Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
1.
Infect Microbes Dis ; 6(2): 65-73, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38952747

RESUMEN

Vitamin A and its biologically active derivative, retinoic acid (RA), are important for many immune processes. RA, in particular, is essential for the development of immune cells, including neutrophils, which serve as a front-line defense against infection. While vitamin A deficiency has been linked to higher susceptibility to infections, the precise role of vitamin A/RA in host-pathogen interactions remains poorly understood. Here, we provided evidence that RA boosts neutrophil killing of methicillin-resistant Staphylococcus aureus (MRSA). RA treatment stimulated primary human neutrophils to produce reactive oxygen species, neutrophil extracellular traps, and the antimicrobial peptide cathelicidin (LL-37). Because RA treatment was insufficient to reduce MRSA burden in an in vivo murine model of skin infection, we expanded our analysis to other infectious agents. RA did not affect the growth of a number of common bacterial pathogens, including MRSA, Escherichia coli K1 and Pseudomonas aeruginosa; however, RA directly inhibited the growth of group A Streptococcus (GAS). This antimicrobial effect, likely in combination with RA-mediated neutrophil boosting, resulted in substantial GAS killing in neutrophil killing assays conducted in the presence of RA. Furthermore, in a murine model of GAS skin infection, topical RA treatment showed therapeutic potential by reducing both skin lesion size and bacterial burden. These findings suggest that RA may hold promise as a therapeutic agent against GAS and perhaps other clinically significant human pathogens.

2.
Eur J Pharm Biopharm ; : 114398, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972467

RESUMEN

Human cathelicidin LL-37, a cationic host defense peptide (CHDP), has several important physiological roles, including antimicrobial activity, immune modulation, and wound healing, and is a being investigated as a therapeutic candidate for several indications. While the effects of endogenously produced LL-37 are well studied, the biodistribution of exogenously administered LL-37 are less known. Here we assess the biodistribution of a gallium-67 labeled variant of LL-37 using nuclear imaging techniques over a 48 h period in healthy mice. When administered as an intravenous bolus just over 20 µg, the LL-37-based radiotracer was rapidly cleared from the blood, largely by the liver, while an appreciable fraction of the dose temporarily distributed to the lungs. When administered subcutaneously at the same dose level, the radiotracer was absorbed systemically following a two-phase kinetic model and was predominately cleared renally. Uptake into sites rich in immune cells, such as the lymph nodes and the spleen, was observed for both routes of administration. Scans of free gallium-67 were also performed as controls. Important preclinical insights into the biodistribution of exogenously administered LL-37 were gained from this study, which can aid in the understanding of this and related cationic host-defense peptides.

3.
Sci Rep ; 14(1): 13928, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886476

RESUMEN

Respiratory syncytial virus is the major cause of acute lower respiratory tract infections in young children, causing extensive mortality and morbidity globally, with limited therapeutic or preventative options. Cathelicidins are innate immune antimicrobial host defence peptides and have antiviral activity against RSV. However, upper respiratory tract cathelicidin expression and the relationship with host and environment factors in early life, are unknown. Infant cohorts were analysed to characterise early life nasal cathelicidin levels, revealing low expression levels in the first week of life, with increased levels at 9 months which are comparable to 2-year-olds and healthy adults. No impact of prematurity on nasal cathelicidin expression was observed, nor were there effects of sex or birth mode, however, nasal cathelicidin expression was lower in the first week-of-life in winter births. Nasal cathelicidin levels were positively associated with specific inflammatory markers and demonstrated to be associated with microbial community composition. Importantly, levels of nasal cathelicidin expression were elevated in infants with mild RSV infection, but, in contrast, were not upregulated in infants hospitalised with severe RSV infection. These data suggest important relationships between nasal cathelicidin, upper airway microbiota, inflammation, and immunity against RSV infection, with interventional potential.


