Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(4): 2946-2960, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38666914

RESUMEN

Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.

2.
Mol Cell Proteomics ; 23(5): 100761, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593903

RESUMEN

Glycoproteins located on the cell surface play a pivotal role in nearly every extracellular activity. N-glycosylation is one of the most common and important protein modifications in eukaryotic cells, and it often regulates protein folding and trafficking. Glycosylation of cell-surface proteins undergoes meticulous regulation by various enzymes in the endoplasmic reticulum (ER) and the Golgi, ensuring their proper folding and trafficking to the cell surface. However, the impacts of protein N-glycosylation, N-glycan maturity, and protein folding status on the trafficking of cell-surface glycoproteins remain to be explored. In this work, we comprehensively and site-specifically studied the trafficking of cell-surface glycoproteins in human cells. Integrating metabolic labeling, bioorthogonal chemistry, and multiplexed proteomics, we investigated 706 N-glycosylation sites on 396 cell-surface glycoproteins in monocytes, either by inhibiting protein N-glycosylation, disturbing N-glycan maturation, or perturbing protein folding in the ER. The current results reveal their distinct impacts on the trafficking of surface glycoproteins. The inhibition of protein N-glycosylation dramatically suppresses the trafficking of many cell-surface glycoproteins. The N-glycan immaturity has more substantial effects on proteins with high N-glycosylation site densities, while the perturbation of protein folding in the ER exerts a more pronounced impact on surface glycoproteins with larger sizes. Furthermore, for N-glycosylated proteins, their trafficking to the cell surface is related to the secondary structures and adjacent amino acid residues of glycosylation sites. Systematic analysis of surface glycoprotein trafficking advances our understanding of the mechanisms underlying protein secretion and surface presentation.


Asunto(s)
Retículo Endoplásmico , Polisacáridos , Transporte de Proteínas , Humanos , Glicosilación , Retículo Endoplásmico/metabolismo , Polisacáridos/metabolismo , Glicoproteínas/metabolismo , Membrana Celular/metabolismo , Pliegue de Proteína , Proteómica/métodos , Glicoproteínas de Membrana/metabolismo , Aparato de Golgi/metabolismo , Procesamiento Proteico-Postraduccional
3.
Artículo en Inglés | MEDLINE | ID: mdl-37991544

RESUMEN

A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.

4.
Curr Issues Mol Biol ; 45(9): 7011-7026, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37754227

RESUMEN

Targeting the molecular chaperone HSP90 and the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The HSP90 inhibitor PU-H71, MCL1 inhibitor S63845, and BCL2 inhibitor venetoclax were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells. AML cells represented all major morphologic and molecular subtypes including FLT3-ITD and TP53 mutant AML cell lines and a variety of patient-derived AML cells. Results: PU-H71 and combination treatments with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in susceptible AML cell lines and primary AML. The majority of the primary AML samples were responsive to PU-H71 in combination with BH3 mimetics. Elevated susceptibility to PU-H71 and S63845 was associated with FLT3 mutated AML with CD34 < 20%. Elevated susceptibility to PU-H71 and venetoclax was associated with primary AML with CD117 > 80% and CD11b < 45%. The combination of HSP90 inhibitor PU-H71 and MCL1 inhibitor S63845 may be a candidate treatment for FLT3-mutated AML with moderate CD34 positivity while the combination of HSP90 inhibitor PU-H71 and BCL2 inhibitor venetoclax may be more effective in the treatment of primitive AML with high CD117 and low CD11b positivity.

