Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(30): 9129-9136, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38916205

RESUMEN

Mechanical stress significantly affects the physiological functions of cells, including tissue homeostasis, cytoskeletal alterations, and intracellular transport. As a major cytoskeletal component, microtubules respond to mechanical stimulation by altering their alignment and polymerization dynamics. Previously, we reported that microtubules may modulate cargo transport by one of the microtubule-associated motor proteins, dynein, under compressive mechanical stress. Despite the critical role of tensile stress in many biological functions, how tensile stress on microtubules regulates cargo transport is yet to be unveiled. The present study demonstrates that the low-level tensile stress-induced microtubule deformation facilitates dynein-driven transport. We validate our experimental findings using all-atom molecular dynamics simulation. Our study may provide important implications for developing new therapies for diseases that involve impaired intracellular transport.


Asunto(s)
Dineínas , Microtúbulos , Simulación de Dinámica Molecular , Estrés Mecánico , Microtúbulos/metabolismo , Microtúbulos/química , Dineínas/metabolismo , Dineínas/química , Resistencia a la Tracción , Transporte Biológico
2.
Res Sq ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826223

RESUMEN

Stereocilia are unidirectional F-actin-based cylindrical protrusions on the apical surface of inner ear hair cells and function as biological mechanosensors of sound and acceleration. Development of functional stereocilia requires motor activities of unconventional myosins to transport proteins necessary for elongating the F-actin cores and to assemble the mechanoelectrical transduction (MET) channel complex. However, how each myosin localizes in stereocilia using the energy from ATP hydrolysis is only partially understood. In this study, we develop a methodology for live-cell single-molecule fluorescence microscopy of organelles protruding from the apical surface using a dual-view light-sheet microscope, diSPIM. We demonstrate that MYO7A, a component of the MET machinery, traffics as a dimer in stereocilia. Movements of MYO7A are restricted when scaffolded by the plasma membrane and F-actin as mediated by MYO7A's interacting partners. Here, we discuss the technical details of our methodology and its future applications including analyses of cargo transportation in various organelles.

3.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766013

RESUMEN

Stereocilia are unidirectional F-actin-based cylindrical protrusions on the apical surface of inner ear hair cells and function as biological mechanosensors of sound and acceleration. Development of functional stereocilia requires motor activities of unconventional myosins to transport proteins necessary for elongating the F-actin cores and to assemble the mechanoelectrical transduction (MET) channel complex. However, how each myosin localizes in stereocilia using the energy from ATP hydrolysis is only partially understood. In this study, we develop a methodology for live-cell single-molecule fluorescence microscopy of organelles protruding from the apical surface using a dual-view light-sheet microscope, diSPIM. We demonstrate that MYO7A, a component of the MET machinery, traffics as a dimer in stereocilia. Movements of MYO7A are restricted when scaffolded by the plasma membrane and F-actin as mediated by MYO7A's interacting partners. Here, we discuss the technical details of our methodology and its future applications including analyses of cargo transportation in various organelles.

4.
Front Physiol ; 15: 1374901, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562617

RESUMEN

Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.

5.
Small ; 20(33): e2308463, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38566530

RESUMEN

Lipid droplets (LD) are dynamic cellular organelles of ≈1 µm diameter in yeast where a neutral lipid core is surrounded by a phospholipid monolayer and attendant proteins. Beyond the storage of lipids, opportunities for LD engineering remain underdeveloped but they show excellent potential as new biomaterials. In this research, LD from yeast Saccharomyces cerevisiae is engineered to display mCherry fluorescent protein, Halotag ligand binding protein, plasma membrane binding v-SNARE protein, and carbonic anhydrase enzyme via linkage to oleosin, an LD anchoring protein. Each protein-oleosin fusion is coded via a single gene construct. The expressed fusion proteins are specifically displayed on LD and their functions can be assessed within cells by fluorescence confocal microscopy, TEM, and as isolated materials via AFM, flow cytometry, spectrophotometry, and by enzyme activity assay. LD isolated from the cell are shown to be robust and stabilize proteins anchored into them. These engineered LD function as reporters, bind specific ligands, guide LD and their attendant proteins into union with the plasma membrane, and catalyze reactions. Here, engineered LD functions are extended well beyond traditional lipid storage toward new material applications aided by a versatile oleosin platform anchored into LD and displaying linked proteins.


