Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurophotonics ; 11(3): 035003, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39011517

RESUMEN

Significance: Perturbations in the microcirculatory system have been observed in neurological conditions, such as Alzheimer's disease or systemic inflammation. However, changes occurring at the level of the capillary are difficult to translate to biomarkers that could be measured macroscopically. Aim: We aim to evaluate whether transit time changes reflect capillary stalling and to what degree. Approach: We employ a combined spectral optical coherence tomography (OCT) and fluorescence optical imaging (FOI) system to investigate the relation between capillary stalling and transit time in a mouse model of systemic inflammation induced by intraperitoneal injection of lipopolysaccharide. Angiograms are obtained using OCT, and fluorescence signal images are acquired by the FOI system upon intravenous injection of fluorescein isothiocyanate via a catheter inserted into the tail vein. Results: Our findings reveal that lipopolysaccharide (LPS) administration significantly increases both the percentage and duration of capillary stalling compared to mice receiving a 0.9% saline injection. Moreover, LPS-induced mice exhibit significantly prolonged arteriovenous transit time compared to control mice. Conclusions: These observations suggest that capillary stalling, induced by inflammation, modulates cerebral mean transit time, a measure that has translational potential.

2.
Microcirculation ; 31(3): e12845, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38265175

RESUMEN

OBJECTIVE: The role of cerebral microvasculature in cognitive dysfunction can be investigated by identifying the impact of blood flow on cortical tissue oxygenation. In this paper, the impact of capillary stalls on microcirculatory characteristics such as flow and hematocrit (Ht) in the cortical angioarchitecture is studied. METHODS: Using a deterministic mathematical model to simulate blood flow in a realistic mouse cortex, hemodynamics parameters, including pressure, flow, vessel diameter-adjustable hematocrit, and transit time are calculated as a function of stalling events. RESULTS: Using a non-linear plasma skimming model, it is observed that Ht increases in the penetrating arteries from the pial vessels as a function of cortical depth. The incidence of stalling on Ht distribution along the blood network vessels shows reduction of RBCs around the tissue near occlusion sites and decreased Ht concentration downstream from the blockage points. Moreover, upstream of the occlusion, there is a noticeable increase of the Ht, leading to larger flow resistance due to higher blood viscosity. We predicted marked changes in transit time behavior due to stalls which match trends observed in mice in vivo. CONCLUSIONS: These changes to blood cell quantity and quality may be implicated in the development of Alzheimer's disease and contribute to the course of the illness.


Asunto(s)
Eritrocitos , Hemodinámica , Ratones , Animales , Microcirculación/fisiología , Hemodinámica/fisiología , Hematócrito , Eritrocitos/fisiología , Encéfalo
3.
Neurophotonics ; 10(3): 035009, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37705938

RESUMEN

Significance: Brief disruptions in capillary flow, commonly referred to as capillary "stalling," have gained interest recently for their potential role in disrupting cerebral blood flow and oxygen delivery. Approaches to studying this phenomenon have been hindered by limited volumetric imaging rates and cumbersome manual analysis. The ability to precisely and efficiently quantify the dynamics of these events will be key in understanding their potential role in stroke and neurodegenerative diseases, such as Alzheimer's disease. Aim: Our study aimed to demonstrate that the fast volumetric imaging rates offered by Bessel beam two-photon microscopy combined with improved data analysis throughput allows for faster and more precise measurement of capillary stall dynamics. Results: We found that while our analysis approach was unable to achieve full automation, we were able to cut analysis time in half while also finding stalling events that were missed in traditional blind manual analysis. The resulting data showed that our Bessel beam system was captured more stalling events compared to optical coherence tomography, particularly shorter stalling events. We then compare differences in stall dynamics between a young and old group of mice as well as a demonstrate changes in stalling before and after photothrombotic model of stroke. Finally, we also demonstrate the ability to monitor arteriole dynamics alongside stall dynamics. Conclusions: Bessel beam two-photon microscopy combined with high throughput analysis is a powerful tool for studying capillary stalling due to its ability to monitor hundreds of capillaries simultaneously at high frame rates.