Asunto(s)
Catelicidinas , Infecciones por Virus Sincitial Respiratorio , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Humanos , Femenino , Masculino , Lactante , Recién Nacido , Virus Sincitial Respiratorio Humano/inmunología , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , Mucosa Nasal/inmunología
4.
Pathogens ; 13(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38921794

RESUMEN

Babesiosis is a growing concern due to the increased prevalence of this infectious disease caused by Babesia protozoan parasites, affecting various animals and humans. With rising worries over medication side effects and emerging drug resistance, there is a notable shift towards researching babesiacidal agents. Antimicrobial peptides, specifically cathelicidins known for their broad-spectrum activity and immunomodulatory functions, have emerged as potential candidates. Aquiluscidin, a cathelicidin from Crotalus aquilus, and its derivative Vcn-23, have been of interest due to their previously observed antibacterial effects and non-hemolytic activity. This work aimed to characterize the effect of these peptides against three Babesia species. Results showed Aquiluscidin's significant antimicrobial effects on Babesia species, reducing the B. bigemina growth rate and exhibiting IC50 values of 14.48 and 20.70 µM against B. ovata and B. bovis, respectively. However, its efficacy was impacted by serum presence in culture, and it showed no inhibition against a B. bovis strain grown in serum-supplemented medium. Conversely, Vcn-23 did not demonstrate babesiacidal activity. In conclusion, Aquiluscidin shows antibabesia activity in vitro and its efficacy is affected by the presence of serum in the culture medium. Nevertheless, this peptide represents a candidate for further investigation of its antiparasitic properties and provides insights into potential alternatives for the treatment of babesiosis.

5.
Comput Struct Biotechnol J ; 23: 2388-2406, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38882682

RESUMEN

Antimicrobial peptides are promising therapeutic agents for treating drug-resistant bacterial disease due to their broad-spectrum antimicrobial activity and decreased susceptibility to evolutionary resistance. In this study, three novel cathelicidin antimicrobial peptides were identified from Thamnophis sirtalis, Balaenoptera musculus, and Lipotes vexillifer by protein database mining and sequence alignment and were subsequently named TS-CATH, BM-CATH, and LV-CATH, respectively. All three peptides exhibited satisfactory antibacterial activity and broad antibacterial spectra against clinically isolated E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in vitro. Among them, TS-CATH displayed the best antimicrobial/bactericidal activity, with a rapid elimination efficiency against the tested drug-resistant gram-negative bacteria within 20 min, and exhibited the lowest cytotoxicity toward mammalian cells. Furthermore, TS-CATH effectively enhanced the survival rate of mice with ceftazidime-resistant E. coli bacteremia and promoted wound healing in meropenem-resistant P. aeruginosa infection. These results were achieved through the eradication of bacterial growth in target organs and wounds, further inhibiting the systemic dissemination of bacteria and the inflammatory response. TS-CATH exhibited direct antimicrobial activity by damaging the inner and outer membranes, resulting in leakage of the bacterial contents at super-MICs. Moreover, TS-CATH disrupted the bacterial respiratory chain, which inhibited ATP synthesis and induced ROS formation, significantly contributing to its antibacterial efficacy at sub-MICs. Overall, TS-CATH has potential for use as an antibacterial agent.

6.
Sci Rep ; 14(1): 13497, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866982

RESUMEN

Antimicrobial peptides (AMPs) have sparked significant interest as potential anti-cancer agents, thereby becoming a focal point in pursuing novel cancer-fighting strategies. These peptides possess distinctive properties, underscoring the importance of developing more potent and selectively targeted versions with diverse mechanisms of action against human cancer cells. Such advancements would offer notable advantages compared to existing cancer therapies. This research aimed to examine the toxicity and selectivity of the nrCap18 peptide in both cancer and normal cell lines. Furthermore, the rate of cellular death was assessed using apoptosis and acridine orange/ethidium bromide (AO/EB) double staining at three distinct incubation times. Additionally, the impact of this peptide on the cancer cell cycle and migration was evaluated, and ultimately, the expression of cyclin-dependent kinase 4/6 (CDK4/6) genes was investigated. The results obtained from the study demonstrated significant toxicity and selectivity in cancer cells compared to normal cells. Moreover, a strong progressive increase in cell death was observed over time. Furthermore, the peptide exhibited the ability to halt the progression of cancer cells in the G1 phase of the cell cycle and impede their migration by suppressing the expression of CDK4/6 genes.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Catelicidinas , Quinasa 4 Dependiente de la Ciclina , Humanos , Animales , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Apoptosis/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Conejos , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Quinasa 6 Dependiente de la Ciclina/metabolismo , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
7.
Int Immunopharmacol ; 134: 112201, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718660