Asunto(s)
Materiales Biocompatibles , Gotas Lipídicas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Gotas Lipídicas/metabolismo , Gotas Lipídicas/química , Materiales Biocompatibles/química , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética
6.
Nano Lett ; 24(10): 3082-3088, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416583

RESUMEN

The translational and rotational dynamics of anisotropic optical nanoprobes revealed in single particle tracking (SPT) experiments offer molecular-level information about cellular activities. Here, we report an automated high-speed multidimensional SPT system integrated with a deep learning algorithm for tracking the 3D orientation of anisotropic gold nanoparticle probes in living cells with high localization precision (<10 nm) and temporal resolution (0.9 ms), overcoming the limitations of rotational tracking under low signal-to-noise ratio (S/N) conditions. This method can resolve the azimuth (0°-360°) and polar angles (0°-90°) with errors of less than 2° on the experimental and simulated data under S/N of ∼4. Even when the S/N approaches the limit of 1, this method still maintains better robustness and noise resistance than the conventional pattern matching methods. The usefulness of this multidimensional SPT system has been demonstrated with a study of the motions of cargos transported along the microtubules within living cells.


Asunto(s)
Aprendizaje Profundo , Nanopartículas del Metal , Imagen Individual de Molécula , Oro , Transporte Biológico
7.
J R Soc Interface ; 20(208): 20230510, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38016636

RESUMEN

Multivalent interactions are common in biology at many different length scales, and can result in the directional motion of multivalent cargo along substrates. Here, a general analytical model has been developed that can describe the directional motion of multivalent cargo as a response to position dependence in the binding and unbinding rates exhibited by their interaction sites. Cargo exhibit both an effective velocity, which acts in the direction of increasing cargo-substrate binding rate and decreasing cargo-substrate unbinding rate, and an effective diffusivity. This model can reproduce previously published experimental findings using only the binding and unbinding rate distributions of cargo interaction sites, and without any further parameter fitting. Extension of the cargo binding model to two dimensions reveals an effective velocity with the same properties as that derived for the one-dimensional case.


Asunto(s)
Microtúbulos , Movimiento (Física) , Fenómenos Biofísicos , Microtúbulos/química
8.
Proc Natl Acad Sci U S A ; 120(37): e2304685120, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669384

RESUMEN

Microrobot swarms have seen increased interest in recent years due to their potentials for in vivo delivery and imaging with cooperative propulsion modes and enhanced imaging signals. Yet most swarms developed so far are limited to dense particle aggregates, far simpler than complicated three-dimensional assemblies of anisotropic particles. Here, we show via assembly path design that complex hollow tubular structures can be assembled from simple isotropic colloidal spheres and those complicated, metastable, microtubes can be formed from simple, energetically favorable colloidal membranes. The assembled microtubes can remain intact and roll under a precessing magnetic field, with propulsion directions and velocities precisely controlled by field components. The hollow spaces inside enable these tubular microrobots to grab, transport, and release cargos on command. We also demonstrate unique compressing and uncompressing capabilities with our tubular microrobots, making them effective microtweezers. Our work shows that complicated microrobots can be transformed from simple assemblies, providing an insight on building micromachines.

9.
Autophagy ; : 1-15, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682088

RESUMEN

ABBREVIATIONS: ATG: autophagy related; BECN1: beclin 1; cAMP: cyclic adenosine monophosphate; dsDNA: double-stranded DNA; EMT: epithelial-mesenchymal transition; IFN: interferon; ISCs: intestinal stem cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase/c-Jun N-terminal kinases; MTOR: mechanistic target of rapamycin kinase; STING1: stimulator of interferon response cGAMP interactor 1; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting.

10.
Elife ; 122023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083624

RESUMEN

The manchette is a transient and unique structure present in elongating spermatids and required for proper differentiation of the germ cells during spermatogenesis. Previous work indicated that the MEIG1/PACRG complex locates in the manchette and is involved in the transport of cargos, such as SPAG16L, to build the sperm flagellum. Here, using co-immunoprecipitation and pull-down approaches in various cell systems, we established that DNALI1, an axonemal component originally cloned from Chlamydomonas reinhardtii, recruits and stabilizes PACRG and we confirm in vivo, the co-localization of DNALI1 and PACRG in the manchette by immunofluorescence of elongating murine spermatids. We next generated mice with a specific deficiency of DNALI1 in male germ cells, and observed a dramatic reduction of the sperm cells, which results in male infertility. In addition, we observed that the majority of the sperm cells exhibited abnormal morphology including misshapen heads, bent tails, enlarged midpiece, discontinuous accessory structure, emphasizing the importance of DNALI1 in sperm differentiation. Examination of testis histology confirmed impaired spermiogenesis in the mutant mice. Importantly, while testicular levels of MEIG1, PACRG, and SPAG16L proteins were unchanged in the Dnali1 mutant mice, their localization within the manchette was greatly affected, indicating that DNALI1 is required for the formation of the MEIG1/PACRG complex within the manchette. Interestingly, in contrast to MEIG1 and PACRG-deficient mice, the DNALI1-deficient mice also showed impaired sperm spermiation/individualization, suggesting additional functions beyond its involvement in the manchette structure. Overall, our work identifies DNALI1 as a protein required for sperm development.


