Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros












Intervalo de año de publicación
1.
Behav Ecol ; 35(6): arae072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39380688

RESUMEN

In this era of rapid global change, understanding the mechanisms that enable or prevent species from co-occurring has assumed new urgency. The convergent agonistic character displacement (CACD) hypothesis posits that signal similarity enables the co-occurrence of ecological competitors by promoting aggressive interactions that reduce interspecific territory overlap and hence, exploitative competition. In northwestern Switzerland, ca. 10% of Phylloscopus sibilatrix produce songs containing syllables that are typical of their co-occurring sister species, Phylloscopus bonelli ("mixed singers"). To examine whether the consequences of P. sibilatrix mixed singing are consistent with CACD, we combined a playback experiment and an analysis of interspecific territory overlap. Although P. bonelli reacted more aggressively to playback of mixed P. sibilatrix song than to playback of typical P. sibilatrix song, interspecific territory overlap was not reduced for mixed singers. Thus, the CACD hypothesis was not supported, which stresses the importance of distinguishing between interspecific aggressive interactions and their presumed spatial consequences.

2.
J Evol Biol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382524

RESUMEN

Character displacement theory predicts that closely-related co-occurring species should diverge in relevant traits to reduce costly interspecific interactions such as competition or hybridization. While many studies document character shifts in sympatry, few provide corresponding evidence that these shifts are driven by the costs of co-occurrence. Black-capped (Poecile atricapillus) and mountain chickadees (P. gambeli) are closely-related, ecologically similar, and broadly distributed songbirds with both allopatric and sympatric populations. In sympatry, both species appear to suffer costs of their co-occurrence: 1) both species are in worse body condition compared to allopatry and 2) hybridization sometimes yields sterile offspring. Here, we explored character displacement in the songs of black-capped and mountain chickadees by characterizing variation in male songs from sympatric and allopatric populations. We found that mountain chickadees sing differently in sympatry versus allopatry. Specifically, they produced more notes per song, were more likely to include an extra introductory note, and produced a smaller glissando in their first notes compared to all other populations. Combined with previous research on social dominance and maladaptive hybridization between black-capped and mountain chickadees, we posit that differences in sympatric mountain chickadee song are population-wide shifts to reduce aggression from dominant black-capped chickadees and/or prevent maladaptive hybridization.

3.
Ecol Lett ; 27(8): e14489, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39075934

RESUMEN

Rarely do we observe competitive exclusion within plant communities, even though plants compete for a limited pool of resources. Thus, our understanding of the mechanisms sustaining plant biodiversity might be limited. In this study, we explore two common ecological strategies, species sorting and character displacement, that promote coexistence by reducing competition. We assess the degree to which woody plants may implement these two strategies to lower belowground competition for nutrients which occurs via nutritional (mostly mycorrhizal) mutualisms. First, we compile data on plant traits and the mycorrhizal association state of woody angiosperms using a global inventory of indigenous flora. Our analysis reveals that species in locations with high mycorrhizal diversity exhibit distinct mean values in leaf area and wood density based on their mycorrhizal type, indicating species sorting. Second, we reanalyse a large dataset on leaf area to demonstrate that in areas with high mycorrhizal diversity, trees maintain divergent leaf area values, showcasing character displacement. Character displacement among plants is considered rare, making our observation significant. In summary, our study uncovers a rare occurrence of character displacement and identifies a common mechanism employed by plants to alleviate competition, shedding light on the complexities of plant coexistence in diverse ecosystems.


