tested both in computer-based simulation and practically developed circuits. The results obtained from these platforms endorse the effectiveness and validation of the proposed work.

15.
Adv Mater ; : e2406794, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032124

RESUMEN

The large size of K+ ions (1.38 Å) sets a challenge in achieving high kinetics and long lifespan of potassium storage devices. Here, a fibrous ZrO2 membrane is utilized as a reactive template to construct a dual-carbon K-ion capacitor. Unlike graphite, ZrO2-catalyzed graphitic carbon presents a relatively disordered layer arrangement with an expanded interlayer spacing of 0.378 nm to accommodate K+ insertion/extraction. Pyridine-derived nitrogen sites can locally store K-ions without disrupting the formation of stage-1 graphite intercalation compounds (GICs). Consequently, N-doped hollow graphitic carbon fiber achieves a K+-storage capacity (primarily below 1 V), which is 1.5 time that of commercial graphite. Potassium-ion hybrid capacitors are assembled using the hollow carbon fiber electrodes and the ZrO2 nanofiber membrane as the separator. The capacitor exhibits a high power of 40 000 W kg-1, full charge in 8.5 s, 93% capacity retention after 5000 cycles at 2 A g-1, and a low self-discharge rate of 8.6 mV h-1. The scalability and high performance of the lattice-expanded tubular carbon electrodes underscores may advance the practical potassium-ion capacitors.

16.
ChemSusChem ; : e202400449, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041945

RESUMEN

Here, we have developed lithium-ion capacitors (LICs) with all the components, except the electrolyte solution, effectively recycled from the spent Lithium-ion batteries. Hybrid capacitors, such as LICs, are potential breakthroughs in electrochemical energy storage devices, where most research is focused. These devices can simultaneously guarantee high energy and power by hybridizing battery-type and capacitive-type electrodes. We have successfully upcycled the graphite, current collector, separator, etc., from the spent LIBs to fabricate a high-performance LIC. Our LIC consists of recovered graphite (RG) coated over recovered copper foil as an anode, recycled polypropylene as the separator, and reduced graphene oxide (rGO) synthesized from RG as the cathode. The RG half-cell exhibited an specific capacity of 302 mAh/g even after 75 charge-discharge cycles with a coulombic efficiency of >99%. The Li/rGO displayed remarkable cycling performance for over 1000 cycles with high stability and reversibility. Subsequently, the pre-lithiated RG (p-RG) electrode is paired with the rGO electrode under the balanced loading conditions to construct LIC, rGO/p-RG, delivering a maximum energy density of 185 Wh/kg with ultra-long durability of more than 10,000 cycles. The possibility of LIC under different climatic conditions is also explored, and its remarkable performance under various temperature conditions is worth mentioning.

17.
Int J Biol Macromol ; 276(Pt 2): 134065, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038573

RESUMEN

The utilization of acid as a synthesis assistant provides an effective means to regulate the structure of hydrogels, thereby simplifying the design and preparation process of multifunctional hydrogels. However, there remains a dearth of discourse concerning the utilization of this convenient acid-mediated strategy, which possesses the potential to directly govern molecular interactions within gel networks for rational structure and property design. Herein, we describe the preparation of flexible dual-network conductive hydrogels using polyacrylamide (PAM) and sodium alginate (SA) as substrates, driven by the strategy of acid-mediated (HCI, H2SO4, and H2C2O4) in detail for the first time. Especially, the structure-activity relationship of hydrogels was elucidated through a comparative analysis of molecular dynamics (MD) simulations and empirical properties, thereby enhancing the understanding of this field. Furthermore, extensive investigations have been conducted to explore the distinct impacts of acid ions and concentrations. The acid-mediated method exhibits superior versatility and operability compared to the filler modification method, thereby enabling a more convenient acquisition of conductive and robust hydrogels suitable for flexible capacitors and wearable sensors. Consequently, this study presents a straightforward, efficient, and cost-effective universal strategy for targeted functional hydrogel design.