5.
J Cereb Blood Flow Metab ; 42(12): 2303-2317, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35999817

RESUMEN

Systemic inflammation affects cognitive functions and increases the risk of dementia. This phenomenon is thought to be mediated in part by cytokines that promote neuronal survival, but the continuous exposure to which may lead to neurodegeneration. The effects of systemic inflammation on cerebral blood vessels, and their provision of adequate oxygen to support critical brain parenchymal cell functions, remains unclear. Here, we demonstrate that neurovascular coupling is profoundly disturbed in lipopolysaccharide (LPS) induced systemic inflammation in awake mice. In the 24 hours following LPS injection, the hyperaemic response of pial vessels to functional activation was attenuated and delayed. Concurrently, under steady-state conditions, the capillary network displayed a significant increase in the number of capillaries with blocked blood flow, as well as increased duration of 'capillary stalls'-a phenomenon previously reported in animal models of stroke and Alzheimer's disease pathology. We speculate that vascular changes and impaired oxygen availability may affect brain functions following acute systemic inflammation and contribute to the long-term risk of neurodegenerative changes associated with chronic, systemic inflammation.


Asunto(s)
Hiperemia , Lipopolisacáridos , Animales , Ratones , Microcirculación , Modelos Animales de Enfermedad , Inflamación/patología , Capilares , Oxígeno
6.
J Cereb Blood Flow Metab ; 42(12): 2255-2269, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35854408

RESUMEN

Epinephrine is the principal resuscitation therapy for pediatric cardiac arrest (CA). Clinical data suggest that although epinephrine increases the rate of resuscitation, it fails to improve neurological outcome, possibly secondary to reductions in microvascular flow. We characterized the effect of epinephrine vs. placebo administered at resuscitation from pediatric asphyxial CA on microvascular and macrovascular cortical perfusion assessed using in vivo multiphoton microscopy and laser speckle flowmetry, respectively, and on brain tissue oxygenation (PbO2), behavioral outcomes, and neuropathology in 16-18-day-old rats. Epinephrine-treated rats had a more rapid return of spontaneous circulation and brisk immediate cortical reperfusion during 1-3 min post-CA vs. placebo. However, at the microvascular level, epinephrine-treated rats had penetrating arteriole constriction and increases in both capillary stalling (no-reflow) and cortical capillary transit time 30-60 min post-CA vs. placebo. Placebo-treated rats had increased capillary diameters post-CA. The cortex was hypoxic post-CA in both groups. Epinephrine treatment worsened reference memory performance vs. shams. Hippocampal neuron counts did not differ between groups. Resuscitation with epinephrine enhanced immediate reperfusion but produced microvascular alterations during the first hour post-resuscitation, characterized by vasoconstriction, capillary stasis, prolonged cortical transit time, and absence of compensatory cortical vasodilation. Targeted therapies mitigating the deleterious microvascular effects of epinephrine are needed.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Animales , Ratas , Microscopía , Circulación Cerebrovascular/fisiología , Paro Cardíaco/tratamiento farmacológico , Paro Cardíaco/complicaciones , Epinefrina/farmacología , Epinefrina/uso terapéutico , Resucitación
7.
Front Cell Neurosci ; 16: 876746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722620

RESUMEN

The capillaries of the brain, owing to their small diameter and low perfusion pressure, are vulnerable to interruptions in blood flow. These tiny occlusions can have outsized consequences on angioarchitecture and brain function; especially when exacerbated by disease states or accumulate with aging. A distinctive feature of the brain's microvasculature is the ability for active neurons to recruit local blood flow. The coupling of neural activity to blood flow could play an important role in recanalizing obstructed capillaries. To investigate this idea, we experimentally induced capillary obstructions in mice by injecting fluorescent microspheres and then manipulated neural activity levels though behavioral or pharmacologic approaches. We show that engaging adult and aged mice with 12 h exposure to an enriched environment (group housing, novel objects, exercise wheels) was sufficient to significantly reduce the density of obstructed capillaries throughout the forebrain. In order to more directly manipulate neural activity, we pharmacologically suppressed or increased neuronal activity in the somatosensory cortex. When we suppressed cortical activity, recanalization was impaired given the density of obstructed capillaries was significantly increased. Conversely, increasing cortical activity improved capillary recanalization. Since systemic cardiovascular factors (changes in heart rate, blood pressure) could explain these effects on recanalization, we demonstrate that unilateral manipulations of neural activity through whisker trimming or injection of muscimol, still had significant and hemisphere specific effects on recanalization, even in mice exposed to enrichment where cardiovascular effects would be evident in both hemispheres. In summary, our studies reveal that neural activity bi-directionally regulates the recanalization of obstructed capillaries. Further, we show that stimulating brain activity through behavioral engagement (i.e., environmental enrichment) can promote vascular health throughout the lifespan.