Asunto(s)
Biodiversidad , Micorrizas , Micorrizas/fisiología , Magnoliopsida/fisiología , Magnoliopsida/microbiología , Simbiosis , Hojas de la Planta/fisiología , Ecosistema , Árboles/fisiología , Árboles/microbiología , Madera
4.
Syst Biol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046782

RESUMEN

Popular comparative phylogenetic models such as Brownian Motion, Ornstein-Ulhenbeck, and their extensions, assume that, at speciation, a trait value is inherited identically by two descendant species. This assumption contrasts with models of speciation at a micro-evolutionary scale where descendants' phenotypic distributions are sub-samples of the ancestral distribution. Different speciation mechanisms can lead to a displacement of the ancestral phenotypic mean among descendants and an asymmetric inheritance of the ancestral phenotypic variance. In contrast, even macro-evolutionary models that account for intraspecific variance assume symmetrically conserved inheritance of ancestral phenotypic distribution at speciation. Here we develop an Asymmetric Brownian Motion model (ABM) that relaxes the assumption of symmetric and conserved inheritance of the ancestral distribution at the time of speciation. The ABM jointly models the evolution of both intra- and inter-specific phenotypic variation. It also infers the mode of phenotypic inheritance at speciation, which can range from a symmetric and conserved inheritance, where descendants inherit the ancestral distribution, to an asymmetric and displaced inheritance, where descendants inherit divergent phenotypic means and variances. To demonstrate this model, we analyze the evolution of beak morphology in Darwin finches, finding evidence of displacement at speciation. The ABM model helps to bridge micro- and macro-evolutionary models of trait evolution by providing a more robust framework for testing the effects of ecological speciation, character displacement, and niche partitioning on trait evolution at the macro-evolutionary scale.

5.
Evolution ; 78(10): 1647-1660, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38915289

RESUMEN

The process of reproductive character displacement involves divergence and/or the narrowing of variance in traits involved in species recognition, driven by interactions between taxa. However, stabilizing sexual selection may favor stasis and species similarity in these same traits if signals are optimized for transmission through the prevailing environment. Further, sexual selection may promote increased variability within species to facilitate individual recognition. Here we ask how the conflicting selection pressures of species recognition and sexual selection are resolved in a genus of Himalayan birds that sing exceptionally similar songs. We experimentally show that small differences in two traits (note shape and peak frequency) are both necessary and sufficient for species recognition. Song frequency shows remarkable clinal variation along the Himalayan elevational gradient, being most divergent where species co-occur, the classic signature of reproductive character displacement. Note shape shows no such clinal variation but varies more between individuals of an allopatric species than it does among individuals within species that co-occur. We argue that the different note shapes experience similar transmission constraints, and differences produced through species interactions spread back through the entire species range. Our results imply that reproductive character displacement is likely to be common.


Asunto(s)
Evolución Biológica , Vocalización Animal , Animales , Selección Sexual , Femenino , Masculino , Pájaros Cantores/fisiología , Pájaros Cantores/genética
6.
Curr Res Insect Sci ; 5: 100084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798278

RESUMEN

Why are some species sexually dimorphic while other closely related species are not? While all females in genus Strauzia share a multiply-banded wing pattern typical of many other true fruit flies, males of four species have noticeably elongated wings with banding patterns "coalesced" into a continuous dark streak across much of the wing. We take an integrative phylogenetic approach to explore the evolution of this dimorphism and develop general hypotheses underlying the evolution of wing dimorphism in flies. We find that the origin of coalesced and other darkened male wing patterns correlate with the inferred origin of host plant sharing in Strauzia. While wing shape among non-host-sharing species tended to be conserved across the phylogeny, shapes of male wings for Strauzia species sharing the same host plant were more different from one another than expected under Brownian models of evolution and overall rates of wing shape change differed between non-host-sharing species and host-sharing species. A survey of North American Tephritidae finds just three other genera with specialist species that share host plants. Host-sharing species in these genera also have wing patterns unusual for each genus. Only genus Eutreta is like Strauzia in having the unusual wing patterns only in males, and of genera that have multiple species sharing hosts, only in Eutreta and Strauzia do males hold territories while females search for mates. We hypothesize that in species that share host plants, those where females actively search for males in the presence of congeners may be more likely to evolve sexually dimorphic wing patterns.

