Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Foods ; 13(18)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39335816

RESUMEN

The European Food Safety Authority (EFSA) has approved the use of a 1045 J/L UV-C dose as an adjunct to pasteurization to increase the shelf life and vitamin D3 content of milk. However, there are no verification methods analogous to the alkaline phosphatase test for pasteurized milk to ensure that the desired UV-C dose has been correctly applied. The aim is to develop a real-time in-line detector based on fluorescence spectroscopy. In this study, 22 different UV-C doses (ranging from 0 to 2000 J/L) were applied to milk to assess the impact of photooxidation on intrinsic photosensitive chromophores. Fluorescence spectroscopy (90°-angle) was employed as the method of analysis for monitoring the changes in the fluorescence spectra of chromophores in milk without sample pretreatment. Three important chromophore areas (CAs) were identified: CA 1 (riboflavin), CA 3 (vitamin A and dityrosine) and CA 4 (tryptophan), with statistically significant changes at around 1045 J/L and 1500 J/L. The findings of our preliminary study support our hypothesis that the fluorescence of intrinsic chromophores can be used as verification of the applied UV-C dose.

2.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39337703

RESUMEN

This review contains data on a wide class of microporous materials with frameworks belonging to the sodalite topological type. Various methods for the synthesis of these materials, their structural and crystal chemical features, as well as physical and chemical properties are discussed. Specific properties of sodalite-related materials make it possible to consider they as thermally stable ionic conductors, catalysts and catalyst carriers, sorbents, ion exchangers for water purification, matrices for the immobilization of radionuclides and heavy metals, hydrogen and methane storage, and stabilization of chromophores and phosphors. It has been shown that the diversity of properties of sodalite-type materials is associated with the chemical diversity of their frameworks and extra-framework components, as well as with the high elasticity of the framework.

3.
Environ Sci Technol ; 58(39): 17344-17354, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39300776

RESUMEN

Brown carbon (BrC) from biomass burning constitutes a significant portion of light-absorbing components in the atmosphere. Although the aging of BrC surrogates from biomass burning has been studied in many laboratory settings, BrC aging behavior in real-world urban environments is not well understood. In this study, through a combination of online dynamic monitoring and offline molecular characterization, the ambient optical aging of BrC was linked to its dynamic changes in molecular composition. Enhanced light absorption by BrC was consistently observed during the periods dominated by oxygenated biomass burning organic aerosol (BBOA), in contrast to periods dominated by primary emissions or secondary formation in aqueous-phase. This enhancement was linked to the formation of nitrogen-containing compounds during the ambient aging of BBOA. Detailed molecular characterization, alongside analysis of environmental parameters, revealed that an increased atmospheric oxidizing capacity, marked by elevated levels of ozone and nighttime NO3 radicals, facilitated the formation of nitrated aromatic BrC chromophores. These chromophores were primarily responsible for the enhanced light absorption during the ambient aging of BBOA. This study elucidates the nitration processes that enhance BrC light absorption for ambient BBOA, and highlights the crucial role of meteorological conditions. Furthermore, our findings shed light on the chemical and optical aging processes of biomass burning BrC in ambient air, offering insights into its environmental behavior and effects.


Asunto(s)
Biomasa , Carbono , Aerosoles , Oxidación-Reducción , Contaminantes Atmosféricos , Atmósfera/química
4.
Angew Chem Int Ed Engl ; : e202409369, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136230

RESUMEN

Sterically distorted donor-acceptor p­systems, termed DA springs, can be progressively planarized under mechanical load causing a bathochromic shift of the photoluminescence (PL) spectrum. By combining theory and experiment, we here use a simple linear force calibration for two different conformational mechanochromophores to determine molecular forces in polymers from the mechanochromic shift in PL wavelength during multiple uniaxial tensile tests. Two systems are used, i) a highly entangled linear glassy polyphenylene and ii) a covalent elastomeric polydimethylsiloxane network. The mean forces estimated by this method are validated using known threshold forces for the mechanochemical ring-opening reactions of two different spiropyran force probes. The agreement between both approaches underlines that these DA springs provide the unique opportunity for the online monitoring of local molecular forces present in diverse polymer matrices.

