Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Curr Biol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39353425

RESUMEN

Eukaryotic cells depend on dynamic changes in shape to fulfill a wide range of cellular functions, maintain essential biological processes, and regulate cellular behavior. The single-celled, predatory ciliate Lacrymaria exhibits extraordinary dynamic shape-shifting using a flexible "neck" that can stretch 7-8 times the length of its body to capture prey. The molecular mechanism behind this morphological change remains a mystery. We have observed that when in an active state, Lacrymaria repeatedly extends and contracts its neck to enable 360-degree space search and prey capture. This remarkable morphological change involves a unique actin-myosin system rather than the Ca2+-dependent system found in other contractile ciliates. Two cytoskeletons are identified in the cortex of the Lacrymaria cell, namely the myoneme cytoskeleton and the microtubule cytoskeleton. The myoneme cytoskeleton is composed of centrin-myosin proteins, exhibiting distinct patterns between the neck and body, with their boundary seemingly associated with the position of the macronucleus. A novel giant protein forming a ladder-like structure was discovered as a component of the microtubule cytoskeleton. Thick centrin-myosin fibers are situated very close to the right side of the ladders in the neck but are far away from such structures in the body. This arrangement enables the decoupling of the neck and body. Plasmodium-like unconventional actin has been discovered in Lacrymaria, and this may form highly dynamic short filaments that could attach to the giant protein and myosin, facilitating coordination between the two cytoskeletons in the neck. In summary, this fascinating organism employs unconventional cytoskeletal components to accomplish its extraordinary dynamic shape-shifting.

2.
Planta ; 260(5): 115, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400709

RESUMEN

MAIN CONCLUSION: Our studies reveal the involvement of SPI in cytoskeleton-associated trichome morphogenesis, expanding the roles of SPI in regulating plant epidermal cell development. Acquisition of distinct shapes is crucial for cells to perform their biological functions in multicellular organisms. Trichomes are specialized epidermal cells of plant aerial parts, offering an excellent paradigm for dissecting the underlying regulatory mechanism of plant cell shape development at the single-cell level. SPIRRIG (SPI) that encodes a BEACH domain-containing protein was initially identified to regulate trichome branch extension, but the possible pathway(s) through which SPI regulates trichome morphogenesis remain unclear. Here, we report that SPI facilitates microtubule-associated regulation on trichome branching in Arabidopsis. Functional loss of SPI results in trichome morphogenesis hyper-sensitive to the microtubule-disrupting drug oryzalin, implying SPI may mediate microtubule stability during trichome development. Accordingly, spi mutant has less-branched trichomes. Detailed live-cell imaging showed that the spatio-temporal microtubule organization during trichome morphogenesis is aberrant in spi mutants. Further genetic investigation indicated that SPI may cooperate with ZWICHEL (ZWI) to modulate microtubule dynamics during trichome morphogenesis. ZWI encodes a kinesin-like calmodulin-binding protein (KCBP), whose distribution is necessary for the proper microtubule organization in trichomes, and zwi mutants produce less-branched trichomes as well. Trichome branching is further inhibited in spi-3 zwi-101 double mutants compared to either of the single mutant. Moreover, we found SPI could co-localize with the MYTH4 domain of ZWI. Taken together, our results expand the role of SPI in regulating trichome morphogenesis and also reveal a molecular and genetic pathway in plant cell shape formation control.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Microtúbulos , Morfogénesis , Tricomas , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Tricomas/crecimiento & desarrollo , Tricomas/genética , Tricomas/metabolismo , Microtúbulos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Morfogénesis/genética , Sulfanilamidas/farmacología , Dinitrobencenos/farmacología , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Unión a Calmodulina/genética , Citoesqueleto/metabolismo , Mutación
3.
FEMS Microbiol Ecol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39264060