7.
Am J Bot ; 111(5): e16347, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38760943

RESUMEN

PREMISE: We assessed changes in traits associated with water economy across climatic gradients in the ecologically similar peat mosses Sphagnum cuspidatum and Sphagnum lindbergii. These species have parapatric distributions in Europe and have similar niches in bogs. Sphagnum species of bogs are closely related, with a large degree of microhabitat niche overlap between many species that can be functionally very similar. Despite this, ecologically similar species do have different distributional ranges along climatic gradients that partly overlap. These gradients may favor particular Sphagnum traits, especially in relation to water economy, which can be hypothesized to drive species divergence by character displacement. METHODS: We investigated traits relevant for water economy of two parapatric bryophytes (Sphagnum cuspidatum and S. lindbergii) across the border of their distributional limits. We included both shoot traits and canopy traits, i.e., collective traits of the moss surface, quantified by photogrammetry. RESULTS: The two species are ecologically similar and occur at similar positions along the hydrological gradient in bogs. The biggest differences between the species were expressed in the variations of their canopy surfaces, particularly surface roughness and in the responses of important traits such as capitulum mass to climate. We did not find support for character displacement, because traits were not more dissimilar in sympatric than in allopatric populations. CONCLUSIONS: Our results suggest that parapatry within Sphagnum can be understood from just a few climatic variables and that climatic factors are stronger drivers than competition behind trait variation within these species of Sphagnum.


Asunto(s)
Especificidad de la Especie , Sphagnopsida , Agua , Sphagnopsida/fisiología , Agua/metabolismo , Clima , Ecosistema , Humedales , Brotes de la Planta/anatomía & histología
8.
Biosystems ; 239: 105198, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575052

RESUMEN

The coexistence of cladogenesis, i.e., the branching of lineages along an evolutionary tree as observed in the fossil record, and anagenesis, which is the progressive evolution within populations, lacks a clear explanation. In this study, we examine a simple model that simulates the evolutionary changes occurring within populations inhabiting the same environment in sympatry, and driven by ecological competition. Our model characterizes populations through a set of evolving morphological traits represented by mathematical points within a two-dimensional morphospace. Such points may reproduce or die due to overcrowding, implying competition in morphospace as suggested by the ecological phenomenon of character displacement. By focusing on the morphospace rather than physical space, the model effectively captures the simultaneous evolution of coexisting populations. Central to the model is the delicate balance between the range of competition and the range of reproduction within the morphospace. Interesting patterns emerge when the ratio between the competition to reproducetion ranges, referred to as CR ratio, changes from values slightly smaller to significantly larger than unity. When competition acts over short distances relative to the reproduction range (low CR), the phylogenetic tree takes on a nearly uniform appearance, gradually transforming into a more bush-like structure for slightly higher CR values. With further increases in CR, evolutionary lineages become more discernible, and the morphogenetic pattern shifts from a bush-like shape to a more tree-like arrangement and few branches for very large CRs. At specific time sections, the synthetic phylogenetic tree appears as an assembly of clusters of individuals within the morphospace. These clusters, interpretable as simulated models of species, exhibit distinct separation within the morphospace and are subject to dynamic inter-cluster repulsion. Notably, clusters tend to be resistant to change. They maintain relatively constant abundances while gradually shifting their positions within the morphospace-a phase that aligns with the concept of phyletic gradualism. However, this predictable pattern is occasionally upset by the abrupt divisions into multiple groups, interpreted as cladogenesis events. The intricacies of the splitting process are explored, revealing that in scenarios with large CR values, the splitting can emerge much more rapidly than phyletic changes. This accelerated process of splitting is initiated by one or few individuals at the fringes of a cluster, where competition is minimal. The newly generated cluster then undergoes deformation, swiftly followed by divergence and splitting (seen as branching in the synthetic phylogenetic tree), as if an inherent "repulsion" triggered the division between species. The simple rules implied in the interacting-particle model may provide insight into the coexistence of gradualism and cladogenesis along lineages, illustrating the capacity for rapid shifts during cladogenesis and the more gradual process of anagenesis.