5.
Adv Mater ; 36(35): e2402478, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970534

RESUMEN

Organic small molecules that exhibit second-scale phosphorescence at room temperature are of interest for potential applications in sensing, anticounterfeiting, and bioimaging. However, such materials systems are uncommon-requiring millisecond to second-scale triplet lifetimes, efficient intersystem crossing, and slow rates of nonradiative recombination. Here, a simple and scalable approach is demonstrated to activate long-lived phosphorescence in a wide variety of molecules by suspending them in rigid polymer hosts and annealing them above the polymer's glass transition temperature. This process produces submicron aggregates of the chromophore, which suppresses intramolecular motion that leads to nonradiative recombination and minimizes triplet-triplet annihilation that quenches phosphorescence in larger aggregates. In some cases, evidence of excimer-mediated intersystem crossing that enhances triplet generation in aggregated chromophores is found. In short, this approach circumvents the current design rules for long-lived phosphors, which will streamline their discovery and development.

6.
Chemistry ; : e202402634, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078075

RESUMEN

BODIPYs have a well-established role in biological sciences as chemosensors and versatile biological markers due to their chemical reactivity, which allows for fine-tuning of their photophysical characteristics. In this work, we combined the unique reactivity of arylazo sulfones with the advantages of a "sunflow" reactor to develop a fast, efficient, and versatile method for the photochemical arylation of BODIPYs and other chromophores. This approach resulted in red-shifted emitting fluorophores due to extended electronic delocalization at the 3- and 5-positions of the BODIPY core. This method represents an advantageous approach for BODIPY functionalization compared to existing strategies.

7.
Cells ; 13(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38994936

RESUMEN

Although our skin is not the primary visual organ in humans, it acts as a light sensor, playing a significant role in maintaining our health and overall well-being. Thanks to the presence of a complex and sophisticated optotransduction system, the skin interacts with the visible part of the electromagnetic spectrum and with ultraviolet (UV) radiation. Following a brief overview describing the main photosensitive molecules that detect specific electromagnetic radiation and their associated cell pathways, we analyze their impact on physiological functions such as melanogenesis, immune response, circadian rhythms, and mood regulation. In this paper, we focus on 6-formylindolo[3,2-b]carbazole (FICZ), a photo oxidation derivative of the essential amino acid tryptophan (Trp). This molecule is the best endogenous agonist of the Aryl hydrocarbon Receptor (AhR), an evolutionarily conserved transcription factor, traditionally recognized as a signal transducer of both exogenous and endogenous chemical signals. Increasing evidence indicates that AhR is also involved in light sensing within the skin, primarily due to its ligand FICZ, which acts as both a chromophore and a photosensitizer. The biochemical reactions triggered by their interaction impact diverse functions and convey crucial data to our body, thus adding a piece to the complex puzzle of pathways that allow us to decode and elaborate environmental stimuli.


Asunto(s)
Carbazoles , Receptores de Hidrocarburo de Aril , Piel , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Piel/metabolismo , Carbazoles/farmacología , Luz , Animales , Visión Ocular/fisiología , Transducción de Señal
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124746, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38955065

RESUMEN

Organic materials have several important characteristics that make them suitable for use in optoelectronics and optical signal processing applications. For absorption and emission maxima, the stabilities and photoactivities of conjugated organic chromophores can be tailored by selecting a suitable parent structure and incorporating substituents that predictably change the optical characteristics. However, a high-throughput design of efficient conjugated organic chromophores without using trial-and-error experimental approaches is required. In this study, machine learning (ML) is used to design and test the conjugated organic chromophores and predict light absorption and emission behavior. Many machine learning models are tried to select the best models for the prediction of absorption and emission maxima. Extreme gradient boosting regressor has appeared as the best model for the prediction of absorption maxima. Random forest regressor stands out as the best model for the prediction of emission maxima. Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) is used to generate 10,000 organic chromophores. Chemical similarity analysis is performed to obtain a deeper understanding of the characteristics and actions of compounds. Furthermore, clustering and heatmap approaches are utilized.