8.
Front Cell Neurosci ; 16: 848764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360491

RESUMEN

The neurovascular unit is a functional unit composed of neurons, glial cells, pericytes, and endothelial cells which sustain brain activity. While pericyte is a key component of the neurovascular unit, its role in cerebral blood flow regulation remains elusive. Recently, capillary stalling, which means the transient interruption of microcirculation in capillaries, has been shown to have an outsized impact on microcirculatory changes in several neurological diseases. In this study, we investigated capillary stalling and its possible causes, such as the cerebral endothelial glycocalyx and leukocyte adhesion molecules after depleting pericytes postnatally in mice. Moreover, we investigated hypoxia and gliosis as consequences of capillary stalling. Although there were no differences in the capillary structure and RBC flow, longitudinal optical coherence tomography angiography showed an increased number of stalled segments in capillaries after pericyte loss. Furthermore, the extent of the cerebral endothelial glycocalyx was decreased with increased expression of leukocyte adhesion molecules, suggesting enhanced interaction between leukocytes and endothelial cells. Finally, pericyte loss induced cerebral hypoxia and gliosis. Cumulatively, the results suggest that pericyte loss induces capillary stalling through increased interaction between leukocytes and endothelial cells in the brain.

9.
J Cereb Blood Flow Metab ; 42(8): 1383-1397, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139674

RESUMEN

Proper regulation and patency of cerebral microcirculation are crucial for maintaining a healthy brain. Capillary stalling, i.e., the brief interruption of microcirculation has been observed in the normal brain and several diseases related to microcirculation. We hypothesized that endothelial glycocalyx, which is located on the luminal side of the vascular endothelium and involved in cell-to-cell interaction regulation in peripheral organs, is also related to cerebral capillary stalling. We measured capillary stalling and the cerebral endothelial glycocalyx (cEG) in male mice using in vivo optical coherence tomography angiography (OCT-A) and two-photon microscopy. Our findings revealed that some capillary segments were prone to capillary stalling and had less cEG. In addition, we demonstrated that the enzymatic degradation of the cEG increased the capillary stalling, mainly by leukocyte plugging. Further, we noted decreased cEG along with increased capillary stalling in a mouse model of subcortical vascular dementia (SVaD) with impaired cortical microcirculation. Moreover, gene expression related to cEG production or degradation changed in the SVaD model. These results indicate that cEG mediates capillary stalling and impacts cerebral blood flow and is involved in the pathogenesis of SVaD.


Asunto(s)
Demencia Vascular , Glicocálix , Animales , Capilares/metabolismo , Circulación Cerebrovascular , Demencia Vascular/patología , Endotelio Vascular/metabolismo , Glicocálix/metabolismo , Masculino , Ratones , Microcirculación/fisiología
10.
Brain ; 145(4): 1449-1463, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35048960

RESUMEN

Increased incidence of stalled capillary blood flow caused by adhesion of leucocytes to the brain microvascular endothelium leads to a 17% reduction of cerebral blood flow and exacerbates short-term memory loss in multiple mouse models of Alzheimer's disease. Here, we report that vascular endothelial growth factor (VEGF) signalling at the luminal side of the brain microvasculature plays an integral role in the capillary stalling phenomenon of the APP/PS1 mouse model. Administration of the anti-mouse VEGF-A164 antibody, an isoform that inhibits blood-brain barrier hyperpermeability, reduced the number of stalled capillaries within an hour of injection, leading to an immediate increase in average capillary blood flow but not capillary diameter. VEGF-A inhibition also reduced the overall endothelial nitric oxide synthase protein concentrations, increased occludin levels and decreased the penetration of circulating Evans Blue dye across the blood-brain barrier into the brain parenchyma, suggesting increased blood-brain barrier integrity. Capillaries prone to neutrophil adhesion after anti-VEGF-A treatment also had lower occludin concentrations than flowing capillaries. Taken together, our findings demonstrate that VEGF-A signalling in APP/PS1 mice contributes to aberrant endothelial nitric oxide synthase /occludin-associated blood-brain barrier permeability, increases the incidence of capillary stalls, and leads to reductions in cerebral blood flow. Reducing leucocyte adhesion by inhibiting luminal VEGF signalling may provide a novel and well-tolerated strategy for improving brain microvascular blood flow in Alzheimer's disease patients.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capilares , Permeabilidad Capilar , Circulación Cerebrovascular/fisiología , Modelos Animales de Enfermedad , Humanos , Ratones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ocludina/metabolismo , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular/metabolismo
11.
Pharmacol Ther ; 229: 107929, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34171341