Asunto(s)
Especiación Genética , Filogenia , Simpatría , Evolución Biológica , Animales , Simulación por Computador , Modelos Biológicos , Ecosistema
9.
Am Nat ; 203(3): 335-346, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358816

RESUMEN

AbstractInterference competition can drive species apart in habitat use through competitive displacement in ecological time and agonistic character displacement (ACD) over evolutionary time. As predicted by ACD theory, sympatric species of rubyspot damselflies (Hetaerina spp.) that respond more aggressively to each other in staged encounters differ more in microhabitat use. However, the same pattern could arise from competitive displacement if dominant species actively exclude subordinate species from preferred microhabitats. The degree to which habitat partitioning is caused by competitive displacement can be assessed with removal experiments. We carried out removal experiments with three species pairs of rubyspot damselflies. With competitive displacement, removing dominant species should allow subordinate species to shift into the dominant species' microhabitat. Instead, we found that species-specific microhabitat use persisted after the experimental removals. Thus, the previously documented association between heterospecific aggression and microhabitat partitioning in this genus is most likely a product of divergence in habitat preferences caused by interference competition in the evolutionary past.


Asunto(s)
Evolución Biológica , Odonata , Animales , Agresión , Simpatría
10.
J Evol Biol ; 37(2): 248-255, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38302071

RESUMEN

Ecology and geography can play important roles in the evolution of reproductive isolation across the speciation continuum, but few studies address both at the later stages of speciation. This notable gap in knowledge arises from the fact that traditional ecological speciation studies have predominantly focused on the role of ecology in initiating the speciation process, while many studies exploring the effect of geography (e.g., reinforcement) concentrate on species pairs that lack divergent ecological characteristics. We simultaneously examine the strength of habitat isolation and sexual isolation among three closely related species of Belonocnema gall-forming wasps on two species of live oaks, Quercus virginiana and Q. geminata, that experience divergent selection from their host plants and variable rates of migration due to their geographic context. We find that the strength of both habitat isolation and sexual isolation is lowest among allopatric species pairs with the same host plant association, followed by allopatric species with different host plant associations, and highest between sympatric species with different host-plant associations. This pattern suggests that divergent selection due to different host use interacts with geography in the evolution of habitat isolation and sexual isolation during the later stages of speciation of Belonocnema wasps.


Asunto(s)
Avispas , Animales , Ecosistema , Aislamiento Reproductivo , Geografía , Plantas , Especiación Genética
11.
Evolution ; 78(4): 679-689, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38241699

RESUMEN

Divergent ecological character displacement (ECD) is the competition-driven divergence in resource use-related phenotypic traits between coexisting species. It is considered one of the primary drivers of ecological diversification and adaptive radiation. We analyzed phenotypic and ecological variation in 2 African annual killifish species of the genus Nothobranchius: N. eggersi and N. melanospilus in sympatry and N. melanospilus in allopatry. Our aim was to test whether allopatric and sympatric populations of N. melanospilus differ morphologically from each other and from N. eggersi and examine whether these differences are consistent with the predictions of ECD. We find that sympatric N. melanospilus differ from allopatric N. melanospilus and differ from N. eggersi more strongly than the latter. Our data satisfy four criteria for demonstrating ECD: Differences in phenotypes between allopatric and sympatric N. melanospilus are greater than expected by chance; the divergence pattern between allopatric and sympatric N. melanospilus results from an evolutionary shift rather than from ecological sorting; morphological differences observed reflect differences in resource use; and, lastly, sites of allopatry and sympatry do not differ in food resource availability or other ecological conditions. Our results suggest that competition is the main driver of the observed divergence between two N. melanospilus populations.