Asunto(s)
Semillas , Cola del Espermatozoide , Masculino , Ratones , Animales , Espermatogénesis , Proteínas/metabolismo , Espermátides/metabolismo , Testículo/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ciclo Celular/metabolismo
11.
Front Cell Dev Biol ; 11: 1154576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025182

RESUMEN

Extracellular vesicles (EVs) encompass a diverse set of membrane-derived particles released from cells and are found in numerous biological matrices and the extracellular space. Specific classes of EVs include apoptotic bodies, exosomes, and microvesicles, which vary in their size, origin, membrane protein expression, and interior cargo. EVs provide a mechanism for shuttling cargo between cells, which can influence cell physiology by transporting proteins, DNA, and RNA. EVs are an abundant component of the tumor microenvironment (TME) and are proposed to drive tumor growth and progression by communicating between fibroblasts, macrophages, and tumor cells in the TME. The cargo, source, and type of EV influences the pro- or anti-tumoral role of these molecules. Therefore, robust EV isolation and characterization techniques are required to ensure accurate elucidation of their association with disease. Here, we summarize different EV subclasses, methods for EV isolation and characterization, and a selection of current clinical trials studying EVs. We also review key studies exploring the role and impact of EVs in the TME, including how EVs mediate intercellular communication, drive cancer progression, and remodel the TME.

12.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36861887

RESUMEN

Myosin-X (MYO10), a molecular motor localizing to filopodia, is thought to transport various cargo to filopodia tips, modulating filopodia function. However, only a few MYO10 cargoes have been described. Here, using GFP-Trap and BioID approaches combined with mass spectrometry, we identified lamellipodin (RAPH1) as a novel MYO10 cargo. We report that the FERM domain of MYO10 is required for RAPH1 localization and accumulation at filopodia tips. Previous studies have mapped the RAPH1 interaction domain for adhesome components to its talin-binding and Ras-association domains. Surprisingly, we find that the RAPH1 MYO10-binding site is not within these domains. Instead, it comprises a conserved helix located just after the RAPH1 pleckstrin homology domain with previously unknown functions. Functionally, RAPH1 supports MYO10 filopodia formation and stability but is not required to activate integrins at filopodia tips. Taken together, our data indicate a feed-forward mechanism whereby MYO10 filopodia are positively regulated by MYO10-mediated transport of RAPH1 to the filopodium tip.


Asunto(s)
Integrinas , Seudópodos , Sitios de Unión , Espectrometría de Masas , Miosinas/genética
13.
Adv Sci (Weinh) ; 10(8): e2204931, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36507618

RESUMEN

Electrically powered micro- and nanomotors are promising tools for in vitro single-cell analysis. In particular, single cells can be trapped, transported, and electroporated by a Janus particle (JP) using an externally applied electric field. However, while dielectrophoretic (DEP)-based cargo manipulation can be achieved at high-solution conductivity, electrical propulsion of these micromotors becomes ineffective at solution conductivities exceeding ≈0.3 mS cm-1 . Here, JP cargo manipulation and transport capabilities to conductive near-physiological (<6 mS cm-1 ) solutions are extended successfully by combining magnetic field-based micromotor propulsion and navigation with DEP-based manipulation of various synthetic and biological cargos. Combination of a rotating magnetic field and electric field results in enhanced micromotor mobility and steering control through tuning of the electric field frequency. In addition, the micromotor's ability of identifying apoptotic cell among viable and necrotic cells based on their dielectrophoretic difference is demonstrated, thus, enabling to analyze the apoptotic status in the single-cell samples for drug discovery, cell therapeutics, and immunotherapy. The ability to trap and transport live cells towards regions containing doxorubicin-loaded liposomes is also demonstrated. This hybrid micromotor approach for label-free trapping, transporting, and sensing of selected cells within conductive solutions opens new opportunities in drug delivery and single-cell analysis, where close-to-physiological media conditions are necessary.


