Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Intervalo de año de publicación
1.
Ann Bot ; 134(2): 295-310, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38733329

RESUMEN

BACKGROUND AND AIMS: The California Floristic Province (CA-FP) is the most species-rich region of North America north of Mexico. One of several proposed hypotheses explaining the exceptional diversity of the region is that the CA-FP harbours myriad recently diverged lineages with nascent reproductive barriers. Salvia subgenus Audibertia is a conspicuous element of the CA-FP, with multiple sympatric and compatible species. METHODS: Using 305 nuclear loci and both organellar genomes, we reconstruct species trees, examine genomic discordance, conduct divergence-time estimation, and analyse contemporaneous patterns of gene flow and mechanical reproductive isolation. KEY RESULTS: Despite strong genomic discordance, an underlying bifurcating tree is supported. Organellar genomes capture additional introgression events not detected in the nuclear genome. Most interfertility is found within clades, indicating that reproductive barriers arise with increasing genetic divergence. Species are generally not mechanically isolated, suggesting that it is unlikely to be the primary factor leading to reproductive isolation. CONCLUSIONS: Rapid, recent speciation with some interspecific gene flow in conjunction with the onset of a Mediterranean-like climate is the underlying cause of extant diversity in Salvia subgenus Audibertia. Speciation has largely not been facilitated by gene flow. Its signal in the nuclear genome seems to mostly be erased by backcrossing, but organellar genomes each capture different instances of historical gene flow, probably characteristic of many CA-FP lineages. Mechanical reproductive isolation appears to be only part of a mosaic of factors limiting gene flow.


Asunto(s)
Flujo Génico , Especiación Genética , Filogenia , Aislamiento Reproductivo , Salvia , California , Salvia/genética , Biodiversidad , Genoma de Planta , Variación Genética
2.
Plant Cell Environ ; 47(4): 1053-1069, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38017668

RESUMEN

Southern California experienced unprecedented megadrought between 2012 and 2018. During this time, Malosma laurina, a chaparral species normally resilient to single-year intense drought, developed extensive mortality exceeding 60% throughout low-elevation coastal populations of the Santa Monica Mountains. We assessed the physiological mechanisms by which the advent of megadrought predisposed M. laurina to extensive shoot dieback and whole-plant death. We found that hydraulic conductance of stem xylem (Ks, native ) was reduced seven to 11-fold in dieback adult and resprout branches, respectively. Staining of stem xylem vessels revealed that dieback plants experienced 68% solid-blockage, explaining the reduction in water transport. Following Koch's postulates, persistent isolation of a microorganism in stem xylem of dieback plants but not healthy controls indicated that the causative agent of xylem blockage was an opportunistic endophytic fungus, Botryosphaeria dothidea. We inoculated healthy M. laurina saplings with fungal isolates and compared hyphal elongation rates under well-watered, water-deficit, and carbon-deficit treatments. Relative to controls, we found that both water deficit and carbon-deficit increased hyphal extension rates and the incidence of shoot dieback.


Asunto(s)
Sequías , Agua , Xilema/fisiología , Carbono
3.
Ecology ; 104(5): e4031, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36929356