Asunto(s)
Evolución Biológica , Peces Killi , Animales , Tanzanía , Fundulus heteroclitus , Simpatría
12.
J Anim Ecol ; 92(8): 1474-1477, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37528677

RESUMEN

Animals usually change their trophic niche during their ontogeny, which has fundamental consequences for their population dynamics and interactions with other species. Theory predicts that ontogenetic niche differences between species can influence their ability to coexist. However, we lack empirical evidence for this coexistence mechanism and the role of evolution in shaping species' ontogenetic niches. Here, Anaya-Rojas et al. (2023) show that contemporary evolution of ontogenetic niches likely contributes to the coexistence of two competing fish species (killifish and guppies) in streams on the Caribbean Island of Trinidad. As predicted by coexistence theory, they found that the weaker competitor (killifish) exhibited a relatively large ontogenetic niche shift, feeding at higher trophic levels as it grew, in streams where competition with the stronger competitor (guppies) was intense. Intuition suggests that the weaker competitor should experience strong selection on its ontogenetic niche in a different competitive environment, but this was not the case. Instead, they found that the stronger competitor evolved a more compressed ontogenetic niche, where guppies fed at a low trophic level regardless of their body size, when competition was intense. Although the mechanism underlying this surprising result remains to be determined, this work points to the importance of taking a food web perspective-explicitly accounting for consumer-resource interactions-to understand the outcome of eco-evolutionary dynamics. Given that ontogenetic niche shifts are extremely common in animals, understanding the evolutionary ecology of these niche shifts should be a priority for future research on species coexistence.


Asunto(s)
Ecología , Cadena Alimentaria , Animales , Peces , Estado Nutricional , Tamaño Corporal , Ecosistema
13.
Am J Bot ; 110(6): e16181, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37163619

RESUMEN

PREMISE: Linum suffruticosum shows variations in pollinator fit, pollen pickup, and local pollinators that predict pollen deposition rates. The species often coflowers with other Linum species using the same pollinators. We investigated whether L. suffruticosum trait variation could be explained by local patterns of pollinator sharing and associated evolution to reduce interspecific pollen transfer. METHODS: Pollinator observations were made in different localities (single species, coflowering with other congeners). Floral traits were measured to detect differences across populations and from coflowering species. Reproductive costs were quantified using interspecific hand pollinations and measures of pollen-tube formation, combined with observations of pollen arrival on stigmas and pollen-tube formation after natural pollination in allopatric and sympatric localities. RESULTS: The size and identity of the most important pollinator of L. suffruticosum and whether there was pollinator sharing with coflowering species appeared to explain floral trait variation related to pollinator fit. The morphological overlap of the flowers of L. suffruticosum with those of coflowering species varied, depending on coflowering species identity. A post-pollination incompatibility system maintains reproductive isolation, but conspecific pollen-tube formation was lower after heterospecific pollination. Under natural pollination at sites of coflowering with congeners, conspecific pollen-tube formation was lower than at single-species localities. CONCLUSIONS: Trait variation in L. suffruticosum appears to respond to the most important local pollinator. Locally, incomplete pollinator partitioning might cause interspecific pollination, imposing reproductive costs. These reproductive costs may generate selection on floral traits for reduced morphological overlap with coflowering congeners, leading to the evolution of pollination ecotypes.


Asunto(s)
Lino , Polinización , Reproducción , Flores/anatomía & histología , Polen/anatomía & histología
14.
Evolution ; 77(8): 1874-1881, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37179462

RESUMEN

The divergence of reproductive traits frequently underpins the evolution of reproductive isolation. Here we investigated whether tinamou (Tinamidae) egg colorations function as mating signals that diverged as character displacement (mating signal character displacement hypothesis). We tested three evolutionary predictions behind the hypothesis: (a) egg colors coevolve with known mating signals; (b) signal divergence is associated with divergent habitat adaptation; and (c) sympatric tinamou species with similar songs have different egg colors as character displacement during speciation. We found support for all three predictions. In particular, egg colors coevolved with songs; songs and egg colors coevolved with habitat partitioning; and tinamou species that were likely sympatric with similar songs tended to have different egg colors. In conclusion, the mating signal character displacement hypothesis is well supported in which egg colors serve as mating signals that undergo character displacement during tinamou speciation.


