Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
Trends Microbiol ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153868

RESUMEN

Actinobacterial species are mostly thought to be nonmotile. Recent studies have revealed the degenerate evolution of flagella in this phylum and different flagellar rod compositions from the classical model. Moreover, flagella-independent motility by various means has been reported in Streptomyces spp. and Mycobacterium spp., but the underlying mechanisms remain elusive.

2.
Structure ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38964336

RESUMEN

The Rcs pathway is repressed by the inner membrane protein IgaA under non-stressed conditions. This repression is hypothesized to be relieved by the binding of the outer membrane-anchored RcsF to IgaA. However, the precise mechanism by which RcsF binding triggers the signaling remains unclear. Here, we present the 1.8 Å resolution crystal structure capturing the interaction between IgaA and RcsF. Our comparative structural analysis, examining both the bound and unbound states of the periplasmic domain of IgaA (IgaAp), highlights rotational flexibility within IgaAp. Conversely, the conformation of RcsF remains unchanged upon binding. Our in vivo and in vitro studies do not support the model of a stable complex involving RcsF, IgaAp, and RcsDp. Instead, we demonstrate that the elements beyond IgaAp play a role in the interaction between IgaA and RcsD. These findings collectively allow us to propose a potential mechanism for the signaling across the inner membrane through IgaA.

3.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38874171

RESUMEN

Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.


Asunto(s)
Escherichia coli , Lagos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Lagos/microbiología , Factor sigma/genética , Factor sigma/metabolismo , Genoma Bacteriano , Elementos Transponibles de ADN , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Microbiología del Agua
4.
Artículo en Inglés | MEDLINE | ID: mdl-38847924

RESUMEN

CssRS is a two-component system that plays a pivotal role in mediating the secretion stress response in Bacillus subtilis. This system upregulates the synthesis of membrane-bound HtrA family proteases that cope with misfolded proteins that accumulate within the cell envelope as a result of overexpression or heat shock. Recent studies have shown the induction of CssRS-regulated genes in response to cell envelope stress. We investigated the induction of the CssRS-regulated htrA promoter in the presence of different cell wall- and membrane-active substances and observed induction of the CssRS-controlled genes by glycopeptides (vancomycin and teicoplanin), polymyxins B and E, certain ß-lactams, and detergents. Teicoplanin was shown to elicit remarkably stronger induction than vancomycin and polymyxin B. Teicoplanin and polymyxin B induced the spxO gene expression in a CssRS-dependent fashion, resulting in increased activity of Spx, a master regulator of disulfide stress in Bacillus subtilis. The CssRS signaling pathway and Spx activity were demonstrated to be involved in Bacillus subtilis resistance to teicoplanin and polymyxin B.

5.
Foods ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731737

RESUMEN

This study sought to explore the antimicrobial activity of punicalagin against V. parahaemolyticus and its potential modes of action. V. parahaemolyticus ATCC 17802 and RIMD 2210633Sm were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as the interaction with cell biomolecules, were measured using a variety of fluorescent probes combined with electrophoresis and Raman spectroscopy. Punicalagin treatment disrupted the envelope integrity and induced a decrease in intracellular ATP and pH. The uptake of 1-N-phenyl-naphtylamine (NPN) demonstrated that punicalagin weakened the outer membrane. Punicalagin damaged the cytoplasmic membrane, as indicated by the membrane depolarization and the leakage of intracellular potassium ions, proteins, and nucleic acids. Electronic microscopy observation visualized the cell damage caused by punicalagin. Further, gel electrophoresis coupled with the Raman spectrum assay revealed that punicalagin affected the protein expression of V. parahaemolyticus, and there was no effect on the integrity of genomic DNA. Therefore, the cell envelope and proteins of V. parahaemolyticus were the assailable targets of punicalagin treatment. These findings suggested that punicalagin may be promising as a natural bacteriostatic agent to control the growth of V. parahaemolyticus.