RESUMEN

Prokaryotic maintenance respiration and associated metabolic activities constitute a considerable proportion of the total respiration of carbon to CO2 in the ocean's mixed layer. However, seasonal influences on prokaryotic maintenance activities in terms of morphological and metabolic adaptations at low (winter) and high productivity (summer) are still unclear. To address this, we examined the natural prokaryotic communities at the mesocosm scale to analyse the differences in their morphological features and gene expression at low and high maintenance respiration, experimentally manipulated with the specific growth rate. Here, we showed that morphological features including membrane blebbing, membrane vesicles and cell‒cell connections occurred under high productivity. Metabolic adaptations associated with maintenance activities were observed under low productivity. Several Kyoto Encyclopedia of Genes and Genomes categories related to signal transduction, energy metabolism, and translational machinery supported maintenance activities under simulated winter conditions. Differential abundances of genes related to transporters, osmoregulation, nitrogen metabolism, ribosome biogenesis, and cold stress were observed. Our results demonstrate how specific growth rate in different seasons can influence resource allocation at the levels of morphological features and metabolic adaptations. This motivates further study of morphological features and their ecological role during high productivity, while investigations of metabolic adaptations during low productivity can advance our knowledge about maintenance activities.

4.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-39333031

RESUMEN

With the growing threat of drug-resistant Acinetobacter baumannii, there is an urgent need to comprehensively understand the physiology of this nosocomial pathogen. As penicillin-binding proteins are attractive targets for antibacterial therapy, we have tried to explore the physiological roles of two putative DD-carboxypeptidases, viz., DacC and DacD, in A. baumannii. Surprisingly, the deletion of dacC resulted in a reduced growth rate, loss of rod-shaped morphology, reduction in biofilm-forming ability, and enhanced susceptibility towards beta-lactams. In contrast, the deletion of dacD had no such effect. Interestingly, ectopic expression of dacC restored the lost phenotypes. The ∆dacCD mutant showed properties similar to the ∆dacC mutant. Conversely, in vitro enzyme kinetics assessments reveal that DacD is a stronger DD-CPase than DacC. Finally, we conclude that DacC might have DD-CPase and beta-lactamase activities, whereas DacD is a strong DD-CPase.


Asunto(s)
Acinetobacter baumannii , Biopelículas , Carboxipeptidasas , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/enzimología , Acinetobacter baumannii/genética , Acinetobacter baumannii/fisiología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología , Biopelículas/crecimiento & desarrollo , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Eliminación de Gen , Pruebas de Sensibilidad Microbiana
5.
J R Soc Interface ; 21(217): 20240193, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39192725

RESUMEN

Cross-sections of cell shapes in a tissue monolayer typically resemble a tiling of convex polygons. Yet, examples exist where the polygons are not convex with curved cell-cell interfaces, as seen in the adaxial epidermis. To date, two-dimensional vertex models predicting the structure and mechanics of cell monolayers have been mostly limited to convex polygons. To overcome this limitation, we introduce a framework to study curvy cell-cell interfaces at the subcellular scale within vertex models by using a parametrized curve between vertices that is expanded in a Fourier series and whose coefficients represent additional degrees of freedom. This extension to non-convex polygons allows for cells with the same shape index, or dimensionless perimeter, to be, for example, either elongated or globular with lobes. In the presence of applied, anisotropic stresses, we find that local, subcellular curvature or buckling can be energetically more favourable than larger scale deformations involving groups of cells. Inspired by recent experiments, we also find that local, subcellular curvature at cell-cell interfaces emerges in a group of cells in response to the swelling of additional cells surrounding the group. Our framework, therefore, can account for a wider array of multicellular responses to constraints in the tissue environment.


Asunto(s)
Modelos Biológicos , Forma de la Célula/fisiología
6.
MethodsX ; 13: 102855, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39105087