RESUMEN

Biomass estimates for shrub-dominated ecosystems in southern California have been generated at national and statewide extents. However, existing data tend to underestimate biomass in shrub vegetation types are limited to one point in time, or estimate aboveground live biomass only. In this study, we extended our previously developed estimates of aboveground live biomass (AGLBM) based on the empirical relationship of plot-based field biomass measurements to Landsat normalized difference vegetation index (NDVI) and multiple environmental factors to include other vegetative pools of biomass. AGLBM estimates were made by extracting plot values from elevation, solar radiation, aspect, slope, soil type, landform, climatic water deficit, evapotranspiration, and precipitation rasters and then using a random forest model to estimate per-pixel AGLBM across our southern California study area. By substituting year-specific Landsat NDVI and precipitation data, we created a stack of annual AGLBM raster layers for each year from 2001 to 2021. Using these AGLBM data as a foundation, we developed decision rules to estimate belowground, standing dead, and litter biomass pools. These rules were based on relationships between AGLBM and the biomass of the other vegetative pools derived primarily from peer-reviewed literature and an existing spatial data set. For shrub vegetation types (our primary focus), rules were based on literature estimates by the postfire regeneration strategy of each species (obligate seeder, facultative seeder, obligate resprouter). Similarly, for nonshrub vegetation types (grasslands, woodlands) we used literature and existing spatial data sets specific to each vegetation type to define rules to estimate the other pools from AGLBM. Using a Python language script that accessed Environmental Systems Research Institute raster geographic information system utilities, we applied decision rules to create raster layers for each of the non-AGLBM pools for the years 2001-2021. The resulting spatial data archive contains a zipped file for each year; each of these files contains four 32-bit tiff files for each of the four biomass pools (AGLBM, standing dead, litter, and belowground). The biomass units are grams per square meter (g/m2 ). We estimated the uncertainty of our biomass data by conducting a Monte Carlo analysis of the inputs used to generate the data. Our Monte Carlo technique used randomly generated values for each of the literature-based and spatial inputs based on their expected distribution. We conducted 200 Monte Carlo iterations, which produced percentage uncertainty values for each of the biomass pools. Results showed, using 2010 as an example, mean biomass for the study area and percentage uncertainty for each of the pools as follows: AGLBM (905.4 g/m2 , 14.4%); standing dead (644.9 g/m2 , 1.3%); litter (731.2 g/m2 , 1.2%); and belowground (776.2 g/m2 , 17.2%). Because our methods are consistently applied across each year, the data produced can be used to inform changes in biomass pools due to disturbance and subsequent recovery. As such, these data provide an important contribution to supporting the management of shrub-dominated ecosystems for monitoring trends in carbon storage and assessing the impacts of wildfire and management activities, such as fuel management and restoration. There are no copyright restrictions on the data set; please cite this paper and the data package when using these data.


Asunto(s)
Ecosistema , Suelo , Biomasa , California
4.
Sci Total Environ ; 864: 161025, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36584950

RESUMEN

The presence of microplastics (MPs) in marine environments has been extensively documented. However, studies of terrestrial species are scarce. Fecal samples (105) of lagomorphs were collected at sites with different levels of urbanization in the Baja California Chaparral and analyzed to quantify and characterize MPs found in the feces. The lagomorph species recorded in the study area are the desert cottontail rabbit (Sylvilagus audubonii), brush rabbit (Sylvilagus bachmani), and black-tailed jackrabbit (Lepus californicus), which play important roles in the food web of the chaparral ecosystem. Microplastics were identified using attenuated total reflectance Fourier transform infrared spectroscopy. Microplastics were detected in 49 % of the samples, with fibers being the dominant shape found (72 %). Most (75 %) of the MPs were <1 mm in size, with a mean length of 0.93 ± 0.99 mm (median 0.60 mm, range 0.02 - <5 mm). Polyamide was the dominant polymer (54 %), indicating that MPs are likely derived from textiles; polyethylene was also abundant (27 %). A difference was also observed in the abundance of MPs in feces from sites with different levels of urbanization, with the highest abundance in feces from the urban sites.


Asunto(s)
Lagomorpha , Contaminantes Químicos del Agua , Animales , Conejos , Microplásticos , Plásticos , Ecosistema , Urbanización , México , Contaminantes Químicos del Agua/análisis , Heces/química , Monitoreo del Ambiente
5.
Mol Ecol ; 32(7): 1685-1707, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36579900