5.
J Biol Chem ; 295(10): 3239-3246, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31992596

RESUMEN

The immune co-receptor CD8 molecule (CD8) has two subunits, CD8α and CD8ß, which can assemble into homo or heterodimers. Nonclassical (class-Ib) major histocompatibility complex (MHC) molecules (MHC-Ibs) have recently been identified as ligands for the CD8αα homodimer. This was demonstrated by the observation that histocompatibility 2, Q region locus 10 (H2-Q10) is a high-affinity ligand for CD8αα which also binds the MHC-Ib molecule H2-TL. This suggests that MHC-Ib proteins may be an extended source of CD8αα ligands. Expression of H2-T3/TL and H2-Q10 is restricted to the small intestine and liver, respectively, yet CD8αα-containing lymphocytes are present more broadly. Therefore, here we sought to determine whether murine CD8αα binds only to tissue-specific MHC-Ib molecules or also to ubiquitously expressed MHC-Ib molecules. Using recombinant proteins and surface plasmon resonance-based binding assays, we show that the MHC-Ib family furnishes multiple binding partners for murine CD8αα, including H2-T22 and the CD94/NKG2-A/B-activating NK receptor (NKG2) ligand Qa-1b We also demonstrate a hierarchy among MHC-Ib proteins with respect to CD8αα binding, in which Qa-1b > H2-Q10 > TL. Finally, we provide evidence that Qa-1b is a functional ligand for CD8αα, distinguishing it from its human homologue MHC class I antigen E (HLA-E). These findings provide additional clues as to how CD8αα-expressing cells are controlled in different tissues. They also highlight an unexpected immunological divergence of Qa-1b/HLA-E function, indicating the need for more robust studies of murine MHC-Ib proteins as models for human disease.


Asunto(s)
Antígenos CD8/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Subfamília D de Receptores Similares a Lectina de las Células NK/química , Animales , Antígenos CD8/genética , Dimerización , Humanos , Interferón gamma/metabolismo , Linfocitos Intraepiteliales/citología , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Células Jurkat , Ligandos , Ratones , Ratones Endogámicos C57BL , Subfamília D de Receptores Similares a Lectina de las Células NK/metabolismo , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Resonancia por Plasmón de Superficie , Antígenos HLA-E
6.
Nucleic Acid Ther ; 28(6): 326-334, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30407110

RESUMEN

Cluster of differentiation 24 (CD24) is a cell surface glycoprotein, which is largely present on hematopoietic cells and many types of solid tumor cells. CD24 is known to be involved in a wide range of downstream signaling pathways and neural development, yet the underlying mechanisms are poorly understood. Moreover, its production correlates with poor cancer prognosis, and targeting of CD24 with different antibodies has been shown to inhibit disease progression. Nucleic acid aptamers are oligonucleotides that are selected from random DNA or RNA libraries for high affinity and specific binding to a certain target. Thus, they can be used as an alternative to antibodies. To gain an insight on CD24 role and its interaction partners, we performed several SELEX (systematic evolution of ligands by exponential enrichment) experiments to select CD24-specfiic DNA aptamers. We found that the cell-SELEX approach was the most useful and that using HT-29 cell line presenting CD24 along with CD24 knockdown HT-29 cells has selected six aptamers. For the selected aptamers, we determined dissociation constants in the nanomolar range (18-709 nM) using flow cytometry. These aptamers can be applied as diagnostic tools to track cancer progression and bear a potential for therapeutic use for inhibiting signaling pathways that promote the metastatic process.


Asunto(s)
Aptámeros de Nucleótidos/genética , Antígeno CD24/genética , Transformación Celular Neoplásica/genética , Neoplasias/genética , Aptámeros de Nucleótidos/uso terapéutico , Antígeno CD24/uso terapéutico , Diferenciación Celular/genética , Citometría de Flujo , Células HT29 , Humanos , Neoplasias/patología , Neoplasias/terapia , Técnica SELEX de Producción de Aptámeros
7.
Proteomics ; 18(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136334