Asunto(s)
Evolución Biológica , Especiación Genética , Color , Fenotipo
15.
R Soc Open Sci ; 10(2): 221210, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36844802

RESUMEN

Identifying competitive exclusion at the macroevolutionary scale has typically relied on demonstrating a reciprocal, contradictory response by two co-occurring, functionally similar clades. Finding definitive examples of such a response in fossil time series has proven challenging, however, as has controlling for the effects of a changing physical environment. We take a novel approach to this issue by quantifying variation in trait values that capture almost the entirety of function for steam locomotives (SL), a known example of competitive exclusion from material culture, with the goal of identifying patterns suitable for assessing clade replacement in the fossil record. Our analyses find evidence of an immediate, directional response to the first appearance of a direct competitor, with subsequent competitors further reducing the realized niche of SLs, until extinction was the inevitable outcome. These results demonstrate when interspecific competition should lead to extinction and suggest that clade replacement may only occur when niche overlap between an incumbent and its competitors is near absolute and where the incumbent is incapable of transitioning to a new adaptive zone. Our findings provide the basis for a new approach to analyse putative examples of competitive exclusion that is largely free of a priori assumptions.

16.
Ecol Lett ; 26(4): 490-503, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36849224

RESUMEN

Recent work has shown that animals frequently use social information from individuals of their own species as well as from other species; however, the ecological and evolutionary consequences of this social information use remain poorly understood. Additionally, information users may be selective in their social information use, deciding from whom and how to use information, but this has been overlooked in an interspecific context. In particular, the intentional decision to reject a behaviour observed via social information has received less attention, although recent work has indicated its presence in various taxa. Based on existing literature, we explore in which circumstances selective interspecific information use may lead to different ecological and coevolutionary outcomes between two species, such as explaining observed co-occurrences of putative competitors. The initial ecological differences and the balance between the costs of competition and the benefits of social information use potentially determine whether selection may lead to trait divergence, convergence or coevolutionary arms race between two species. We propose that selective social information use, including adoption and rejection of behaviours, may have far-reaching fitness consequences, potentially leading to community-level eco-evolutionary outcomes. We argue that these consequences of selective interspecific information use may be much more widespread than has thus far been considered.


Asunto(s)
Evolución Biológica , Animales , Fenotipo
17.
J Evol Biol ; 36(3): 515-528, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36721300

RESUMEN

Costly heterospecific mating interactions, such as hybridization, select for prezygotic reproductive isolation. One of the potential traits responding to the selection arising from maladaptive hybridization is habitat preference, whose divergence results in interspecific habitat segregation. Theoretical studies have so far assumed that habitat preference is a sexually shared trait. However, male and female habitat preferences can experience different selection pressures. Here, by combining analytical and simulation approaches, we theoretically examine the evolution of sex-specific habitat preferences. Habitat segregation can have demographic consequences, potentially generating eco-evolutionary dynamics. We thus explicitly consider demography in the simulation model. We also vary the degrees of species discrimination to examine how mate choice influences the evolution of habitat preferences. Results show that both sexes can reduce hybridisation risk by settling in the habitats where abundant conspecific mates reside. However, when females can discriminate species, excess conspecific male aggregation intensifies male-male competition for mating opportunities, posing an obstacle to conspecific aggregation. Meanwhile, conspecific female aggregation attracts conspecific males, by offering the mating opportunity. Therefore, under effective species discrimination, females play a leading role in initiating habitat use divergence. Simulations typically result in either the coexistence with established habitat segregation or the extinction of one of the species. The former result is especially likely when the species differ to some extent in habitat preferences upon secondary contact. Our results disentangle the selection pressures acting on male and female habitat preferences, deepening our understanding of the evolutionary process of habitat segregation due to hybridization.