RESUMEN

The rise in wildfire frequency and severity across the globe has increased interest in secondary succession. However, despite the role of soil microbial communities in controlling biogeochemical cycling and their role in the regeneration of post-fire vegetation, the lack of measurements immediately post-fire and at high temporal resolution has limited understanding of microbial secondary succession. To fill this knowledge gap, we sampled soils at 17, 25, 34, 67, 95, 131, 187, 286, and 376 days after a southern California wildfire in fire-adapted chaparral shrublands. We assessed bacterial and fungal biomass with qPCR of 16S and 18S and richness and composition with Illumina MiSeq sequencing of 16S and ITS2 amplicons. Fire severely reduced bacterial biomass by 47%, bacterial richness by 46%, fungal biomass by 86%, and fungal richness by 68%. The burned bacterial and fungal communities experienced rapid succession, with 5-6 compositional turnover periods. Analogous to plants, turnover was driven by "fire-loving" pyrophilous microbes, many of which have been previously found in forests worldwide and changed markedly in abundance over time. Fungal secondary succession was initiated by the Basidiomycete yeast Geminibasidium, which traded off against the filamentous Ascomycetes Pyronema, Aspergillus, and Penicillium. For bacteria, the Proteobacteria Massilia dominated all year, but the Firmicute Bacillus and Proteobacteria Noviherbaspirillum increased in abundance over time. Our high-resolution temporal sampling allowed us to capture post-fire microbial secondary successional dynamics and suggest that putative tradeoffs in thermotolerance, colonization, and competition among dominant pyrophilous microbes control microbial succession with possible implications for ecosystem function.


Asunto(s)
Ascomicetos , Incendios , Microbiota , Incendios Forestales , Ecosistema , Bosques , Bacterias/genética , Suelo/química , Microbiota/genética , Microbiología del Suelo
6.
Phytopathology ; 112(11): 2341-2350, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35731020

RESUMEN

Dieback and mortality in wildland plant species due to climate change have been on the rise in recent decades, and latent fungal pathogens might play a significant role in these events. During a severe multiyear drought, canopy dieback associated with latent pathogens in the Botryosphaeriaceae (Bot) family was observed in stands of a dominant shrub species, big berry manzanita (Arctostaphylos glauca), across chaparral landscapes in California. These fungi are significant pathogens of woody agricultural species, especially in hosts experiencing stress, and have become a threat to economically important crops worldwide. However, little is known regarding their occurrence, distribution, and impact in wildland systems. We conducted a field survey of 300 A. glauca shrubs across an elevational gradient to identify Bot species infection as it relates to (i) A. glauca dieback severity and (ii) landscape variables associated with plant drought stress. Our results show that Bots are widely infecting A. glauca across the landscape, and there is a significant correlation between elevation and dieback severity. Dieback severity was significantly higher at lower elevations, suggesting that infected shrubs at lower elevations are at greater risk than those at higher elevations. Furthermore, two Bot species, Neofusicoccum australe and Botryosphaeria dothidea, were most frequently isolated, with N. australe being the most common and, based on haplotype analysis, likely the most recently introduced of the two. Our results confirm the wide distribution of latent Bot fungi in a wild shrubland system and provide valuable insight into areas of greatest risk for future shrub dieback and mortality. These findings could be particularly useful for informing future wildlands management strategies with regard to introduced latent pathogens.


Asunto(s)
Arctostaphylos , Frutas/microbiología , Enfermedades de las Plantas/microbiología , Sequías , Madera
7.
J Hered ; 113(2): 188-196, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575079

RESUMEN

Arctostaphylos (Ericaceae) species, commonly known as manzanitas, are an invaluable fire-adapted chaparral clade in the California Floristic Province (CFP), a world biodiversity hotspot on the west coast of North America. This diverse woody genus includes many rare and/or endangered taxa, and the genus plays essential ecological roles in native ecosystems. Despite their importance in conservation management, and the many ecological and evolutionary studies that have focused on manzanitas, virtually no research has been conducted on the genomics of any manzanita species. Here, we report the first genome assembly of a manzanita species, the widespread Arctostaphylos glauca. Consistent with the genomics strategy of the California Conservation Genomics project, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 271 scaffolds spanning 547Mb, close to the genome size estimated by flow cytometry. This assembly, with a scaffold N50 of 31Mb and BUSCO complete score of 98.2%, will be used as a reference genome for understanding the genetic diversity and the basis of adaptations of both common and rare and endangered manzanita species.