Asunto(s)
Resinas Acrílicas , Alginatos , Hidrogeles , Dispositivos Electrónicos Vestibles , Resinas Acrílicas/química , Hidrogeles/química , Alginatos/química , Simulación de Dinámica Molecular , Conductividad Eléctrica
18.
Chem Asian J ; : e202400622, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956831

RESUMEN

The introduction of phosphorous (P), and oxygen (O) heteroatoms in the natural honeydew chemical structure is one of the most effective, and practical approaches to synthesizing activated carbon for possible high-performance energy storage applications. The performance metrics of supercapacitors depend on surface functional groups and high-surface-area electrodes that can play a dominant role in areas that require high-power applications. Here, we report a phosphorous and oxygen co-doped honeydew peel-derived activated carbon (HDP-AC) electrode with low surface area for supercapacitor via H3PO4 activation. This activator forms phosphorylation with cellulose fibers in the HDP. The formation of heteroatoms stabilizes the cellulose structure by preventing the formation of levoglucosan (C6H10O5), a cellulose combustion product, which would otherwise offer a pathway for a substantial degradation of cellulose into volatile products. Therefore, heteroatom doping has proved effective, in improving the electrochemical properties of AC-based electrodes for supercapacitors. The specific capacitance of HDP-AC exhibits greatly improved performance with increasing carbon-to-H3PO4 ratio, especially in energy density and power density. The improved performance is attributed to the high phosphorous doping with a hierarchical porous structure, which enables the transportation of ions at higher current rates. The high specific capacitance of 486, and 478 F/g at 0.6, and 1.3 A/g in 1 M H2SO4 electrolyte with a prominent retention of 98.5 % is observed for 2 M H3PO4 having an impregnation ratio of 1 : 4. The higher yield of HDP-AC could only be obtained at an activation temperature of 500 °C with an optimized amount of H3PO4 ratio. The findings suggest that the concentration of heteroatoms as surface functional groups in the synthesized HDP-AC depends on the chosen biomass precursor and the processing conditions. This work opens new avenues for utilizing biomass-derived materials in energy storage, emphasizing the importance of sustainable practices in addressing environmental challenges and advancing toward a greener future.

19.
ChemSusChem ; : e202400999, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973030

RESUMEN

The use of nanoporous carbon for energy storage has seen a significant rise due to its exciting properties such as high surface area, hierarchical porosity and exceptional electrochemical properties. These unique advantages of exceptional surface and electrochemical properties of these porous carbon nanostructures can be coupled with the individual doping of heteroatoms such as S, N, O, and B for achieving high energy storage capacity and stability. Herein, we integrated the synthesis of carbon nitride (CN) and borocarbonitride (BCN) with solid state activation for introducing multiple heteroatoms (B, N, O, and S) onto the nanoporous carbon frameworks. The produced materials exhibit abundance of micro and mesoporosity, a high surface area of 2909 m2 g-1, and a pore volume of 0.87 cm3 g-1. Also, it offers an exceptional capacitance of 233.5 F g-1 at 0.5 A g-1 with 3 M KOH as electrolyte. Further, the optimised material was explored as cathode in zinc ion capacitor which delivers an energy and power density of 50.4 Wh kg-1 and 400 W kg-1 respectively in addition to high cyclability. Studies on the formation of the intermediate phases during charging/discharging of the cell through ex situ characterization result in some useful insights into the stability of ZIC.

20.
Small ; : e2400686, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864439

RESUMEN

High-performance energy storage dielectrics capable of low/moderate field operation are vital in advanced electrical and electronic systems. However, in contrast to achievements in enhancing recoverable energy density (Wrec), the active realization of superior Wrec and energy efficiency (η) with giant energy-storage coefficient (Wrec/E) in low/moderate electric field (E) regions is much more challenging for dielectric materials. Herein, lead-free relaxor ferroelectrics are reported with giant Wrec/E designed with polymorphic heterogeneous polar structure. Following the guidance of Landau phenomenological theory and rational composition construction, the conceived (Bi0.5Na0.5)TiO3-based ternary solid solution that delivers giant Wrec/E of ≈0.0168 µC cm-2, high Wrec of ≈4.71 J cm-3 and high η of ≈93% under low E of 280 kV cm-1, accompanied by great stabilities against temperature/frequency/cycling number and excellent charging-discharging properties, which is ahead of most currently reported lead-free energy storage bulk ceramics measured at same E range. Atomistic observations reveal that the correlated coexisting local rhombohedral-tetragonal polar nanoregions embedded in the cubic matrix are constructed, which enables high polarization, minimized hysteresis, and significantly delayed polarization saturation concurrently, endowing giant Wrec/E along with high Wrec and η. These findings advance the superiority and feasibility of polymorphic nanodomains in designing highly efficient capacitors for low/moderate field-region practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...