6.
Eur J Pharm Biopharm ; 200: 114336, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795784

RESUMEN

Antimicrobial resistance is becoming more prominent day after day due to a number of mechanisms by microbes, especially the sophisticated biological barriers of bacteria, especially in Gram-negatives. There, the lipopolysaccharides (LPS) layer is a unique component of the outer leaflet of the outer membrane which is highly impermeable and prevents antibiotics from passing passively into the intracellular compartments. Biodynamers, a novel class of dynamically bio-responsive polymers, may open new perspectives to overcome this particular barrier by accommodating various secondary structures and form supramolecular structures in such bacterial microenvironments. Generally, bio-responsive polymers are not only candidates as bio-active molecules against bacteria but also carriers via their interactions with the cargo. Based on their dynamicity, design flexibility, biodegradability, biocompatibility, and pH-responsiveness, we investigated the potential of two peptide-based biodynamers for improving antimicrobial drug delivery. By a range of experimental methods, we discovered a greater affinity of Arg-biodynamers for bacterial membranes than for mammalian membranes as well as an enhanced LPS targeting on the bacterial membrane, opening perspectives for enhancing the delivery of antimicrobials across the Gram-negative bacterial cell envelope. This could be explained by the change of the secondary structure of Arg-biodynamers into a predominant ß-sheet character in the LPS microenvironment, by contrast to the α-helical structure typically observed for most lipid membrane-permeabilizing peptides. In comparison to poly-L-arginine, the intrinsic antibacterial activity of Arg-biodynamers was nearly unchanged, but its toxicity against mammalian cells was >128-fold reduced. When used in bacterio as an antibiotic potentiator, however, Arg-biodynamers improved the minimum inhibitory concentration (MIC) against Escherichia coli by 32 times compared to colistin alone. Similar effect has also been observed in two stains of Pseudomonas aeruginosa. Arg-biodynamers may therefore represent an interesting option as an adjuvant for antibiotics against Gram-negative bacteria and to overcome antimicrobial resistance.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Lipopolisacáridos , Pruebas de Sensibilidad Microbiana , Lipopolisacáridos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Gramnegativas/efectos de los fármacos , Membrana Externa Bacteriana/efectos de los fármacos , Membrana Externa Bacteriana/metabolismo , Humanos , Escherichia coli/efectos de los fármacos , Polímeros/química , Arginina/química , Sistemas de Liberación de Medicamentos/métodos
7.
Mol Microbiol ; 121(6): 1148-1163, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38646792

RESUMEN

Enterococcal infections frequently show high levels of antibiotic resistance, including to cell envelope-acting antibiotics like daptomycin (DAP). While we have a good understanding of the resistance mechanisms, less is known about the control of such resistance genes in enterococci. Previous work unveiled a bacitracin resistance network, comprised of the sensory ABC transporter SapAB, the two-component system (TCS) SapRS and the resistance ABC transporter RapAB. Interestingly, components of this system have recently been implicated in DAP resistance, a role usually regulated by the TCS LiaFSR. To better understand the regulation of DAP resistance and how this relates to mutations observed in DAP-resistant clinical isolates of enterococci, we here explored the interplay between these two regulatory pathways. Our results show that SapR regulates an additional resistance operon, dltXABCD, a known DAP resistance determinant, and show that LiaFSR regulates the expression of sapRS. This regulatory structure places SapRS-target genes under dual control, where expression is directly controlled by SapRS, which itself is up-regulated through LiaFSR. The network structure described here shows how Enterococcus faecalis coordinates its response to cell envelope attack and can explain why clinical DAP resistance often emerges via mutations in regulatory components.


Asunto(s)
Antibacterianos , Bacitracina , Proteínas Bacterianas , Daptomicina , Farmacorresistencia Bacteriana , Enterococcus faecalis , Regulación Bacteriana de la Expresión Génica , Operón , Daptomicina/farmacología , Enterococcus faecalis/genética , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/metabolismo , Bacitracina/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética
8.
Trends Biochem Sci ; 49(8): 667-680, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38677921

RESUMEN

The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with ß-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.


Asunto(s)
Chaperonas Moleculares , Periplasma , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Periplasma/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Pliegue de Proteína , Bacterias Gramnegativas/metabolismo
9.
J Infect Dis ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578967

RESUMEN

Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.