Asunto(s)
Arctostaphylos , Animales , Ecosistema , Especies en Peligro de Extinción , Frutas , Tamaño del Genoma , Genómica
8.
Ecol Appl ; 32(6): e2626, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397185

RESUMEN

One consequence of global change causing widespread concern is the possibility of ecosystem conversions from one type to another. A classic example of this is vegetation type conversion (VTC) from native woody shrublands to invasive annual grasslands in the biodiversity hotspot of Southern California. Although the significance of this problem is well recognized, understanding where, how much, and why this change is occurring remains elusive owing to differences in results from studies conducted using different methods, spatial extents, and scales. Disagreement has arisen particularly over the relative importance of short-interval fires in driving these changes. Chronosequence approaches that use space for time to estimate changes have produced different results than studies of changes at a site over time. Here we calculated the percentage woody and herbaceous cover across Southern California using air photos from ~1950 to 2019. We assessed the extent of woody cover change and the relative importance of fire history, topography, soil moisture, and distance to human infrastructure in explaining change across a hierarchy of spatial extents and regions. We found substantial net decline in woody cover and expansion of herbaceous vegetation across all regions, but the most dramatic changes occurred in the northern interior and southern coastal areas. Variables related to frequent, short-interval fire were consistently top ranked as the explanation for shrub to grassland type conversion, but low soil moisture and topographic complexity were also strong correlates. Despite the consistent importance of fire, there was substantial geographical variation in the relative importance of drivers, and these differences resulted in different mapped predictions of VTC. This geographical variation is important to recognize for management decision-making and, in addition to differences in methodological design, may also partly explain differences in previous study results. The overwhelming importance of short-interval fire has management implications. It suggests that actions should be directed away from imposing fires to preventing fires. Prevention can be controlled through management actions that limit ignitions, fire spread, and the damage sustained in areas that do burn. This study also demonstrates significant potential for changing fire regimes to drive large-scale, abrupt ecological change.


Asunto(s)
Ecosistema , Incendios , Biodiversidad , California , Geografía , Humanos , Suelo
9.
Am J Bot ; 109(3): 486-493, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35253221

RESUMEN

PREMISE: Does the seed size-seed number allocation trade-off model apply to long-term persistent soil seed banks? This trade-off between seed size versus number of seeds produced is usually applied at a single population on an annual basis. Our question is how this model might apply to close relatives that produce dormant seed forming long-term persistent soil seed banks. These two criteria allow a focus on divergent evolution of conspecifics and permits us to isolate seed size in the spectrum of life history traits that may be influencing seed traits, and on how seed size influences accumulation and persistence in the soil. METHODS: In California, Arctostaphylos species only produce physiologically dormant seed that are fire-stimulated and that vary in seed size permitting seed size-seed bank density relationship as a test of the seed size-seed number allocation model. Soil seed banks of 10 species of Arctostaphylos were sampled with fruit volumes ranging from 21-1063 mm3 . Seed bank density was determined by hand extraction from soil samples. RESULTS: We found that seed bank densities were significantly negatively related to fruit or seed size. CONCLUSIONS: Rather than an issue of allocational trade-off between size and number, we interpret these results as reflecting seed predation and postfire seedling establishment. Seed bank densities, even after decades, generally were less than one or two-year's seed production, suggesting intense seed predation. Burial by scatter-hoarding rodents provided sufficient seeds deep enough for survival of fire. Variation on seed size suggests seedling establishment constraints, but it needs further research.


Asunto(s)
Incendios , Banco de Semillas , Plantones , Semillas/fisiología , Suelo
10.
Am J Bot ; 109(1): 9-28, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34636412

RESUMEN

Woody, evergreen shrublands are the archetypal community in mediterranean-type ecosystems, and these communities are profoundly changed when they undergo vegetation-type conversion (VTC) to become annual, herb-dominated communities. Recently, VTC has occurred throughout southern California chaparral shrublands, likely with changes in important ecosystem functions. The mechanisms that lead to VTC and subsequent changes to ecosystem processes are important to understand as they have regional and global implications for ecosystem services, climate change, land management, and policy. The main drivers of VTC are altered fire regimes, aridity, and anthropogenic disturbance. Some changes to ecosystem function are certain to occur with VTC, but their magnitudes are unclear, whereas other changes are unpredictable. I present two hypotheses: (1) VTC leads to warming that creates a positive feedback promoting additional VTC, and (2) altered nitrogen dynamics create negative feedbacks and promote an alternative stable state in which communities are dominated by herbs. The patterns described for California are mostly relevant to the other mediterranean-type shrublands of the globe, which are biodiversity hotspots and threatened by VTC. This review examines the extent and causes of VTC, ecosystem effects, and future research priorities.