RESUMEN

Study of morphogenesis and its regulation requires analytical tools that enable simultaneous assessment of processes operating at cellular level, such as synthesis of transcription factors (TF), with their effects at the tissue scale. Most current studies conduct histological, cellular and immunochemical (IHC) analyses in separate steps, introducing inevitable biases in finding and alignment of areas of interest at vastly distinct scales of organization, as well as image distortion associated with image repositioning or file modifications. These problems are particularly severe for longitudinal analyses of growing structures that change size and shape. Here we introduce a python-based application for automated and complete whole-slide measurement of expression of multiple TFs and associated cellular morphology. The plugin collects data at customizable scale from the cell-level to the entire structure, records each data point with positional information, accounts for ontogenetic transformation of structures and variation in slide positioning with scalable grid, and includes a customizable file manager that outputs collected data in association with full details of image classification (e.g., ontogenetic stage, population, IHC assay). We demonstrate the utility and accuracy of this application by automated measurement of morphology and associated expression of eight TFs for more than six million cells recorded with full positional information in beak tissues across 12 developmental stages and 25 study populations of a wild passerine bird. Our script is freely available as an open-source Fiji plugin and can be applied to IHC slides from any imaging platforms and transcriptional factors.

7.
Protoplasma ; 261(6): 1267-1280, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38990355

RESUMEN

Cell suspension culture has the potential to be a valuable source for the bioactive compound productions. In this study, an optimized procedure was established for callus and cell suspension culture of Physalis alkekengi for the first time, and the impact of static magnetic field (SMF, 6 mT) was studied on the high-value metabolic compounds through investigation of signaling molecules and gene expressions at the late log-to-stationary phase. Results showed that the growth regulators of 6-benzyl amino purine (BAP, 1.5 mg-1 L) and 1-naphthaleneacetic acid (NAA, 0.4 mg-1 L) induced the highest fresh weight, callus rate, callus index, and total withanolides. Cell suspension culture was established in the liquid MS medium supplied with BAP (1.5 mg-1 L) and NAA (0.1 mg-1 L). SMF application decreased slightly the cell growth and viability and enhanced the number of round-shaped cells. The hydrogen peroxide (H2O2) and nitric oxide (NO) levels increased at an all-time series after SMF exposure, and their maximum contents were observed after 12 h. A significant alteration of malondialdehyde content was also identified after 12 h of SMF exposure. The expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), 1-deoxyD-xylulose 5-phosphate synthase (DXS), squalene synthase (SQS), sterol Δ7-reductase (DWF5), and C-7,8 sterol isomerase (HYD1) genes was upregulated significantly after 24 and 48 h. An increase in the total withanolides was related to more activity of HMGR and DXS enzymes in SMF-exposed cells and the maximum physalin A (12.8 mg g-1 DW) and physalin B (1.92 mg g-1 DW) obtained after 24 h compared to controls. Findings suggest that SMF can play a supportive factor in inducing steroidal compounds in P. alkekengi through modulating H2O2 and NO levels and the related-gene expressions.


Asunto(s)
Campos Magnéticos , Physalis , Physalis/química , Esteroides/metabolismo , Técnicas de Cultivo de Célula/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo
8.
Microorganisms ; 12(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39065078

RESUMEN

The circumferential motion of MreB filaments plays a key role in cell shape maintenance in many bacteria. It has recently been shown that filament formation of MreB filaments in Bacillus subtilis is influenced by stress conditions. In response to osmotic upshift, MreB molecules were released from filaments, as seen by an increase in freely diffusive molecules, and the peptidoglycan synthesis pattern became less organized, concomitant with slowed-down cell extension. In this study, biotic and abiotic factors were analysed with respect to a possible function in the adaptation of MreB filaments to stress conditions. We show that parallel to MreB, its interactor RodZ becomes more diffusive following osmotic stress, but the remodeling of MreB filaments is not affected by a lack of RodZ. Conversely, mutant strains that prevent efficient potassium influx into cells following osmotic shock show a failure to disassemble MreB filaments, accompanied by less perturbed cell wall extension than is observed in wild type cells. Because potassium ions are known to negatively affect MreB polymerization in vitro, our data indicate that polymer disassembly is directly mediated by the physical consequences of the osmotic stress response. The lack of an early potassium influx response strongly decreases cell survival following stress application, suggesting that the disassembly of MreB filaments may ensure slowed-down cell wall extension to allow for efficient adaptation to new osmotic conditions.