RESUMEN

Osteoarthritis (OA) is a chronic degenerative disease with a significant prevalence that causes cartilage damage and can lead to disability. The main factors contributing to the onset and progression of OA include inflammation and degeneration of the extracellular matrix. Cathelicidin-BF (BF-30), a natural peptide derived from Bungarus fasciatus venom, has shown multiple important pharmacological effects. However, the action mechanism of BF-30 in OA treatment remains to be elucidated. In this research, X-ray and Safranin O staining were employed to evaluate the imageology and histomorphology differences in the knee joints of mice in vivo. Techniques such as Western blot analysis, RT-qPCR, ELISA, and immunofluorescence staining were applied to examine gene and protein level changes in in vitro experiments. It was found that BF-30 significantly decreased inflammation and enhanced extracellular matrix metabolism. For the first time, it was demonstrated that the positive effects of BF-30 are mediated through the activation of the AMPK/SIRT1/NF-κB pathway. Moreover, when BF-30 was co-administered with Compound C, an AMPK inhibitor, the therapeutic benefits of BF-30 were reversed in both in vivo and in vitro settings. In conclusion, the findings suggest that BF-30 could be a novel therapeutic agent for OA improvement.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Catelicidinas , Condrocitos , FN-kappa B , Osteoartritis , Transducción de Señal , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , FN-kappa B/metabolismo , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Transducción de Señal/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Masculino , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Humanos
8.
JPGN Rep ; 5(2): 194-196, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38756124

RESUMEN

Crohn's disease has been described as the "great mimicker" with a wide array of presentations. We describe a case of a teenager who presented with tetany and undetectable vitamin D as initial presentation of Crohn's disease. There are reports of adults in tetany due to electrolyte derangements in chronic gastrointestinal diseases secondary to malabsorption. However, the role of deficient vitamin D as it contributes to immune system dysfunction has only begun to be explored. Vitamin D is essential for calcium absorption, immune regulation, and gut epithelial barrier. This case report discusses vitamin D physiology and its potential mediation in the pathogenesis of inflammatory bowel disease.

9.
J Leukoc Biol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758953

RESUMEN

Despite their relatively short lifespan, neutrophils are tasked with counteracting pathogens through various functions, including phagocytosis, production of reactive oxygen species (ROS), neutrophil extracellular traps (NETs), and host defence peptides. Regarding the latter, small cationic cathelicidins present a conundrum in neutrophil function. Although primarily recognized as microbicides with an ability to provoke pores in microbial cell walls, the ability of cathelicidin to modulate key neutrophil functions is also of great importance, including the release of chemo-attractants, cytokines and ROS, plus prolonging neutrophil lifespan. Cumulative evidence indicates a less recognized role of cathelicidin as an "immunomodulator;" however, this term is not always explicit and its relevance in neutrophil responses during infection and inflammation is seldom discussed. This review compiles and discusses studies of how neutrophils use cathelicidin to respond to infections, while also acknowledging immunomodulatory aspects of cathelicidin through potential crosstalk between sources of the peptide.

10.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109943, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38810897