Asunto(s)
Ecosistema , Incendios , Biodiversidad , Cambio Climático , Nitrógeno
11.
Ecol Appl ; 32(1): e02464, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614281

RESUMEN

Extreme drought and increasing temperatures can decrease the resilience of plant communities to fires. Not only may extremely dry conditions during or after fires lead to higher plant mortality and poorer recruitment, but severe pre-fire droughts may reduce the seed production and belowground vigor that are essential to post-fire plant recovery, and may indirectly facilitate invasion. We studied survival, recruitment, and growth of shrubs and herbs in chaparral (shrubland) communities in Northern California after a 2015 fire that immediately followed California's extreme 3-yr drought. We followed the same protocols used to study similar, adjacent communities after a 1999 fire that did not follow a drought, and we compared the two recovery trajectories. Overall, the 2015 fire was not more severe than the 1999 fire, yet it caused higher mortality and lower growth of resprouting shrubs on fertile (sandstone) soils. In contrast, the 2015 fire did not affect the mortality or growth of resprouting shrubs on infertile (serpentine) soils, the density of shrub seedlings, or the richness or cover of native herbs differently than the 1999 fire. However, the 2015 fire facilitated a massive increase in exotic herbaceous cover, especially on fertile soils, possibly portending the early stages of a type conversion to exotic-dominated grassland. Our findings indicate that the consequences of climate change on fire-dependent communities will include effects of pre-fire as well as post-fire climate, and that resprouting shrubs are particularly likely to be sensitive to pre-fire drought.


Asunto(s)
Sequías , Suelo , Cambio Climático , Ecosistema , Plantas
12.
Braz. J. Pharm. Sci. (Online) ; 58: e19517, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1383995

RESUMEN

Nordihydroguaiaretic acid (NDGA) is a natural product obtained by the alkaline extraction of dried plants of Larrea tridentata species. Due to the biological properties presented, such as antioxidant, anti-inflammatory, antiviral and cytotoxic capacity, this compound is being increasingly studied. In this review, it was evaluated the benefits of NDGA against different animal models. Besides that, it was found that this compound has antitumor activity similar to its synthetic derivative terameprocol in prostate tumors. The hypoglycemic effect may be evidenced by the inhibition of sugar uptake by NDGA; in obesity, studies have observed that NDGA presented a positive regulatory effect for Peroxisome proliferator-activated receptors (PPAR-α) involved in the oxidation of hepatic fatty acids and reduced the expression of lipogenic genes. Regarding its antioxidant potential, its mechanism is related to the ability to in vitro scavenging reactive substances. Although there are several studies demonstrating the benefits of using NDGA, there are also reports of its toxicity, mainly of liver damage and nephrotoxicity


Asunto(s)
Masoprocol/análisis , Fenómenos Químicos , Antivirales/farmacología , Plantas/clasificación , Productos Biológicos/análisis , Técnicas In Vitro/métodos , Modelos Animales , Toxicidad , Hipoglucemiantes/farmacología , Neoplasias , Antioxidantes/farmacología
13.
Sci Total Environ ; 754: 142204, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254913