10.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38645029

RESUMEN

Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is considered one of the top infectious killers in the world. In recent decades, drug resistant (DR) strains of M.tb have emerged that make TB even more difficult to treat and pose a threat to public health. M.tb has a complex cell envelope that provides protection to the bacterium from chemotherapeutic agents. Although M.tb cell envelope lipids have been studied for decades, very little is known about how their levels change in relation to drug resistance. In this study, we examined changes in the cell envelope lipids [namely, phthiocerol dimycocerosates (PDIMs)], glycolipids [phosphatidyl-myo-inositol mannosides (PIMs)], and the PIM associated lipoglycans [lipomannan (LM); mannose-capped lipoarabinomannan (ManLAM)] of 11 M.tb strains that range from drug susceptible (DS) to multi-drug resistant (MDR) to pre-extensively drug resistant (pre-XDR). We show that there was an increase in the PDIMs:PIMs ratio as drug resistance increases, and provide evidence of PDIM species only present in the DR-M.tb strains studied. Overall, the LM and ManLAM cell envelope levels did not differ between DS- and DR-M.tb strains, but ManLAM surface exposure proportionally increased with drug resistance. Evaluation of host-pathogen interactions revealed that DR-M.tb strains have decreased association with human macrophages compared to DS strains. The pre-XDR M.tb strain with the largest PDIMs:PIMs ratio had decreased uptake, but increased intracellular growth rate at early time points post-infection when compared to the DS-M.tb strain H37Rv. These findings suggest that PDIMs may play an important role in drug resistance and that this observed increase in hydrophobic cell envelope lipids on the DR-M.tb strains studied may influence M.tb-host interactions.

11.
J Microbiol Biol Educ ; 25(1): e0002024, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591892

RESUMEN

As one of the most famous fermented drinks in the world, beer is an especially relatable topic for microbiology courses. Here, we describe a short and easily adaptable module based on the antibacterial properties of hops used in brewing. By the 15th century, beer recipes included hops (the flower of the Humulus lupulus plant) as a bittering agent and antimicrobial. By the 19th century, the highly hopped Indian Pale Ale (IPA) became popular, and a modern myth has emerged that IPAs were invented to survive long ocean voyages such as from Britain to India. With that myth in mind, we designed a hypothesis-driven microbiology lab module that tests the plausibility of this brewing myth-namely that highly hopped beers possess enough antibacterial activity to prevent spoilage, while lowly hopped beers do not. The overall design of the module is to test the antimicrobial properties of hops using petri plates containing varying concentrations of hop extract. The module includes hypothesis generation and testing related to bacterial physiology and cell envelope morphology (hops are not equally effective against Gram-positive and Gram-negative bacteria) and to mechanisms of antimicrobial resistance (as beer spoilage bacteria have repeatedly evolved hop resistance). Pre- and post-assessment showed that students made significant gains in the learning objectives for the module, which encourages critical thinking and hypothesis testing by linking microbial physiology and antimicrobial resistance to an important and topical real-world application.