RESUMEN

Cathelicidins are important antimicrobial peptides in various vertebrate species where they are crucial parts of the innate immune system. The current understanding of amphibian cathelicidins is limited, particularly with regard to their immunomodulatory effects. To address this knowledge gap, we produced the cDNA sequence of the cathelicidin gene from a skin transcriptome of the Chinese spiny frog Quasipaa spinosa. The amino acid sequence of the Quasipaa spinosa cathelicidin (QS-CATH) was predicted to consist of a signal peptide, a cathelin domain, and a mature peptide. Comparative analysis of the QS-CATH amino acid sequence with that of other amphibian cathelicidins revealed high variability in the functional mature peptide among amphibians, whereas the cathelin domain was conserved. The QS-CATH gene was expressed in several tissues, with the highest level of expression in the spleen. Upregulation of QS-CATH after Aeromonas hydrophila infection occurred in the kidney, gut, spleen, skin, and liver. Chemically synthesized QS-CATH exhibited pronounced antibacterial activity against Shigella flexneri, Staphylococcus warneri, Escherichia coli, Salmonella enterica, and Listeria monocytogenes. Furthermore, QS-CATH disrupted the cell membrane integrity of S. flexneri, as evidenced by a lactate dehydrogenase release assay, and it hydrolyzed the genomic DNA of S. flexneri. Additionally, QS-CATH elicited chemotaxis and modulated the expression of inflammatory cytokine genes in RAW264.7 mouse leukemic monocyte/macrophage cells. These findings confirm the antimicrobial effects of amphibian cathelicidin and its ability to influence immune cell function. This will expedite the potential utilization of amphibian antimicrobial peptides as therapeutic agents.

11.
J Intensive Care Med ; : 8850666241250319, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38706151

RESUMEN

Background: Critically ill patients with sepsis have a high incidence of vitamin D deficiency. Vitamin D promotes the synthesis of human cathelicidin antimicrobial peptide, a precursor of LL-37, which is a part of the innate immune system. This study investigated the effectiveness and safety of the early administration of high-dose enteral vitamin D3 in comparison with low-dose vitamin D3 in patients with sepsis requiring mechanical ventilation (MV). Methods: Eighty adult patients with sepsis requiring MV with known vitamin D deficiency were randomly assigned to receive either an enteral 50 000 IU (Group I) or 5000 IU (Group II) vitamin D supplementation. Clinical and laboratory parameters were evaluated at baseline and on days 4 and 7 between the study groups. The change in serum procalcitonin (PCT) levels on day 7 was the primary outcome, while the change in serum LL-37 levels on day 7, changes in sequential organ failure assessment (SOFA) score, and clinical pulmonary infection score on day 7, MV duration, and hospital length of stay (LOS) were the secondary outcomes. Results: The (day 7-day 0) change in serum PCT and LL-37 levels and SOFA score were significantly different in Group I (P = .010, P < .001, and P < .001, respectively). The SOFA score was significantly different on days 4 and 7 in Group I (P < .001 and P < .001, respectively). The incidence of early ventilator-associated pneumonia was significantly different between both treatment groups (P = .025). The hospital LOS was shorter in Group I (P < .001). No 25-hydroxyvitamin-D toxicity was observed in either group. Conclusions: Early enteral administration of high-dose vitamin D3 in critically ill patients with sepsis requiring MV along with standard treatment for sepsis decreased serum procalcitonin levels, increased serum LL-37 levels, and ameliorated illness severity scores.

12.
Biochem Biophys Res Commun ; 712-713: 149962, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642493

RESUMEN

The human cathelicidin LL-37 shows activity against microorganisms, but it is also cytotoxic to host cells. The CAMP gene codes for the LL-37 precursor hCAP18 which is processed extracellularly to active LL-37. It has previously been shown that vitamin D stimulates CAMP gene activity, but less information is available demonstrating that vitamin D also can increase hCAP18/LL-37 protein production. Here, we show with RT-qPCR that a physiological concentration of vitamin D (50 nM) enhances CAMP mRNA levels by about 170 times in human THP-1 monocyte cells. Stimulation with 50 nM vitamin D increases hCAP18/LL-37 protein contents 3-4 times in THP-1 cell lysates demonstrated by both dot blot analysis and ELISA applying two different hCAP18/LL-37 antibodies. Treatment with the proteasome inhibitor MG132 enhances hCAP18/LL-37 levels, suggesting that turnover of hCAP18/LL-37 protein is regulated by the proteasome. The hCAP18/LL-37 concentration in vitamin D-stimulated THP-1 cells corresponds to 1.04 µM LL-37. Interestingly, synthetic LL-37, at this concentration, reduces viability of human osteoblast-like MG63 cells, whereas the THP-1 cells are less sensitive as demonstrated by the MTT assay. In summary, we show that vitamin D enhances hCAP18/LL-37 production, and that this effect can be of physiological/pathophysiological relevance for LL-37-induced human osteoblast toxicity.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Catelicidinas , Osteoblastos , Vitamina D , Humanos , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Vitamina D/farmacología , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Células THP-1 , Complejo de la Endopetidasa Proteasomal/metabolismo , Supervivencia Celular/efectos de los fármacos
13.
Artículo en Inglés | MEDLINE | ID: mdl-38587584