Asunto(s)
Preferencia en el Apareamiento Animal , Animales , Femenino , Masculino , Ecosistema , Aislamiento Reproductivo , Hibridación Genética , Sexo
18.
Ecol Evol ; 13(2): e9773, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789346

RESUMEN

Species interactions drive diverse evolutionary outcomes. Speciation by cascade reinforcement represents one example of how species interactions can contribute to the proliferation of species. This process occurs when the divergence of mating traits in response to selection against interspecific hybridization incidentally leads to reproductive isolation among populations of the same species. Here, we investigated the population genetic outcomes of cascade reinforcement in North American chorus frogs (Hylidae: Pseudacris). Specifically, we estimated the frequency of hybridization among three taxa, assessed genetic structure within the focal species, P. feriarum, and ascertained the directionality of gene flow within P. feriarum across replicated contact zones via coalescent modeling. Through field observations and preliminary experimental crosses, we assessed whether hybridization is possible under natural and laboratory conditions. We found that hybridization occurs among P. feriarum and two conspecifics at a low rate in multiple contact zones, and that gene flow within the former species is unidirectional from allopatry into sympatry with these other species in three of four contact zones studied. We found evidence of substantial genetic structuring within P. feriarum including a divergent western allopatric cluster, a behaviorally-distinct sympatric South Carolina cluster, and several genetically-overlapping clusters from the remainder of the distribution. Furthermore, we found sub-structuring between reinforced and nonreinforced populations in the two most intensely-sampled contact zones. Our literature review indicated that P. feriarum hybridizes with at least five heterospecifics at the periphery of its range providing a mechanism for further intraspecific diversification. This work strengthens the evidence for cascade reinforcement in this clade, revealing the geographic and genetic landscape upon which this process can contribute to the proliferation of species.

19.
J Evol Biol ; 36(1): 169-182, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36357996

RESUMEN

Secondary contact between incipient species and selection against maladaptive hybridization can drive reinforcement between populations in contact and result in reproductive character displacement (RCD). Resultant divergence in mating traits within a species may generate downstream reproductive isolation between populations with displaced and non-displaced traits, referred to as the cascade reinforcement hypothesis. We examined this hypothesis using three allopatric populations of the ground beetle Carabus maiyasanus with a genital lock-and-key system. This species shows RCD in male and female genital morphologies in populations in contact with the sister species C. iwawakianus. In a reciprocal mating experiment using three allopatric populations with differences in male and female genital sizes, insemination failure increased as the difference in genital size increased. Based on the reproductive isolation index, insemination failure was the major postmating-prezygotic isolation barrier, at least in one population pair with comparable total isolation to those of other species pairs. By contrast, there was only incomplete premating isolation among populations. These results suggest that RCD in genital morphologies drives incipient allopatric speciation, supporting the cascade reinforcement hypothesis. These findings provide insight into the roles of interspecific interactions and subsequent trait diversification in speciation processes.


Asunto(s)
Escarabajos , Animales , Femenino , Masculino , Escarabajos/genética , Escarabajos/anatomía & histología , Aislamiento Reproductivo , Genitales/anatomía & histología , Genitales Femeninos , Reproducción
20.
Ecol Lett ; 26(1): 124-131, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36366784

RESUMEN

Sex differences in ecologically important traits are common in animals and plants, and prompted Darwin to first propose an ecological cause of sexual dimorphism. Despite theoretical plausibility and Darwin's original notion, a role for ecological resource competition in the evolution of sexual dimorphism has never been directly demonstrated and remains controversial. I used experimental evolution in Drosophila melanogaster to test the hypothesis that resource competition can drive the evolution of sex differences in diet. Following just three generations of adaptation, offspring from flies evolved in low-resource, high-competition environments show elevated sexual dimorphism in diet preference compared to both the ancestor and populations evolved on high-resource availability. This increased sexual dimorphism was the result of divergence in male sucrose intake and female yeast intake consistent with the differential nutritional requirements of the sexes. These results provide the first real-time direct evidence for evolution of sexual dimorphism driven by resource competition.


Asunto(s)
Evolución Biológica , Caracteres Sexuales , Animales , Femenino , Masculino , Drosophila melanogaster , Adaptación Fisiológica , Aclimatación , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...