12.
J Bacteriol ; 206(4): e0030823, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38534107

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) controls lipopolysaccharide (LPS) biosynthesis by regulating proteolysis of LpxC, the rate-limiting enzyme and target of preclinical antibiotics. PbgA/YejM/LapC regulates LpxC levels and controls outer membrane (OM) LPS composition at the log-to-stationary phase transition. Suppressor substitutions in LPS assembly protein B (LapB/YciM) rescue the LPS and OM integrity defects of pbgA-mutant S. Typhimurium. We hypothesized that PbgA regulates LpxC proteolysis by controlling LapB's ability to bind LpxC as a function of the growth phase. According to existing models, when nutrients are abundant, PbgA binds and restricts LapB from interacting with LpxC and FtsH, which limits LpxC proteolysis. However, when nutrients are limited, there is debate whether LapB dissociates from PbgA to bind LpxC and FtsH to enhance degradation. We sought to examine these models and investigate how the structure of LapB enables salmonellae to control LpxC proteolysis and LPS biosynthesis. Salmonellae increase LapB levels during the stationary phase to promote LpxC degradation, which limits lipid A-core production and increases their survival. The deletion of lapB, resulting in unregulated lipid A-core production and LpxC overabundance, leads to bacterial growth retardation. Tetratricopeptide repeats near the cytosol-inner membrane interface are sufficient for LapB to bind LpxC, and remarkably, LapB and PbgA interact in both growth phases, yet LpxC only associates with LapB in the stationary phase. Our findings support that PbgA-LapB exists as a constitutive complex in S. Typhimurium, which differentially binds LpxC to control LpxC proteolysis and limit lipid A-core biosynthesis in response to changes in the environment.IMPORTANCEAntimicrobial resistance has been a costly setback for human health and agriculture. Continued pursuit of new antibiotics and targets is imperative, and an improved understanding of existing ones is necessary. LpxC is an essential target of preclinical trial antibiotics that can eliminate multidrug-resistant Gram-negative bacterial infections. LapB is a natural LpxC inhibitor that targets LpxC for degradation and limits lipopolysaccharide production in Enterobacteriaceae. Contrary to some studies, findings herein support that LapB remains in complex instead of dissociating from its presumed negative regulator, PbgA/YejM/LapC, under conditions where LpxC proteolysis is enhanced. Advanced comprehension of this critical protein-lipid signaling network will lead to future development and refinement of small molecules that can specifically interfere.


Asunto(s)
Proteínas de Escherichia coli , Lipopolisacáridos , Humanos , Lipopolisacáridos/metabolismo , Lípido A , Escherichia coli/metabolismo , Proteolisis , Salmonella typhimurium/metabolismo , Antibacterianos/metabolismo , Amidohidrolasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo
13.
J Bacteriol ; 206(4): e0044123, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38501654

RESUMEN

Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple ß-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and ß-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.


Asunto(s)
Burkholderia cenocepacia , Complejo Burkholderia cepacia , Burkholderia , Burkholderia cenocepacia/genética , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Complejo Burkholderia cepacia/genética , Burkholderia/metabolismo
14.
Can J Microbiol ; 70(5): 190-198, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38525892

RESUMEN

The cell envelope of the poly-extremophile bacterium Deinococcus radiodurans is renowned for its highly organized structure and unique functional characteristics. In this bacterium, a precise regularity characterizes not just the S-layer, but it also extends to the underlying cell envelope layers, resulting in a dense and tightly arranged configuration. This regularity is attributed to a minimum of three protein complexes located at the outer membrane level. Together, they constitute a recurring structural unit that extends across the cell envelope, effectively tiling the entirety of the cell body. Nevertheless, a comprehensive grasp of the vacant spaces within each layer and their functional roles remains limited. In this study, we delve into these aspects by integrating the state of the art with structural calculations. This approach provides crucial evidence supporting an evolutive pressure intricately linked to surface phenomena depending on the environmental conditions.


Asunto(s)
Membrana Celular , Deinococcus , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Membrana Celular/química , Pared Celular/química , Pared Celular/metabolismo , Deinococcus/metabolismo , Deinococcus/química
15.
Methods Mol Biol ; 2778: 43-52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478270

RESUMEN

Numerous bioinformatics tools allow predicting the localization of membrane proteins in the outer or inner membrane of Escherichia coli with high precision. Nevertheless, it might be desirable to experimentally verify such predictions or to assay the correct localization of recombinant or mutated variants of membrane proteins. Here we describe two methods (preferential detergent solubilization and sucrose-gradient fractionation) that allow to fractionate Gram-negative bacterial membranes and subsequently to enrich inner or outer membrane proteins.