RESUMEN

Antimicrobial peptides (AMPs) have the potential to treat multidrug-resistant bacterial infections. Cathelicidins are a class of cationic antimicrobial peptides that are found in nearly all vertebrates. Herein, we determined the mature peptide region of Alligator sinensis cathelicidin by comparing its cathelicidin peptide sequence with those of other reptiles and designed nine peptide mutants based on the Alligator sinensis cathelicidin mature peptide. According to the antibacterial activity and cytotoxicity screening, the peptide AS-12W demonstrated broad-spectrum antibacterial activity and exhibited low erythrocyte hemolytic activity. In particular, AS-12W exhibited strong antibacterial activity and rapid bactericidal activity against carbapenem-resistant Pseudomonas aeruginosa in vitro. Additionally, AS-12W effectively removed carbapenem-resistant P. aeruginosa from blood and organs in vivo, leading to improved survival rates in septic mice. Furthermore, AS-12W exhibited good stability and tolerance to harsh conditions such as high heat, high salt, strong acid, and strong alkali, and it also displayed high stability toward trypsin and simulated gastric fluid (SGF). Moreover, AS-12W showed significant anti-inflammatory effects in vitro by inhibiting the production of proinflammatory factors induced by lipopolysaccharide (LPS). Due to its antibacterial mechanism against Escherichia coli, we found that this peptide could neutralize the negative charge on the surface of the bacteria and disrupt the integrity of the bacterial cell membrane. In addition, AS-12W has the ability to bind to the genomic DNA of bacteria and stimulate the production of reactive oxygen species (ROS) within bacteria, which is believed to be the reason for the good antibacterial activity of AS-12W. These results demonstrated that AS-12W exhibits remarkable antibacterial activity, particularly against carbapenem-resistant P. aeruginosa. Therefore, it is a potential candidate for antibacterial drug development.

14.
J Innate Immun ; 16(1): 203-215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38471488

RESUMEN

INTRODUCTION: TNFα-inducible matrix metalloproteinases play a critical role in the process of airway remodeling in respiratory inflammatory disease including asthma. The cationic host defense peptide LL-37 is elevated in the lungs during airway inflammation. However, the impact of LL-37 on TNFα-driven processes is not well understood. Here, we examined the effect of LL-37 on TNFα-mediated responses in human bronchial epithelial cells (HBECs). METHODS: We used a slow off-rate modified aptamer-based proteomics approach to define the HBEC proteome altered in response to TNFα. Abundance of selected protein candidates and signaling intermediates was examined using immunoassays, ELISA and Western blots, and mRNA abundance was examined by qRT-PCR. RESULTS: Proteomics analysis revealed that 124 proteins were significantly altered, 12 proteins were enhanced by ≥2-fold compared to unstimulated cells, in response to TNFα. MMP9 was the topmost increased protein in response to TNFα, enhanced by ∼10-fold, and MMP13 was increased by ∼3-fold, compared to unstimulated cells. Furthermore, we demonstrated that LL-37 significantly suppressed TNFα-mediated MMP9 and MMP13 in HBEC. Mechanistic data revealed that TNFα-mediated MMP9 and MMP13 production is controlled by SRC kinase and that LL-37 enhances related upstream negative regulators, namely, phospho-AKT (T308) and TNFα-mediated TNFAIP3 or A20. CONCLUSIONS: The findings of this study suggest that LL-37 may play a role in intervening in the process of airway remodeling in chronic inflammatory respiratory disease such as asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Péptidos Catiónicos Antimicrobianos , Asma , Bronquios , Catelicidinas , Células Epiteliales , Metaloproteinasa 13 de la Matriz , Metaloproteinasa 9 de la Matriz , Factor de Necrosis Tumoral alfa , Humanos , Péptidos Catiónicos Antimicrobianos/metabolismo , Asma/inmunología , Asma/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteómica , Mucosa Respiratoria/inmunología , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
15.
Infect Immun ; 92(4): e0048323, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38501672

RESUMEN

Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.