9.
Curr Top Dev Biol ; 160: 87-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38937032

RESUMEN

A simple machine is a basic of device that takes mechanical advantage to apply force. Animals and plants self-assemble through the operation of a wide variety of simple machines. Embryos of different species actuate these simple machines to drive the geometric transformations that convert a disordered mass of cells into organized structures with discrete identities and function. These transformations are intrinsically coupled to sequential and overlapping steps of self-organization and self-assembly. The processes of self-organization have been explored through the molecular composition of cells and tissues and their information networks. By contrast, efforts to understand the simple machines underlying self-assembly must integrate molecular composition with the physical principles of mechanics. This primer is concerned with effort to elucidate the operation of these machines, focusing on the "problem" of morphogenesis. Advances in understanding self-assembly will ultimately connect molecular-, subcellular-, cellular- and meso-scale functions of plants and animals and their ability to interact with larger ecologies and environmental influences.


Asunto(s)
Morfogénesis , Animales , Plantas , Semillas/crecimiento & desarrollo
10.
J Biomech ; 171: 112179, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38852482

RESUMEN

Cell volume and shape changes play a pivotal role in cellular mechanotransduction, governing cellular responses to external loading. Understanding the dynamics of cell behavior under loading conditions is essential to elucidate cell adaptation mechanisms in physiological and pathological contexts. In this study, we investigated the effects of dynamic cyclic compression loading on cell volume and shape changes, comparing them with static conditions. Using a custom-designed platform which allowed for simultaneous loading and imaging of cartilage tissue, tissues were subjected to 100 cycles of mechanical loading while measuring cell volume and shape alterations during the unloading phase at specific time points. The findings revealed a transient decrease in cell volume (13%) during the early cycles, followed by a gradual recovery to baseline levels after approximately 20 cycles, despite the cartilage tissue not being fully recovered at the unloading phase. This observed pattern indicates a temporal cell volume response that may be associated with cellular adaptation to the mechanical stimulus through mechanisms related to active cell volume regulation. Additionally, this study demonstrated that cell volume and shape responses during dynamic loading were significantly distinct from those observed under static conditions. Such findings suggest that cells in their natural tissue environment perceive and respond differently to dynamic compared to static mechanical cues, highlighting the significance of considering dynamic loading environments in studies related to cellular mechanics. Overall, this research contributes to the broader understanding of cellular behavior under mechanical stimuli, providing valuable insights into their ability to adapt to dynamic mechanical loading.


Asunto(s)
Condrocitos , Soporte de Peso , Animales , Condrocitos/fisiología , Soporte de Peso/fisiología , Estrés Mecánico , Tamaño de la Célula , Mecanotransducción Celular/fisiología , Fuerza Compresiva/fisiología , Bovinos , Cartílago Articular/fisiología , Forma de la Célula/fisiología
11.
Biosystems ; 240: 105216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692427

RESUMEN

Cell shapes in tissues are affected by the biophysical interaction between cells. Tissue forces can influence specific cell features such as cell geometry and cell surface area. Here, we examined the 2-dimensional shape, size, and perimeter of pleural epithelial cells at various lung volumes. We demonstrated a 1.53-fold increase in 2-dimensional cell surface area and a 1.43-fold increase in cell perimeter at total lung capacity compared to residual lung volume. Consistent with previous results, close inspection of the pleura demonstrated wavy folds between pleural epithelial cells at all lung volumes. To investigate a potential explanation for the wavy folds, we developed a physical simulacrum suggested by D'Arcy Thompson in On Growth and Form. The simulacrum suggested that the wavy folds were the result of redundant cell membranes unable to contract. To test this hypothesis, we developed a numerical simulation to evaluate the impact of an increase in 2-dimensional cell surface area and cell perimeter on the shape of the cell-cell interface. Our simulation demonstrated that an increase in cell perimeter, rather than an increase in 2-dimensional cell surface area, had the most direct impact on the presence of wavy folds. We conclude that wavy folds between pleural epithelial cells reflects buckling forces arising from the excess cell perimeter necessary to accommodate visceral organ expansion.