Asunto(s)
Escherichia coli , Proteínas de la Membrana , Membrana Celular , Escherichia coli/genética , Bacterias Gramnegativas , Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas , Fraccionamiento Celular/métodos
16.
Methods Mol Biol ; 2778: 367-381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478289

RESUMEN

Biogenesis of the outer membrane (OM) of Gram-negative bacteria involves two processes essential for growth, that is, the insertion of ß-barrel outer membrane proteins (OMPs) by the Bam complex and the assembly of the LPS-containing outer leaflet of the OM by the LptD/E complex from the Lpt pathway. These processes have only recently gained attention as targets for antimicrobial drugs. Our laboratory has developed a simple screening tool to identify compounds that target processes that disrupt the biogenesis of the cell envelope, among which the activity of the Bam complex. The tool is based on the observation that such a disruption triggers cell envelope stress response systems, such as the σE, Rcs, and Cpx responses. In essence, specific stress-responsive promoters are fused to a gene encoding a bright fluorescent protein to serve as a panel of easy-to-monitor stress reporter plasmids. Using these plasmids, compounds triggering these stress systems and, therefore, putatively disrupting the biogenesis of the cell envelope can be identified by the nature and kinetics of the induced stress responses. We describe here the use of the stress reporter plasmids in high-throughput phenotypic screening using multi-well plates.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo
17.
mBio ; 15(4): e0032524, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38426748

RESUMEN

Gram-negative bacteria have a thin peptidoglycan layer between the cytoplasmic and outer membranes protecting the cell from osmotic challenges. Hydrolases of this structure are needed to cleave bonds to allow the newly synthesized peptidoglycan strands to be inserted by synthases. These enzymes need to be tightly regulated and their activities coordinated to prevent cell lysis. To better understand this process in Escherichia coli, we probed the genetic interactions of mrcA (encodes PBP1A) and mrcB (encodes PBP1B) with genes encoding peptidoglycan amidases and endopeptidases in envelope stress conditions. Our extensive genetic interaction network analysis revealed relatively few combinations of hydrolase gene deletions with reduced fitness in the absence of PBP1A or PBP1B, showing that none of the amidases or endopeptidases is strictly required for the functioning of one of the class A PBPs. This illustrates the robustness of the peptidoglycan growth mechanism. However, we discovered that the fitness of ∆mrcB cells is significantly reduced under high salt stress and in vitro activity assays suggest that this phenotype is caused by a reduced peptidoglycan synthesis activity of PBP1A at high salt concentration.IMPORTANCEEscherichia coli and many other bacteria have a surprisingly high number of peptidoglycan hydrolases. These enzymes function in concert with synthases to facilitate the expansion of the peptidoglycan sacculus under a range of growth and stress conditions. The synthases PBP1A and PBP1B both contribute to peptidoglycan expansion during cell division and growth. Our genetic interaction analysis revealed that these two penicillin-binding proteins (PBPs) do not need specific amidases, endopeptidases, or lytic transglycosylases for function. We show that PBP1A and PBP1B do not work equally well when cells encounter high salt stress and demonstrate that PBP1A alone cannot provide sufficient PG synthesis activity under this condition. These results show how the two class A PBPs and peptidoglycan hydrolases govern cell envelope integrity in E. coli in response to environmental challenges and particularly highlight the importance of PBP1B in maintaining cell fitness under high salt conditions.


Asunto(s)
Proteínas de Escherichia coli , Peptidoglicano Glicosiltransferasa , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Pared Celular/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo
18.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38479791

RESUMEN

Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.


Asunto(s)
Lactococcus lactis , Péptido Hidrolasas , Animales , Péptido Hidrolasas/metabolismo , Caseínas/metabolismo , Peso Molecular , Endopeptidasas/química , Lactococcus lactis/metabolismo , Aminoácidos/metabolismo
19.
J Bacteriol ; 206(3): e0036823, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38376203