RESUMEN

Anthropogenic nitrogen (N) deposition has affected the primary production of terrestrial ecosystems worldwide; however, ecosystem responses often vary over time because of transient responses, interactions between N, precipitation, and/or other nutrients, and changes in plant species composition. Here we report N-induced changes in above- and below-ground standing crop and production over an 11-year period for two semi-arid shrublands, chaparral and coastal sage scrub (CSS), of Southern California. Shrubs were exposed to 50 kgN ha-1 in the fall of each year to simulate the accumulation of dry N deposition, and shoot and root biomass and leaf area index (LAI) were measured every 3 months to assess how biomass production responded to chronic, dry N inputs. N inputs significantly altered above- and below-ground standing crop, production, and LAI; however, N impacts varied over time. For chaparral, N inputs initially increased root production but suppressed shoot production; however, over time biomass partitioning reversed and plants exposed to N had significantly more shoot biomass. In CSS, N inputs caused aboveground production to increase only during wet years, and this interaction between added N and precipitation was due in part to a highly flexible growth response of CSS shrubs to increases in N and water availability and to a shift from slower-growing native shrubs to fast-growing introduced annuals. Together, these results indicate that long-term N inputs will lead to complex, spatially and temporally variable growth responses for these, and similar, Mediterranean-type shrublands.


Asunto(s)
Ecosistema , Nitrógeno , Biomasa , Nutrientes , Hojas de la Planta
14.
Sci Total Environ ; 751: 142271, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182014

RESUMEN

Regrowth after fire is critical to the persistence of chaparral shrub communities in southern California, which has been subject to frequent fire events in recent decades. Fires that recur at short intervals of 10 years or less have been considered an inhibitor of recovery and the major cause of 'community type-conversion' in chaparral, primarily based on studies of small extents and limited time periods. However, recent sub-regional investigations based on remote sensing suggest that short-interval fire (SIF) does not have ubiquitous impact on postfire chaparral recovery. A region-wide analysis including a greater spatial extent and time period is needed to better understand SIF impact on chaparral. This study evaluates patterns of postfire recovery across southern California, based on temporal trajectories of Normalized Difference Vegetation Index (NDVI) derived from June-solstice Landsat image series covering the period 1984-2018. High spatial resolution aerial images were used to calibrate Landsat NDVI trajectory-based estimates of change in fractional shrub cover (dFSC) for 294 stands. The objectives of this study were (1) to assess effects of time between fires and number of burns on recovery, using stand-aggregate samples (n = 294) and paired single- and multiple-burn sample plots (n = 528), and (2) to explain recovery variations among predominant single-burn locations based on shrub community type, climate, soils, and terrain. Stand-aggregate samples showed a significant but weak effect of SIF on recovery (p < 0.001; R2 = 0.003). Results from paired sample plots showed no significant effect of SIF on dFSC among twice-burned sites, although recovery was diminished due to SIF at sites that burned three times within 25 years. Multiple linear regression showed that annual precipitation and temperature, chaparral community type, and edaphic variables explain 28% of regional variation in recovery of once-burned sites. Many stands that exhibited poor recovery had burned only once and consist of xeric, desert-fringe chamise in soils of low clay content.


Asunto(s)
Ecosistema , Incendios , California , Clima , Suelo
15.
Am J Bot ; 108(1): 91-101, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33349932

RESUMEN

PREMISE: The xylem tissue of plants performs three principal functions: transport of water, support of the plant body, and nutrient storage. Tradeoffs may arise because different structural requirements are associated with different functions or because suites of traits are under selection that relate to resource acquisition, use, and turnover. The structural and functional basis of xylem storage is not well established. We hypothesized that greater starch storage would be associated with greater sapwood parenchyma and reduced fibers, which would compromise resistance to xylem tensions during dehydration. METHODS: We measured cavitation resistance, minimum water potential, starch content, and sapwood parenchyma and fiber area in 30 species of southern California chaparral shrubs (evergreen and deciduous). RESULTS: We found that species storing greater starch within their xylem tended to avoid dehydration and were less cavitation resistant, and this was supported by phylogenetic independent contrasts. Greater sapwood starch was associated with greater parenchyma area and reduced fiber area. For species without living fibers, the associations with parenchyma were stronger, suggesting that living fibers may expand starch storage capacity while also contributing to the support function of the vascular tissue. Drought-deciduous species were associated with greater dehydration avoidance than evergreens. CONCLUSIONS: Evolutionary forces have led to an association between starch storage and dehydration resistance as part of an adaptive suite of traits. We found evidence for a tradeoff between tissue mechanical traits and starch storage; moreover, the evolution of novel strategies, such as starch-storing living fibers, may mitigate the strength of this tradeoff.