Asunto(s)
Células Epiteliales , Pleura , Células Epiteliales/fisiología , Células Epiteliales/citología , Pleura/citología , Pleura/fisiología , Animales , Forma de la Célula/fisiología , Humanos , Pulmón/citología , Pulmón/fisiología , Modelos Biológicos , Simulación por Computador , Fenómenos Biomecánicos/fisiología
12.
J Bacteriol ; 206(6): e0008924, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38819156

RESUMEN

Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established; however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that the deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon Haloferax volcanii non-motile. In this study, we used ethyl methanesulfonate mutagenesis and a motility assay to identify motile suppressors of the ∆pilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes, arlI and arlJ. In trans expression of arlI and arlJ mutant constructs in the respective multi-deletion strains ∆pilA[1-6]∆arlI and ∆pilA[1-6]∆arlJ confirmed their role in suppressing the ∆pilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in cirA, a gene encoding a proposed regulatory protein. A deletion of cirA resulted in hypermotility, while cirA expression in trans in wild-type cells led to decreased motility. Moreover, quantitative real-time PCR analysis revealed that in wild-type cells, higher expression levels of arlI, arlJ, and the archaellin gene arlA1 were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ∆cirA cells, which form rods during both early- and mid-log phases, exhibited similar expression levels of arl genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.IMPORTANCEArchaea are close relatives of eukaryotes and play crucial ecological roles. Certain behaviors, such as swimming motility, are thought to be important for archaeal environmental adaptation. Archaella, the archaeal motility appendages, are evolutionarily distinct from bacterial flagella, and the regulatory mechanisms driving archaeal motility are largely unknown. Previous research has linked the loss of type IV pili subunits to archaeal motility suppression. This study reveals three Haloferax volcanii proteins involved in pilin-mediated motility regulation, offering a deeper understanding of motility regulation in this understudied domain while also paving the way for uncovering novel mechanisms that govern archaeal motility. Understanding archaeal cellular processes will help elucidate the ecological roles of archaea as well as the evolution of these processes across domains.


Asunto(s)
Proteínas Arqueales , Proteínas Fimbrias , Regulación de la Expresión Génica Arqueal , Haloferax volcanii , Haloferax volcanii/genética , Haloferax volcanii/fisiología , Haloferax volcanii/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología
13.
Sci Rep ; 14(1): 12383, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811772

RESUMEN

Mesotrypsin, encoded by the PRSS3 gene, is a distinctive trypsin isoform renowned for its exceptional resistance to traditional trypsin inhibitors and unique substrate specificity. Within the skin epidermis, this protein primarily expresses in the upper layers of the stratified epidermis and plays a crucial role in processing pro-filaggrin (Pro-FLG). Although prior studies have partially elucidated its functions using primary cultured keratinocytes, challenges persist due to these cells' differentiation-activated cell death program. In the present study, HaCaT keratinocytes, characterized by minimal endogenous mesotrypsin expression and sustained proliferation in differentiated states, were utilized to further scrutinize the function of mesotrypsin. Despite the ready degradation of the intact form of active mesotrypsin in these cells, fusion with Venus, flanked by a peptide linker, enables evasion from the protein elimination machinery, thus facilitating activation of the Pro-FLG processing system. Inducing Venus-mesotrypsin expression in the cells resulted in a flattened phenotype and reduced proliferative capacity. Moreover, these cells displayed altered F-actin assembly, enhanced E-cadherin adhesive activity, and facilitated tight junction formation without overtly influencing epidermal differentiation. These findings underscore mesotrypsin's potentially pivotal role in shaping the characteristic cellular morphology of upper epidermal layers.


Asunto(s)
Cadherinas , Diferenciación Celular , Proliferación Celular , Proteínas Filagrina , Queratinocitos , Tripsina , Queratinocitos/metabolismo , Humanos , Tripsina/metabolismo , Proteínas Filagrina/metabolismo , Cadherinas/metabolismo , Epidermis/metabolismo , Actinas/metabolismo , Células HaCaT , Uniones Estrechas/metabolismo , Adhesión Celular , Línea Celular , Células Epidérmicas/metabolismo
14.
J Microbiol Biol Educ ; 25(2): e0019023, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-38722163