9.
Nano Lett ; 24(27): 8248-8256, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949190

RESUMEN

Fast emitting polymeric scintillators are requested in advanced applications where high speed detectors with a large signal-to-noise ratio are needed. However, their low density implies a weak stopping power of high energy radiation and thus a limited light output and sensitivity. To enhance their performance, polymeric scintillators can be loaded with dense nanoparticles (NPs). We investigate the properties of a series of polymeric scintillators by means of photoluminescence and scintillation spectroscopy, comparing standard scintillators with a composite system loaded with dense hafnium dioxide (HfO2) NPs. The nanocomposite shows a scintillation yield enhancement of +100% with an unchanged time response. We provide for the first time an interpretation of this effect, pointing out the local effect of NPs in the generation of emissive states upon interaction with ionizing radiation. The obtained results indicate that coupling fast conjugated emitters with optically inert dense NPs could lead to surpassing the actual limits of pure polymeric scintillators.

10.
ACS Appl Mater Interfaces ; 16(25): 32481-32489, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38875075

RESUMEN

Rational control of the supramolecular aggregation of π-conjugated molecules plays an important role in determining their optoelectronic properties and applications. Here, we report a systematic study of the factors, including solvent polarity, concentration, and surfactants, that affect the aggregation behavior of a brominated hydroazaheptacene tetraimide (HATI) and its thiophene-substituted derivative, Th-HATI, as near-infrared fluorophores, in both nonpolar and polar solvents. The thermal stability of the aggregates is also studied by monitoring their optical absorption against temperature change. Our results indicate that the aggregation of HATI is highly sensitive to the solvent polarity. Moreover, the average aggregation number of HATI inside the colloidal nanoparticles formed in aqueous media can be controlled by surfactants. The substitution of the bromo groups in HATI by thiophene units induces a slight blue shift of the optical absorption, enhanced crystallinity, distinct aggregation behavior in both nonpolar and polar solvents, and improved thermal stability. The multifacet understanding of the supramolecular aggregation of these systems may offer insight for other π-conjugated molecular chromophores with various optoelectronic properties and applications.

11.
Chempluschem ; : e202400320, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853751

RESUMEN

Multifluorinated aromatics serve as supramolecular synthons in the research of organic electro-optic (EO) materials by exploiting π-π stacking interaction between the aromatic hydrocarbon and multifluorinated aromatic groups for performance improvement. However, non-classical hydrogen bonding remains largely unexplored in fluorinated EO dendrimers. In this study, three Fréchet-type generation 1 benzyl ether co-dendrons were synthesized by replacing one benzyl group with 2,3,5,6-tetrafluorobenzyl (p-HF4Bz), pentafluorobenzyl (C6F5Bz), and 2,3,4,5-tetrafluorobenzyl (o-HF4Bz) groups, to afford the benzoic acid derivatives D1, D2, and D3, which were further bonded to the donor and π-bridge moieties to afford three co-dendronized push-pull phenyltetraene chromophores EOD1, EOD2, and EOD3, respectively. The weak C-H⋅⋅⋅X (X=O, F) interactions in the crystal structure of D1 cumulatively add to the benzoic acid dimers to form an extended hydrogen-bonded network, while D2 is crystallized into a centric one-dimensional chain with strong intermolecular interactions. The poled films of EOD1 with PMMA exhibited the largest and most stable EO activity with optical homogeneity among the series. The results identify the effectiveness of weak but favorable hydrogen bonds enabled by the enhanced carbon acidity of p-HF4Bz synthon in D1, over the interactions in D2 and D3, for the rational design of supramolecular EO dendrimers.