Asunto(s)
Sequías , Almidón , Deshidratación , Humanos , Filogenia , Agua , Xilema
16.
Am J Bot ; 107(8): 1136-1147, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32864741

RESUMEN

PREMISE: Mortality events involving drought and pathogens in natural plant systems are on the rise due to global climate change. In Santa Barbara, California, United States, big berry manzanita (Arctostaphylos glauca) has experienced canopy dieback related to a multi-year drought and infection from fungal pathogens in the Botryosphaeriaceae family. A greenhouse experiment was conducted using Neofusicoccum australe to test the specific influences of drought and fungal infection on A. glauca. METHODS: A full factorial design was used to compare four treatment groups (drought + inoculation; drought - inoculation; watering + inoculation; and control: watering - inoculation). Data were collected for 10 weeks on stress symptoms, changes in leaf fluorescence and photosynthesis, and mortality. RESULTS: Results indicated significant effects of watering and inoculation treatments on net photosynthesis, dark-adapted fluorescence, and disease symptom severity (P < 0.05), and a strong correlation was found between physiological decline and visible stress (P < 0.0001). Mortality differed between treatments, with all groups except for the control experiencing mortality (43% mortality in drought - inoculation, 83% in watering - inoculation, and 100% in drought + inoculation). A Kaplan-Meier survival analysis showed drought + inoculation to have the least estimated survivorship compared to all other treatment groups. CONCLUSIONS: In addition to a possible synergistic interaction between drought and fungal infection in disease onset and mortality rates in A. glauca, these results indicate that young, non-drought-stressed plants are susceptible to mortality from N. australe infection, with important implications for the future of wildland shrub communities.


Asunto(s)
Arctostaphylos , Ascomicetos , Sequías , Fotosíntesis , Hojas de la Planta
17.
Conserv Physiol ; 8(1): coz115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32015878

RESUMEN

Relatively mesic environments within arid regions may be important conservation targets as 'climate change refugia' for species persistence in the face of worsening drought conditions. Semi-arid southern California and the relatively mesic environments of California's Channel Islands provide a model system for examining drought responses of plants in potential climate change refugia. Most methods for detecting refugia are focused on 'exposure' of organisms to certain abiotic conditions, which fail to assess how local adaptation or acclimation of plant traits (i.e. 'sensitivity') contribute to or offset the benefits of reduced exposure. Here, we use a comparative plant hydraulics approach to characterize the vulnerability of plants to drought, providing a framework for identifying the locations and trait patterns that underlie functioning climate change refugia. Seasonal water relations, xylem hydraulic traits and remotely sensed vegetation indices of matched island and mainland field sites were used to compare the response of native plants from contrasting island and mainland sites to hotter droughts in the early 21st century. Island plants experienced more favorable water relations and resilience to recent drought. However, island plants displayed low plasticity/adaptation of hydraulic traits to local conditions, which indicates that relatively conserved traits of island plants underlie greater hydraulic safety and localized buffering from regional drought conditions. Our results provide an explanation for how California's Channel Islands function as a regional climate refugia during past and current climate change and demonstrate a physiology-based approach for detecting potential climate change refugia in other systems.