Asunto(s)
Sistemas de Liberación de Medicamentos , Campos Magnéticos , Conductividad Eléctrica , Análisis de la Célula Individual , Doxorrubicina
14.
Methods Mol Biol ; 2473: 101-128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35819762

RESUMEN

The entanglement of long axons found in cultured dissociated hippocampal neurons restricts the analysis of the machinery underlying directed axonal trafficking. Further, hippocampal neurons exhibit "en passant" presynapses that may confound the analysis of long-range retrograde axonal transport. To solve these issues, we and others have developed microfluid-based methods to specifically follow the fates of the retrograde axonal cargoes following pulse-chase labeling by super-resolution live-cell imaging, and automatically tracking their directed transport and analyzing their kinetical properties. These methods have allowed us to visualize the trafficking of fluorescently tagged signaling endosomes and autophagosomes derived from axonal terminals and resolve their localizations and movements with high spatial and temporal accuracy. In this chapter, we describe how to use a commercially available microfluidic device to enable the labeling and tracking of retrograde axonal carriers, including (1) how to culture and transfect rat hippocampal neurons in the microfluidic device; (2) how to perform pulse-chase to label specific populations of retrograde axonal carriers; and (3) how to conduct the automatic tracking and data analysis using open-source software.


Asunto(s)
Axones , Neuronas , Animales , Transporte Axonal/fisiología , Axones/metabolismo , Células Cultivadas , Hipocampo , Ratas
15.
Exp Suppl ; 114: 215-245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35544005

RESUMEN

As obligate intracellular parasites with reduced genomes, microsporidia must infect host cells in order to replicate and cause disease. They can initiate infection by utilizing a harpoon-like invasion organelle called the polar tube (PT). The PT is both visually and functionally a striking organelle and is a characteristic feature of the microsporidian phylum. Outside the host, microsporidia exist as transmissible, single-celled spores. Inside each spore, the PT is arranged as a tight coil. Upon germination, the PT undergoes a large conformational change into a long, linear tube and acts as a tunnel for the delivery of infectious cargo from the spore to a host cell. The firing process is extremely rapid, occurring on a millisecond timescale, and the emergent tube may be as long as 20 times the size of the spore body. In this chapter, we discuss what is known about the structure of the PT, the mechanics of the PT firing process, and how it enables movement of material from the spore body.


Asunto(s)
Microsporidios , Microsporidios/genética , Orgánulos , Fagocitosis , Esporas Fúngicas/genética
16.
ACS Nano ; 16(5): 7615-7625, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35451832

RESUMEN

Nature presents the collective behavior of living organisms aiming to accomplish complex tasks, inspiring the development of cooperative micro/nanorobots. Herein, the spontaneous assembly of hematite-based microrobots with different shapes is presented. Autonomous motile light-driven hematite/Pt microrobots with cubic and walnut-like shapes are prepared by hydrothermal synthesis, followed by the deposition of a Pt layer to design Janus structures. Both microrobots show a fuel-free motion ability under light irradiation. Because of the asymmetric orientation of the magnetic dipole moment in the crystal, cubic hematite/Pt microrobots can self-assemble into ordered microchains, contrary to the random aggregation observed for walnut-like microrobots. The microchains exhibit different synchronized motions under light irradiation depending on the mutual orientation of the individual microrobots during the assembly, which allows them to accomplish multiple tasks, including capturing, picking up, and transporting microscale objects, such as yeast cells and suspended matter in water extracted from personal care products, as well as degrading polymeric materials. Such light-powered self-assembled microchains demonstrate an innovative cooperative behavior for small-scale multitasking artificial robotic systems, holding great potential toward cargo capture, transport, and delivery, and wastewater remediation.


Asunto(s)
Polímeros , Agua , Magnetismo
17.
Methods Mol Biol ; 2430: 291-302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35476340

RESUMEN

Mechanical forces play pivotal roles in regulating various cellular functions. Biomolecular motor protein-driven intracellular transportation is one example which is affected by mechanical forces, although the mechanism at molecular level is unknown. In this chapter, we describe deformation of microtubules under compressive stress and we show that such deformation of microtubules affects the kinetics of dynein-driven cargo transportation along the microtubules. The extent of alteration in the kinetics of dynein-driven transportation is found strongly dependent on the extent of deformation of microtubules under compressive stress.