12.
Carbohydr Polym ; 338: 122168, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763718

RESUMEN

Enzymatic functionalization of oligosaccharides is a useful and environmentally friendly way to expand their structural chemical space and access to a wider range of applications in the health, food, feed, cosmetics and other sectors. In this work, we first tested the laccase/TEMPO system to generate oxidized forms of cellobiose and methyl ß-D-cellobiose, and obtained high yields of novel anionic disaccharides (>60 %) at pH 6.0. Laccase/TEMPO system was then applied to a mix of cellooligosaccharides and to pure D-cellopentaose. The occurrence of carbonyl and carboxyl groups in the oxidation products was shown by LC-HRMS, MALDI-TOF and reductive amination of the carbonyl groups was attempted with p-toluidine a low molar mass amine to form the Schiff base, then reduced by 2-picoline borane to generate a more stable amine bond. The new grafted products were characterized by LC-HRMS, LC-UV-MS/MS and covalent grafting was evidenced. Next, the same procedure was adopted to successfully graft a dye, the rhodamine 123, larger in size than toluidine. This two-step chemo-enzymatic approach, never reported before, for functionalization of oligosaccharides, offers attractive opportunities to anionic cellooligosaccharides and derived glucoconjugates of interest for biomedical or neutraceutical applications. It also paves the way for more environmentally-friendly cellulose fabric staining procedures.


Asunto(s)
Aminas , Lacasa , Oligosacáridos , Oligosacáridos/química , Aminas/química , Lacasa/química , Lacasa/metabolismo , Óxidos N-Cíclicos/química , Oxidación-Reducción , Celobiosa/química , Bases de Schiff/química
13.
Methods Mol Biol ; 2788: 67-79, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656509

RESUMEN

Derivatization of monosaccharides with 1-phenyl-3-methyl-5-pyrazolone (PMP) introduces two chromophores per sugar molecule. Their separation on a superficially porous C18 reverse-phase column, using common liquid chromatography equipment, results in short analysis times (under 20 min) and high sensitivity (limit of quantitation 1 nmol). This method allows for complex monosaccharide mixtures to be separated and quantified using a reasonably simple and safe derivatization procedure.


Asunto(s)
Cromatografía de Fase Inversa , Monosacáridos , Cromatografía de Fase Inversa/métodos , Monosacáridos/química , Monosacáridos/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrofotometría Ultravioleta/métodos , Edaravona/química , Antipirina/análogos & derivados , Antipirina/química
14.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338304

RESUMEN

In recent decades, considerable attention has been focused on the design and development of surfaces with defined or tunable properties for a wide range of applications and fields. To this end, self-assembled monolayers (SAMs) of organic compounds offer a unique and straightforward route of modifying and engineering the surface properties of any substrate. Thus, alkane-based self-assembled monolayers constitute one of the most extensively studied organic thin-film nanomaterials, which have found wide applications in antifouling surfaces, the control of wettability or cell adhesion, sensors, optical devices, corrosion protection, and organic electronics, among many other applications, some of which have led to their technological transfer to industry. Nevertheless, recently, aromatic-based SAMs have gained importance as functional components, particularly in molecular electronics, bioelectronics, sensors, etc., due to their intrinsic electrical conductivity and optical properties, opening up new perspectives in these fields. However, some key issues affecting device performance still need to be resolved to ensure their full use and access to novel functionalities such as memory, sensors, or active layers in optoelectronic devices. In this context, we will present herein recent advances in π-conjugated systems-based self-assembled monolayers (e.g., push-pull chromophores) as active layers and their applications.