RESUMEN

Within the eukaryotic cell, the actin cytoskeleton is a crucial structural framework that maintains cellular form, regulates cell movement and division, and facilitates the internal transportation of proteins and organelles. External cues induce alterations in the actin cytoskeleton primarily through the activation of Rho GTPases, which then bind to a diverse array of effector proteins to promote the local assembly or disassembly of actin. We have harnessed the extensively studied functions of RhoA in the dynamics of the actin cytoskeleton to craft a practical series for Stage 2 Biology students. This series not only imparts essential tissue culture laboratory skills but also reinforces them through repetition. These activities are presented in a scenario designed for students to explore the function of a hypothetical RhoA family member. Students produce slides from transfected cells, undertake fluorescence microscopy, process the images using ImageJ, and compile their findings in a comprehensive scientific report. The composition of the report requires independent acquisition of new knowledge and synoptic learning. According to student feedback, this early experience greatly aids in solidifying and honing the skills required to report on more extensive and intricate research projects, such as capstone projects.

15.
Dev Cell ; 59(13): 1668-1688.e7, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38670103

RESUMEN

For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neuroglía , Neuronas , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Forma de la Célula , Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/citología , Neuroglía/metabolismo , Neuronas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Estrés Mecánico
16.
Artículo en Inglés | MEDLINE | ID: mdl-38516850

RESUMEN

The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells. The meridional row cells further differentiate and elongate into newly formed fiber cells that maintain hexagonal cell shape and ordered packing. In other tissues, actomyosin contractility regulates cell hexagonal packing geometry during epithelial tissue morphogenesis. Here, we use the mouse lens as a model to study the effect of two human disease-related non-muscle myosin IIA (NMIIA) mutations on lens cellular organization during fiber cell morphogenesis and differentiation. We studied genetic knock-in heterozygous mice with NMIIA-R702C motor domain or NMIIA-D1424N rod domain mutations. We observed that while one allele of NMIIA-R702C has no impact on lens meridional row epithelial cell shape and packing, one allele of the NMIIA-D1424N mutation can cause localized defects in cell hexagonal packing. Similarly, one allele of NMIIA-R702C motor domain mutation does not affect lens fiber cell organization while the NMIIA-D1424N mutant proteins disrupt fiber cell organization and packing. Our work demonstrates that disease-related NMIIA rod domain mutations (D1424N or E1841K) disrupt mouse lens fiber cell morphogenesis and differentiation.

17.
Bull Math Biol ; 86(4): 39, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448618

RESUMEN

Metabolites have to diffuse within the sub-cellular compartments they occupy to specific locations where enzymes are, so reactions could occur. Conventional flux balance analysis (FBA), a method based on linear programming that is commonly used to model metabolism, implicitly assumes that all enzymatic reactions are not diffusion-limited though that may not always be the case. In this work, we have developed a spatial method that implements FBA on a grid-based system, to enable the exploration of diffusion effects on metabolism. Specifically, the method discretises a living cell into a two-dimensional grid, represents the metabolic reactions in each grid element as well as the diffusion of metabolites to and from neighbouring elements, and simulates the system as a single linear programming problem. We varied the number of rows and columns in the grid to simulate different cell shapes, and the method was able to capture diffusion effects at different shapes. We then used the method to simulate heterogeneous enzyme distribution, which suggested a theoretical effect on variability at the population level. We propose the use of this method, and its future extensions, to explore how spatiotemporal organisation of sub-cellular compartments and the molecules within could affect cell behaviour.


Asunto(s)
Conceptos Matemáticos , Modelos Biológicos , Forma de la Célula , Simulación por Computador , Difusión
18.
Stem Cell Rev Rep ; 20(4): 1106-1120, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38472643