RESUMEN

The complex computations of the brain require a constant supply of blood flow to meet its immense metabolic needs. Perturbations in blood supply, even in the smallest vascular networks, can have a profound effect on neuronal function and cognition. Type 1 diabetes is a prevalent and insidious metabolic disorder that progressively and heterogeneously disrupts vascular signalling and function in the brain. As a result, it is associated with an array of adverse vascular changes such as impaired regulation of vascular tone, pathological neovascularization and vasoregression, capillary plugging and blood brain barrier disruption. In this review, we highlight the link between microvascular dysfunction and cognitive impairment that is commonly associated with type 1 diabetes, with the aim of synthesizing current knowledge in this field.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Tipo 1 , Encéfalo/irrigación sanguínea , Cognición , Disfunción Cognitiva/etiología , Diabetes Mellitus Tipo 1/complicaciones , Humanos
12.
J Neuroinflammation ; 17(1): 248, 2020 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-32829706

RESUMEN

Chronic inflammation and involvement of myeloid blood cells are associated with the development of Alzheimer's disease (AD). Chronic inflammation is a highly important driving force for the development and progression of the chronic myeloproliferative blood cancers (MPNs), which are characterized by repeated thrombotic episodes years before MPN-diagnosis, being elicited by elevated erythrocytes, leukocytes, and platelets. Mutations in blood cells, the JAK2V617F and TET2-mutations, contribute to the inflammatory and thrombogenic state. Herein, we discuss the MPNs as a human neuroinflammation model for AD development, taking into account the many shared cellular mechanisms for reduction in cerebral blood, including capillary stalling with plugging of blood cells in the cerebral microcirculation. The therapeutic consequences of an association between MPNs and AD are immense, including reduction in elevated cell counts by interferon-alpha2 or hydroxyurea and targeting the chronic inflammatory state by JAK1-2 inhibitors, e.g., ruxolitinib, in the future treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Trastornos Mieloproliferativos/genética , Progresión de la Enfermedad , Humanos , Janus Quinasa 2/genética , Mutación
13.
J Biomed Opt ; 25(4): 1-15, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32285652

RESUMEN

SIGNIFICANCE: Understanding how the brain recovers from cerebral tissue and vascular damage after an ischemic event can help develop new therapeutic strategies for the treatment of stroke. AIM: We investigated cerebral tissue repair and microvasculature regeneration and function after a targeted ischemic stroke. APPROACH: Following photothrombosis occlusion of microvasculature, chronic optical coherence tomography (OCT)-based angiography was used to track ischemic tissue repair and microvasculature regeneration at three different cortical depths and up to 28 days in awake animals. Capillary network orientation analysis was performed to study the structural pattern of newly formed microvasculature. Based on the time-resolved OCT-angiography, we also investigated capillary stalling, which is likely related to ischemic stroke-induced inflammation. RESULTS: Deeper cerebral tissue was found to have a larger ischemic area than shallower regions at any time point during the course of poststroke recovery, which suggests that cerebral tissue located deep in the cortex is more vulnerable. Regenerated microvasculature had a highly organized pattern at all cortical depths with a higher degree of structural reorganization in deeper regions. Additionally, capillary stalling event analysis revealed that cerebral ischemia augmented stalling events considerably. CONCLUSION: Longitudinal OCT angiography reveals that regenerated capillary network has a highly directional pattern and an increased density and incidence of capillary stalling event.


Asunto(s)
Isquemia Encefálica , Tomografía de Coherencia Óptica , Angiografía , Animales , Isquemia Encefálica/diagnóstico por imagen , Microvasos/diagnóstico por imagen , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...