15.
J Biomed Opt ; 29(2): 025004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38419755

RESUMEN

Significance: Continuous-wave functional near-infrared spectroscopy has proved to be a valuable tool for assessing hemodynamic activity in the human brain in a non-invasively and inexpensive way. However, most of the current processing/analysis methods assume the head is a homogeneous medium, and hence do not appropriately correct for the signal coming from the scalp. This effect can be reduced by considering light propagation in a layered model of the human head, being the Monte Carlo (MC) simulations the gold standard to this end. However, this implies large computation times and demanding hardware capabilities. Aim: In this work, we study the feasibility of replacing the homogeneous model and the MC simulations by means of analytical multilayered models, combining in this way, the speed and simplicity of implementation of the former with the robustness and accuracy of the latter. Approach: Oxy- and deoxyhemoglobin (HbO and HbR, respectively) concentration changes were proposed in two different layers of a magnetic resonance imaging (MRI)-based meshed model of the human head, and then these changes were retrieved by means of (i) a typical homogeneous reconstruction and (ii) a theoretical layered reconstruction. Results: Results suggest that the use of analytical models of light propagation in layered models outperforms the results obtained using traditional homogeneous reconstruction algorithms, providing much more accurate results for both, the extra- and the cerebral tissues. We also compare the analytical layered reconstruction with MC-based reconstructions, achieving similar degrees of accuracy, especially in the gray matter layer, but much faster (between 4 and 5 orders of magnitude). Conclusions: We have successfully developed, implemented, and validated a method for retrieving chromophore concentration changes in the human brain, combining the simplicity and speed of the traditional homogeneous reconstruction algorithms with robustness and accuracy much more similar to those provided by MC simulations.


Asunto(s)
Encéfalo , Fotones , Humanos , Simulación por Computador , Encéfalo/diagnóstico por imagen , Cuero Cabelludo/diagnóstico por imagen , Algoritmos , Imagen por Resonancia Magnética , Método de Montecarlo , Fantasmas de Imagen
16.
Beilstein J Org Chem ; 20: 59-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38264453

RESUMEN

Large donor-acceptor scaffolds derived from polycyclic aromatic hydrocarbons (PAHs) with tunable HOMO and LUMO energies are important for several applications, such as organic photovoltaics. Here, we present a large selection of PAHs based on central indenofluorene (IF) or fluorene cores and containing various dithiafulvene (DTF) donor units that gain aromaticity upon oxidation and a variety of acceptor units, such as vinylic diesters, enediynes, and cross-conjugated radiaannulenes (RAs) that gain aromaticity upon reduction. In some cases, the DTF units are expanded by pyrrolo annelation. The optical and redox properties of these compounds, in some cases carbon-rich, were studied by UV-vis absorption spectroscopy and cyclic voltammetry. Synthetically, the work explores IF diones or fluorenone as central building blocks by subjecting the carbonyl groups to a variety of reactions; that are, phosphite- or Lawesson's reagent-mediated olefination reactions (to introduce DTF motifs), Ramirez/Corey-Fuchs dibromo-olefinations followed by Sonogashira couplings (to introduce enediynes motifs), and Knoevenagel condensations (to introduce the vinylic diester motif). By a subsequent Glaser-Hay coupling reaction, a RA acceptor unit was introduced to provide a DTF-IF-RA donor-acceptor scaffold with a low-energy charge-transfer absorption and multi-redox behavior.

17.
Chemistry ; 30(5): e202303490, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930279

RESUMEN

Cycloparaphenylenes (CPPs) are the smallest possible armchair carbon nanotubes, the properties of which strongly depend on their ring size. They can be further tuned by either peripheral functionalization or by replacing phenylene rings for other aromatic units. Here we show how four novel donor-acceptor chromophores were obtained by incorporating fluorenone or 2-(9H-fluoren-9-ylidene)malononitrile into the loops of two differently sized CPPs. Synthetically, we managed to perform late-stage functionalization of the fluorenone-based rings by high-yielding Knoevenagel condensations. The structures were confirmed by X-ray crystallographic analyses, which revealed that replacing a phenylene for a fused-ring-system acceptor introduces additional strain. The donor-acceptor characters of the CPPs were supported by absorption and fluorescence spectroscopic studies, electrochemical studies (displaying the CPPs as multi-redox systems undergoing reversible or quasi-reversible redox events), as well as by computations. The oligophenylene parts were found to comprise the electron donor units of the macrocycles and the fluorenone parts the acceptor units.