RESUMEN

The regenerative function of stem cells is compromised when the proportion of senescent stem cells increases with ageing advance. Therefore, combating stem cell senescence is of great importance for stem cell-based tissue engineering in the elderly, but remains largely unexplored. Osteopontin (OPN), a glycosylated phosphoprotein, is one of the key extracellular matrix molecules in bone tissue. OPN activates various signalling pathways and modulates cellular activities, including cell senescence. However, the role of OPN in stem cell senescence remains largely unknown. This study aims to investigate if OPN modulates cell senescence and bone regenerative function in human adipose-derived mesenchymal stem cells (ASCs), and to determine the underlying mechanisms. We first developed a senescent ASC model using serial passaging until passage 10 (P10), in which senescent cells were characterised by reduced proliferation and osteogenic differentiation capacity compared to P4 ASCs. The conditioned medium from P10 ASCs exhibited a diminished trophic effect on human osteoblasts (HOBs), compared to that from P4 ASCs. P10 ASCs on OPN-coated surface showed rejuvenated phenotype and enhanced osteogenic differentiation. The conditioned medium from P10 ASCs on OPN-coating improved trophic effects on HOBs. OPN regulated the morphology of senescent ASCs, transforming them from a more rounded and flattened cell shape to an elongated shape with a smaller area. These findings demonstrated the effects of OPN in restoring senescent ASCs functions, possibly through a mechanism that involves the modulation of cell morphology, indicating that OPN might hold a great potential for rejuvenating senescent stem cells and could potentially open a new venue for regenerating bone tissue in age-related diseases.


Asunto(s)
Tejido Adiposo , Regeneración Ósea , Células Madre Mesenquimatosas , Osteogénesis , Osteopontina , Humanos , Tejido Adiposo/citología , Huesos/citología , Huesos/metabolismo , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular , Medios de Cultivo Condicionados/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citología , Osteogénesis/efectos de los fármacos , Osteopontina/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(7): e2309984121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38324567

RESUMEN

The protein crescentin is required for the crescent shape of the freshwater bacterium Caulobacter crescentus (vibrioides). Crescentin forms a filamentous structure on the inner, concave side of the curved cells. It shares features with eukaryotic intermediate filament (IF) proteins, including the formation of static filaments based on long and parallel coiled coils, the protein's length, structural roles in cell and organelle shape determination and the presence of a coiled coil discontinuity called the "stutter." Here, we have used electron cryomicroscopy (cryo-EM) to determine the structure of the full-length protein and its filament, exploiting a crescentin-specific nanobody. The filament is formed by two strands, related by twofold symmetry, that each consist of two dimers, resulting in an octameric assembly. Crescentin subunits form longitudinal contacts head-to-head and tail-to-tail, making the entire filament non-polar. Using in vivo site-directed cysteine cross-linking, we demonstrated that contacts observed in the in vitro filament structure exist in cells. Electron cryotomography (cryo-ET) of cells expressing crescentin showed filaments on the concave side of the curved cells, close to the inner membrane, where they form a band. When comparing with current models of IF proteins and their filaments, which are also built from parallel coiled coil dimers and lack overall polarity, it emerges that IF proteins form head-to-tail longitudinal contacts in contrast to crescentin and hence several inter-dimer contacts in IFs have no equivalents in crescentin filaments. Our work supports the idea that intermediate filament-like proteins achieve their shared polymerization and mechanical properties through a variety of filament architectures.


Asunto(s)
Caulobacter crescentus , Filamentos Intermedios , Filamentos Intermedios/metabolismo , Proteínas Bacterianas/metabolismo , Citoesqueleto/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Caulobacter crescentus/metabolismo
20.
Appl Plant Sci ; 12(1): e11566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38369978

RESUMEN

Premise: Leaf epidermal cell morphology is closely tied to the evolutionary history of plants and their growth environments and is therefore of interest to many plant biologists. However, cell measurement can be time consuming and restrictive with current methods. CuticleTrace is a suite of Fiji and R-based functions that streamlines and automates the segmentation and measurement of epidermal pavement cells across a wide range of cell morphologies and image qualities. Methods and Results: We evaluated CuticleTrace-generated measurements against those from alternate automated methods and expert and undergraduate hand tracings across a taxonomically diverse 50-image data set of variable image qualities. We observed ~93% statistical agreement between CuticleTrace and expert hand-traced measurements, outperforming alternate methods. Conclusions: CuticleTrace is a broadly applicable, modular, and customizable tool that integrates data visualization and cell shape measurement with image segmentation, lowering the barrier to high-throughput studies of epidermal morphology by vastly decreasing the labor investment required to generate high-quality cell shape data sets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...