RESUMEN

Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant type of brain cancer and has poor prognosis with a median survival of less than one year. While the structural changes of tumor cell surface carbohydrates are known to be associated with invasive behavior of tumor cells, the cell surface glycoproteins to differentiate the low- and high-grade glioma cells can be potential diagnostic markers and therapeutic targets for GBMs. In the present study, lectin arrays consisting of eight lectins were employed to explore cell surface carbohydrate expression patterns on low-grade oligodendroglioma cells (Hs683) and GBM cells (T98G). Griffonia simplicifolia I (GS I) was found to selectively bind to T98G cells and not to Hs683 cells. For identification of the glioblastoma-specific cell surface markers, the glycoproteins from each cell type were captured by a GS I lectin column and analyzed by LC-MS/MS. The identified proteins from the two cell types were quantified using label-free quantitative analysis based on spectral counting. Of cell surface glycoproteins showing significant increases in T98G cells, five proteins were selected for verification of both protein and glycosylation level changes using Western blot and GS I lectin-based immunosorbent assay.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Membrana Celular/metabolismo , Cromatografía Liquida/métodos , Glioblastoma/metabolismo , Lectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Espectrometría de Masas en Tándem/métodos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/patología , Glicosilación , Humanos , Células Tumorales Cultivadas
8.
Biochem Biophys Res Commun ; 480(2): 273-279, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27765629

RESUMEN

Contact-dependent (juxtacrine) signaling is important for local cell-to-cell interaction and has received attention in recent years regarding its role in pituitary function, differentiation, and development. This study investigated one of the juxtacrine-related molecules, thymocyte differentiation antigen 1 (THY1), in the anterior lobe of the rat pituitary gland. Western blot analysis revealed expression of the THY1 protein in the adult rat anterior lobe. We also found that the THY1 ligand, integrin-ß2 (ITGB2), is also expressed in the pituitary gland. In situ hybridization and immunohistochemical analyses showed that both THY1 mRNA and protein were present in almost, if not all, thyroid-stimulating hormone (TSH)-immunopositive cells (thyrotropes) and that ITGB2 was co-expressed in these cells. As THY1 appeared to represent a novel marker for thyrotropes, we then attempted to isolate these cells from various anterior lobe cells by the use of a THY1 antibody and a pluriBead-cascade cell isolation system. This technology allowed the isolation of thyrotropes with 83% purity at about 17-fold enrichment. Furthermore, the isolated THY1-immunopositive cells had higher Tsh mRNA levels compared with THY1-immunonegative cells and released TSH in response to thyrotropin-releasing hormone. These findings indicated that THY1 represents a potent thyrotrope marker and that the thyrotrope isolation method using the THY1 antibody may serve as a powerful tool to analyze their function including juxtacrine regulation through THY1/ITGB2 interaction.


Asunto(s)
Adenohipófisis/citología , Adenohipófisis/inmunología , Antígenos Thy-1/metabolismo , Animales , Biomarcadores/metabolismo , Antígenos CD18/metabolismo , Separación Celular/métodos , Masculino , Ratas Wistar , Antígenos Thy-1/genética , Timocitos/inmunología , Timocitos/metabolismo , Tirotropina/metabolismo
9.
Future Microbiol ; 10(10): 1635-548, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26438189

RESUMEN

Candida albicans colonizes many host sites suggesting its interaction with diverse ligands. Candida albicans adhesion is mediated by a number of proteins including those in the Als (agglutinin-like sequence) family, which have been studied intensively. The recent solution of the Als binding domain structure ended years of speculation regarding the molecular mechanism for Als adhesive function. Als adhesins bind flexible C termini from a broad collection of proteins, providing the basis for adhesion to various cell types and perhaps for C. albicans broad tissue tropism. Understanding adhesive functions at the molecular level will reveal the sequence of events in C. albicans pathogenesis, from host recognition to complex interactions such as development of polymicrobial biofilms or disseminated disease.


Asunto(s)
Antígenos Fúngicos/química , Candida albicans/patogenicidad , Adhesión Celular/fisiología , Proteínas Fúngicas/química , Péptidos/metabolismo , Secuencia de Aminoácidos , Antígenos Fúngicos/genética , Candida albicans/genética , Candidiasis/patología , Proteínas Fúngicas/genética , Humanos , Factor de Apareamiento , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...