Asunto(s)
Dineínas , Proteínas Asociadas a Microtúbulos , Dineínas/metabolismo , Cinesinas , Cinética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo
18.
Dev Biol ; 485: 50-60, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35257720

RESUMEN

Sperm flagella formation is a complex process that requires cargo transport systems to deliver structural proteins for sperm flagella assembly. Two cargo transport systems, the intramanchette transport (IMT) and intraflagellar transport (IFT), have been shown to play critical roles in spermatogenesis and sperm flagella formation. IMT exists only in elongating spermatids, while IFT is responsible for delivering cargo proteins in the developing cilia/flagella. Our laboratory discovered that mouse meiosis expressed gene 1 (MEIG1), a gene essential for sperm flagella formation, is present in the manchette of elongating spermatids. IFT complex components, IFT20 and IFT88, are also present in the manchette of the elongating spermatids. Given that the three proteins have the same localization in elongating spermatids and are essential for normal spermatogenesis and sperm flagella formation, we hypothesize that they are in the same complex, which is supported by co-immunoprecipitation assay using mouse testis extracts. In the Meig1 knockout mice, neither IFT20 nor IFT88 was present in the manchette in the elongating spermatids even though their localizations were normal in spermatocytes and round spermatids. However, MEIG1 was still present in the manchette in elongating spermatids of the conditional Ift20 knockout mice. In the sucrose gradient assay, both IFT20 and IFT88 proteins drifted from higher density fractions to lighter ones in the Meig1 knockout mice. MEIG1 distribution was not changed in the conditional Ift20 knockout mice. Finally, testicular IFT20 and IFT88 protein and mRNA levels were significantly reduced in Meig1 knockout mice. Our data suggests that MEIG1 is a key protein in determining the manchette localization of certain IFT components, including IFT20 and IFT88, in male germ cells.


Asunto(s)
Espermátides , Espermatogénesis , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Masculino , Meiosis , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Proteínas/metabolismo , Cola del Espermatozoide/metabolismo , Espermátides/metabolismo , Espermatocitos , Espermatogénesis/genética
19.
Biochem Biophys Rep ; 29: 101194, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35024461

RESUMEN

High-resolution experiments revealed that a single myosin-Va motor can transport micron-sized cargo on actin filaments in a stepwise manner. However, intracellular cargo transport is mediated through the dense actin meshwork by a team of myosin Va motors. The mechanism of how motors interact mechanically to bring about efficient cargo transport is still poorly understood. This study describes a stochastic model where a quantitative understanding of the collective behaviors of myosin Va motors is developed based on cargo stiffness. To understand how cargo properties affect the overall cargo transport, we have designed a model in which two myosin Va motors were coupled by wormlike chain tethers with persistence length ranging from 10 to 80 nm and contour length from 100 to 200 nm, and predicted distributions of velocity, run length, and tether force. Our analysis showed that these parameters are sensitive to both the contour and persistence length of cargo. While the velocity of two couple motors is decreased compared to a single motor (from 531 ± 251 nm/s to as low as 318 ± 287 nm/s), the run length (716 ± 563 nm for a single motor) decreased for short, rigid tethers (to as low as 377 ± 187 µm) and increased for long, flexible tethers (to as high as 1.74 ± 1.50 µm). The sensitivity of processive properties to tether rigidity (persistence length) was greatest for short tethers, which caused the motors to exhibit close, yet anti-cooperative coordination. Motors coupled by longer tethers stepped more independently regardless of tether rigidity. Therefore, the properties of the cargo or linkage must play an essential role in motor-motor communication and cargo transport.

20.
J Biol Chem ; 297(5): 101312, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34673028

RESUMEN

Mammalian spermatogenesis is a highly coordinated process that requires cooperation between specific proteins to coordinate diverse biological functions. For example, mouse Parkin coregulated gene (PACRG) recruits meiosis-expressed gene 1 (MEIG1) to the manchette during normal spermiogenesis. Here we mutated Y68 of MEIG1 using the CRISPR/cas9 system and examined the biological and physiological consequences in mice. All homozygous mutant males examined were completely infertile, and sperm count was dramatically reduced. The few developed sperm were immotile and displayed multiple abnormalities. Histological staining showed impaired spermiogenesis in these mutant mice. Immunofluorescent staining further revealed that this mutant MEIG1 was still present in the cell body of spermatocytes, but also that more MEIG1 accumulated in the acrosome region of round spermatids. The mutant MEIG1 and a cargo protein of the MEIG1/PACRG complex, sperm-associated antigen 16L (SPAG16L), were no longer found to be present in the manchette; however, localization of the PACRG component was not changed in the mutants. These findings demonstrate that Y68 of MEIG1 is a key amino acid required for PACRG to recruit MEIG1 to the manchette to transport cargo proteins during sperm flagella formation. Given that MEIG1 and PACRG are conserved in humans, small molecules that block MEIG1/PACRG interaction are likely ideal targets for the development of male contraconception drugs.


Asunto(s)
Acrosoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mutación Missense , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Espermatocitos/metabolismo , Sustitución de Aminoácidos , Animales , Transporte Biológico Activo/genética , Proteínas de Ciclo Celular/genética , Masculino , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...