18.
Chemistry ; 30(4): e202303154, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37905588

RESUMEN

4,4-Difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) dyes are extensively used in various applications of their triplet states, ranging from photoredox catalysis, through triplet sensitization to photodynamic therapy. However, the rational design of BODIPY triplet chromophores by ab initio modelling is limited by their strong interactions of spin, electronic and vibrational dynamics. In particular, spin-vibronic coupling is often overlooked when estimating intersystem crossing (ISC) rates. In this study, a combined experimental and theoretical approach using spin-vibronic coupling to correctly describe ISC in BODIPY dyes was developed. For this purpose, seven π-extended BODIPY derivatives with iodine atoms in different positions were examined. It was found that the heavy-atom effect of iodine atoms is site specific, causing high triplet yields in only some positions. This site-specific ISC was explained by El-Sayed rules, so both the contribution and character of the molecular orbitals involved in the excitation must be considered when predicting the ISC rates. Overall, the rational design of BODIPY triplet chromophores requires using (i) the high-quality electronic structure theory, including both static and dynamical correlations; and (ii) the two-component wave function Hamiltonian, and rationalizing; and (iii) ISC based on the character of the molecular orbitals of heavy atoms involved in the excitation, expanding El-Sayed rules beyond their traditional applications.

19.
Methods ; 220: 142-157, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37939912

RESUMEN

This review aims to provide a comprehensive overview of recent advancements and applications of fluorescence imaging probes synthesized via MCRs (multicomponent reactions). These probes, also known as functional chromophores, belong to a currently investigated class of fluorophores that are presently being successfully applied in bioimaging experiments, especially in various living cell lineages. We describe some of the MCRs that have been employed in the synthesis of these probes and explore their applications in biological imaging, with an emphasis on cellular imaging. The review also discusses the challenges and future perspectives in the field, particularly considering the potential impact of MCR-based fluorescence imaging probes on advancing this field of research in the coming years. Considering that this area of research is relatively new and nearly a decade has passed since the first publication, this review also provides a historical perspective on this class of fluorophores, highlighting the pioneering works published between 2011 and 2016.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica
20.
Cells ; 12(22)2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37998399

RESUMEN

Phototherapy, encompassing the utilization of both natural and artificial light, has emerged as a dependable and non-invasive strategy for addressing a diverse range of illnesses, diseases, and infections. This therapeutic approach, primarily known for its efficacy in treating skin infections, such as herpes and acne lesions, involves the synergistic use of specific light wavelengths and photosensitizers, like methylene blue. Photodynamic therapy, as it is termed, relies on the generation of antimicrobial reactive oxygen species (ROS) through the interaction between light and externally applied photosensitizers. Recent research, however, has highlighted the intrinsic antimicrobial properties of light itself, marking a paradigm shift in focus from exogenous agents to the inherent photosensitivity of molecules found naturally within pathogens. Chemical analyses have identified specific organic molecular structures and systems, including protoporphyrins and conjugated C=C bonds, as pivotal components in molecular photosensitivity. Given the prevalence of these systems in organic life forms, there is an urgent need to investigate the potential impact of phototherapy on individual molecules expressed within pathogens and discern their contributions to the antimicrobial effects of light. This review delves into the recently unveiled key molecular targets of phototherapy, offering insights into their potential downstream implications and therapeutic applications. By shedding light on these fundamental molecular mechanisms, we aim to advance our understanding of phototherapy's broader therapeutic potential and contribute to the development of innovative treatments for a wide array of microbial infections and diseases.


Asunto(s)
Acné Vulgar , Antiinfecciosos , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fototerapia , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...