Asunto(s)
Aspergillus fumigatus , Queratitis , Compuestos de Fenilurea , Humanos , Animales , Ratones , Neutrófilos , Antifúngicos/metabolismo , Catelicidinas , Fosfolipasa C gamma/metabolismo , Queratitis/microbiología , Pronóstico , Ratones Endogámicos C57BL
16.
BMC Vet Res ; 20(1): 105, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493097

RESUMEN

The aim of this study was to examine the effects of salt addition on the skin gene expression of Mucin, Antimicrobial peptides, cortisol, and glucose in Oreochromis niloticus after 5-hour transportation in water. Three groups were compared: Control, post-transport without salt (PT-S), and post-transport with 5 g salt-1(PT + S), with a stocking density of 28.6 gL-1, 20 fish for each experimental group. The results showed that the PT-S group had more significant changes in gene expression than the PT + S group, suggesting that salt alleviated the stress and immune responses of O. niloticus. The PT-S group had higher expression of mucin- 2(MUC + 2) (7.58 folds) and mucin-5AC (MUC5-AC) (6.29 folds) than the PT + S group (3.30 folds and 4.16 folds, respectively). The PT-S group also had lower expression of ß-defensin-1 (Dß1) (0.42 folds), ß-defensin-2 (Dß2) (0.29 folds), and Cath1 (0.16 folds) than the PT + S group (0.82 folds, 0.69 folds, and 0.75 folds, respectively). The skin morphology of the PT-S group revealed some white patches with no goblet cell openings, while the PT + S group had better preservation of skin features with some goblet cell openings and slight white patches. This study indicates that O. niloticus can benefit from sodium chloride during transportation, as it helps to reduce stress and inflammation, balance mineral levels, enhance health and immunity, and regulate mucous secretion.


Asunto(s)
Cíclidos , Enfermedades de los Peces , beta-Defensinas , Animales , Cloruro de Sodio , beta-Defensinas/genética , Agua , Mucinas , Alimentación Animal/análisis , Dieta
17.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474156

RESUMEN

Obesity represents a worldwide health challenge, and the condition is accompanied by elevated risk of cardiovascular diseases caused by metabolic dysfunction and proinflammatory adipokines. Among those, the immune-modulatory cathelicidin antimicrobial peptide (human: CAMP; murine: CRAMP) might contribute to the interaction of the innate immune system and metabolism in these settings. We investigated systemic CAMP/CRAMP levels in experimental murine models of atherosclerosis, myocardial infarction and cardiovascular patients. Atherosclerosis was induced in low-density lipoprotein receptor-deficient (Ldlr-/-) mice by high-fat diet (HFD). C57BL/6J wild-type mice were subjected to myocardial infarction by permanent or transient left anterior descending (LAD)-ligation. Cramp gene expression in murine organs and tissues was investigated via real-time PCR. Blood samples of 234 adult individuals with or without coronary artery disease (CAD) were collected. Human and murine CAMP/CRAMP serum levels were quantified by ELISA. Atherosclerotic mice exhibited significantly increased CRAMP serum levels and induced Cramp gene expression in the spleen and liver, whereas experimental myocardial infarction substantially decreased CRAMP serum levels. Human CAMP serum quantities were not significantly affected by CAD while being correlated with leukocytes and pro-inflammatory cytokines. Our data show an influence of cathelicidin in experimental atherosclerosis, myocardial infarction, as well as in patients with CAD. Further studies are needed to elucidate the pathophysiological mechanism.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Adulto , Animales , Humanos , Ratones , Péptidos Catiónicos Antimicrobianos/metabolismo , Catelicidinas , Ratones Endogámicos C57BL , Ratones Noqueados
18.
J Infect Dis ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537250