RESUMEN

Daptomycin is a cyclic lipopeptide antibiotic used to treat infections caused by some Gram-positive bacteria. Daptomycin disrupts synthesis of the peptidoglycan (PG) cell wall by inserting into the cytoplasmic membrane and binding multiple forms of the undecaprenyl carrier lipid required for PG synthesis. Membrane insertion requires phosphatidylglycerol, so studies of daptomycin can provide insight into assembly and maintenance of the cytoplasmic membrane. Here, we studied the effects of daptomycin on Clostridioides difficile, the leading cause of healthcare-associated diarrhea. We observed that growth of C. difficile strain R20291 in the presence of sub-MIC levels of daptomycin resulted in a chaining phenotype, minicell formation, and lysis-phenotypes broadly consistent with perturbation of membranes and PG synthesis. We also selected for and characterized eight mutants with elevated daptomycin resistance. The mutations in these mutants were mapped to four genes: cdsA (cdr20291_2041), ftsH2 (cdr20291_3396), esrR (cdr20291_1187), and draS (cdr20291_2456). Of these four genes, only draS has been characterized previously. Follow-up studies indicate these mutations confer daptomycin resistance by two general mechanisms: reducing the amount of phosphatidylglycerol in the cytoplasmic membrane (cdsA) or altering the regulation of membrane processes (ftsH2, esrR, and draS). Thus, the mutants described here provide insights into phospholipid synthesis and identify signal transduction systems involved in cell envelope biogenesis and stress response in C. difficile. IMPORTANCE: C. difficile is the leading cause of healthcare-associated diarrhea and is a threat to public health due to the risk of recurrent infections. Understanding biosynthesis of the atypical cell envelope of C. difficile may provide insight into novel drug targets to selectively inhibit C. difficile. Here, we identified mutations that increased daptomycin resistance and allowed us to better understand phospholipid synthesis, cell envelope biogenesis, and stress response in C. difficile.


Asunto(s)
Clostridioides difficile , Daptomicina , Humanos , Daptomicina/farmacología , Daptomicina/química , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Antibacterianos/química , Fosfatidilgliceroles , Diarrea
20.
J Bacteriol ; 206(3): e0001524, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38323910

RESUMEN

Antibiotics that inhibit peptidoglycan synthesis trigger the activation of both specific and general protective responses. σM responds to diverse antibiotics that inhibit cell wall synthesis. Here, we demonstrate that cell wall-inhibiting drugs, such as bacitracin and cefuroxime, induce the σM-dependent ytpAB operon. YtpA is a predicted hydrolase previously proposed to generate the putative lysophospholipid antibiotic bacilysocin (lysophosphatidylglycerol), and YtpB is the branchpoint enzyme for the synthesis of membrane-localized C35 terpenoids. Using targeted lipidomics, we reveal that YtpA is not required for the production of lysophosphatidylglycerol. Nevertheless, ytpA was critical for growth in a mutant strain defective for homeoviscous adaptation due to a lack of genes for the synthesis of branched chain fatty acids and the Des phospholipid desaturase. Consistently, overexpression of ytpA increased membrane fluidity as monitored by fluorescence anisotropy. The ytpA gene contributes to bacitracin resistance in mutants additionally lacking the bceAB or bcrC genes, which directly mediate bacitracin resistance. These epistatic interactions support a model in which σM-dependent induction of the ytpAB operon helps cells tolerate bacitracin stress, either by facilitating the flipping of the undecaprenyl phosphate carrier lipid or by impacting the assembly or function of membrane-associated complexes involved in cell wall homeostasis.IMPORTANCEPeptidoglycan synthesis inhibitors include some of our most important antibiotics. In Bacillus subtilis, peptidoglycan synthesis inhibitors induce the σM regulon, which is critical for intrinsic antibiotic resistance. The σM-dependent ytpAB operon encodes a predicted hydrolase (YtpA) and the enzyme that initiates the synthesis of C35 terpenoids (YtpB). Our results suggest that YtpA is critical in cells defective in homeoviscous adaptation. Furthermore, we find that YtpA functions cooperatively with the BceAB and BcrC proteins in conferring intrinsic resistance to bacitracin, a peptide antibiotic that binds tightly to the undecaprenyl-pyrophosphate lipid carrier that sustains peptidoglycan synthesis.


Asunto(s)
Bacillus subtilis , Bacitracina , Bacitracina/farmacología , Bacitracina/metabolismo , Bacillus subtilis/genética , Peptidoglicano/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Pared Celular/metabolismo , Membrana Celular/metabolismo , Operón , Hidrolasas/metabolismo , Lípidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...