18.
Front Plant Sci ; 11: 578338, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488640

RESUMEN

Different microclimates can have significant impact on the physiology of succulents that inhabit arid environments such as the Mojave Desert (California). We investigated variation in leaf physiology, morphology and anatomy of two dominant Mojave Desert monocots, Yucca brevifolia (Joshua tree) and Hesperoyucca whipplei, growing along a soil water availability gradient. Stomatal conductance (g s) and leaf thickness were recorded in the field at three different sites (north-western slope, south-eastern slope, and alluvial fan) in March of 2019. We sampled leaves from three individuals per site per species and measured in the lab relative water content at the time of g s measurements, saturated water content, cuticular conductance, leaf morphological traits (leaf area and length, leaf mass per area, % loss of thickness in the field and in dried leaves), and leaf venation. We found species varied in their g s: while Y. brevifolia showed significantly higher g s in the alluvial fan than in the slopes, H. whipplei was highest in the south-eastern slope. The differences in g s did not relate to differences in leaf water content, but rather to variation in number of veins per mm2 in H. whipplei and leaf width in Y. brevifolia. Our results indicate that H. whipplei displays a higher water conservation strategy than Y. brevifolia. We discuss these differences and trends with water availability in relation to species' plasticity in morphology and anatomy and the ecological consequences of differences in 3-dimensional venation architecture in these two species.

19.
Am J Bot ; 106(9): 1210-1218, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31502242

RESUMEN

PREMISE: Flexible phenological responses of invasive plants under climate change may increase their ability to establish and persist. A key aspect of plant phenology is the timing of root production, how it coincides with canopy development and subsequent water-use. The timing of these events within species and across communities could influence the invasion process. We examined above- and belowground phenology of two species in southern California, the native shrub, Adenostoma fasciculatum, and the invasive perennial grass, Ehrharta calycina to investigate relative differences in phenology and water use. METHODS: We used normalized difference vegetation index (NDVI) to track whole-canopy activity across the landscape and sap flux sensors on individual chaparral shrubs to assess differences in aboveground phenology of both species. To determine differences in belowground activity, we used soil moisture sensors, minirhizotron imagery, and stable isotopes. RESULTS: The invasive grass depleted soil moisture earlier in the spring and produced longer roots at multiple depths earlier in the growing season than the native shrub. However, Adenostoma fasciculatum produced longer roots in the top 10 cm of soil profile in May. Aboveground activity of the two species peaked at the same time. CONCLUSIONS: The fact that Ehrharta calycina possessed longer roots earlier in the season suggests that invasive plants may gain a competitive edge over native plants through early activity, while also depleting soil moisture earlier in the season. Depletion of soil moisture earlier by E. calycina suggests that invasive grasses could accelerate the onset of the summer drought in chaparral systems, assuring their persistence following invasion.


Asunto(s)
Ecosistema , Poaceae , California , Sequías , Estaciones del Año , Suelo , Agua
20.
Front Plant Sci ; 10: 505, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057595

RESUMEN

Worldwide drylands are threatened by changes in resource availability associated with global environmental change. Functional traits may help predict which species will be most responsive to these alterations in nutrient and water availability. Current functional trait work focuses on tissue construction and nutrient concentrations, but plant performance in low resource environments also may be strongly influenced by traits related to nutrient budgets and allocation. Our overall objective was to compare trait responses in a suite of serpentine and nonserpentine congener pairs from the California chaparral, a biodiverse region facing nutrient deposition and future changes in precipitation. In a common garden greenhouse environment, we grew small plants of Arctostaphylos manzanita, A. viscida, Ceanothus cuneatus, C. jepsonii, Quercus berberidifolia, and Q. durata in contrasting soil nutrient and moisture treatments. We measured a suite of traits representing physiological, growth, and mineral nutrient responses to these treatments. Overall, plant growth rate and leaf-level phosphorus use efficiency were greatest in the low water, high nutrient treatment, and lowest in the high water, low nutrient treatment. Variation in growth rate and plasticity among species and treatments was primarily associated with differences in mineral nutrition-based traits as opposed to differences in biomass allocation or specific leaf area. Namely, faster growing species and species with greater plasticity allocated more nitrogen and phosphorous to leaves and demonstrated greater photosynthetic phosphorus use efficiency. Overall, nonserpentine species had greater plasticity and biomass response to resource addition than serpentine species, and congener pairs responded to these resource additions more similarly to each other than species across congener pairs. This study extends our general understanding of how functional traits may influence species responses to environmental change and highlights the need to integrate mineral nutrition-based traits, including allocation of nutrient pools and nutrient use efficiency into this larger trait framework. Ultimately, this insight can help identify, in part, why coexisting species may vary in sensitivity to anthropogenic driven changes in soil resource availability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...