RESUMEN

Concerns regarding toxicity and resistance of current drugs have been reported in visceral leishmaniasis. Anti-microbial peptides are considered as new promising candidates and amongst them, human cathelicidin hCAP18/LL-37 showed significant parasite killing on drug-sensitive and resistant Leishmania promastigotes, coupled with its apoptosis-inducing role. Administration of hCAP18/LL-37 in infected macrophages also decreased parasite survival and increased the host favorable cytokine IL-12. However, 1,25-dihydroxyvitamin D3 (VitD3)-induced endogenous hCAP18/LL-37 production was hampered in infected THP-1 cells. Infection also suppressed the VitD3-receptor (VDR), transcription factor of hCAP18/LL-37. cAMP response element modulator (CREM), the repressor of VDR, was induced in infection resulting in suppression of both VDR and cathelicidin expression. PGE2/cAMP/PKA axis was found to regulate CREM induction during infection and silencing CREM in infected cells and BALB/c mice led to decreased parasite survival. Present study thus documents the anti-leishmanial potential of cathelicidin and further identifies CREM as a repressor of cathelicidin in Leishmania infection.

19.
Antibiotics (Basel) ; 13(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38391576

RESUMEN

In this study, we developed a method for the expression of the antimicrobial peptide SE-33-A2P in E. coli bacterial cells. The SE-33-A2P peptide consists of A2P and SE-33 peptides and is a retro analog of cathelicidin possessing antimicrobial activity against both Gram-positive and Gram-negative bacteria. Furthermore, the A2P peptide is a self-cleaving peptide. For an efficient expression of the SE-33-A2P peptide, a gene encoding several repetitive sequences of the SE-33 peptide separated by A2P sequences was created. The gene was cloned into a plasmid, with which E. coli cells were transformed. An induction of the product expression was carried out by IPTG after the cell culture gained high density. The inducible expression product, due to the properties of the A2P peptide, was cleaved in the cell into SE-33-A2P peptides. As the next step, the SE-33-A2P peptide was purified using filtration and chromatography. Its activity against both Gram-positive and Gram-negative bacteria, including antibiotic-resistant bacteria, was proved. The developed approach for obtaining a prokaryotic system for the expression of a highly active antimicrobial peptide expands the opportunities for producing antimicrobial peptides via industrial methods.

20.
ACS Infect Dis ; 10(3): 951-960, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38315114

RESUMEN

The emergence of multidrug-resistant (MDR) bacteria presents a significant challenge to public health, increasing the risk of infections that are resistant to current antibiotic treatment. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics in the prevention of MDR bacterial infections. In the present study, we identified a novel cathelicidin AMP from Gekko japonicus, which exhibited broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with minimal inhibitory concentrations ranging from 2.34 to 4.69 µg/mL. To improve its potential therapeutic application, a series of peptides was synthesized based on the active region of the gecko-derived cathelicidin. The lead peptide (RH-16) showed an antimicrobial activity comparable to that of the parent peptide. Structural characterization revealed that RH-16 adopted an amphipathic α-helical conformation. Furthermore, RH-16 demonstrated neither hemolytic nor cytotoxic activity but effectively killed a wide range of clinically isolated, drug-resistant bacteria. The antimicrobial activity of RH-16 was attributed to the nonspecific targeting of bacterial membranes, leading to rapid bacterial membrane permeabilization and rupture. RH-16 also retained its antibacterial activity in plasma and exhibited mild toxicity in vivo. Notably, RH-16 offered robust protection against skin infection in a murine model. Therefore, this newly identified cathelicidin AMP may be a strong candidate for future pharmacological development targeting multidrug resistance. The use of a rational design approach for isolating the minimal antimicrobial unit may accelerate the transition of natural AMPs to clinically applicable antibacterial agents.


Asunto(s)
Antiinfecciosos , Catelicidinas , Lagartos , Ratones , Animales , Catelicidinas/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Bacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...