Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.214
Filtrar
1.
Math Biosci ; 377: 109280, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243938

RESUMEN

A new mathematical model of melatonin synthesis in pineal cells is created and connected to a slightly modified previously created model of the circadian clock in the suprachiasmatic nucleus (SCN). The SCN influences the production of melatonin by upregulating two key enzymes in the pineal. The melatonin produced enters the blood and the cerebrospinal fluid and thus the SCN, influencing the circadian clock. We show that the model of melatonin synthesis corresponds well with extant experimental data and responds similarly to clinical experiments on bright light in the middle of the night. Melatonin is widely used to treat jet lag and sleep disorders. We show how the feedback from the pineal to the SCN causes phase resetting of the circadian clock. Melatonin doses early in the evening advance the clock and doses late at night delay the clock with a dead zone in between where the phase of the clock does not change.

2.
Cells ; 13(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39273073

RESUMEN

Circadian clocks are biochemical timers regulating many physiological and molecular processes according to the day/night cycles. The function of the oscillator relies on negative transcriptional/translational feedback loops operated by the so-called clock genes and the encoded clock proteins. Previously, we identified the small GTPase LIGHT INSENSITIVE PERIOD 1 (LIP1) as a circadian-clock-associated protein that regulates light input to the clock in the model plant Arabidopsis thaliana. We showed that LIP1 is also required for suppressing red and blue light-mediated photomorphogenesis, pavement cell shape determination and tolerance to salt stress. Here, we demonstrate that LIP1 is present in a complex of clock proteins GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB 1 (TOC1). LIP1 participates in this complex via GUANINE EX-CHANGE FACTOR 7. Analysis of genetic interactions proved that LIP1 affects the oscillator via modulating the function of GI. We show that LIP1 and GI independently and additively regulate photomorphogenesis and salt stress responses, whereas controlling cell shape and photoperiodic flowering are not shared functions of LIP1 and GI. Collectively, our results suggest that LIP1 affects a specific function of GI, possibly by altering binding of GI to downstream signalling components.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Luz , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética
3.
Adv Exp Med Biol ; 1461: 177-188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39289281

RESUMEN

The circadian fluctuation of body temperature is one of the most prominent and stable outputs of the circadian clock and plays an important role in maintaining optimal day-night energy homeostasis. The body temperature of homothermic animals is not strictly constant, but it shows daily oscillation within a range of 1-3 °C, which is sufficient to synchronize the clocks of peripheral tissues throughout the body. The thermal entrainment mechanisms of the clock are partly mediated by the action of the heat shock transcription factor and cold-inducible RNA-binding protein-both have the ability to affect clock gene expression. Body temperature in the poikilotherms is not completely passive to the ambient temperature change; they can travel to the place of preferred temperature in a manner depending on the time of their endogenous clock. Based on this behavior-level thermoregulation, flies exhibit a clear body temperature cycle. Noticeably, flies and mice share the same molecular circuit for the controlled body temperature; in both species, the calcitonin receptors participate in the formation of body temperature rhythms during the active phase and exhibit rather specific expression in subsets of clock neurons in the brain. We summarize knowledge on mutual relationships between body temperature regulation and the circadian clock.


Asunto(s)
Regulación de la Temperatura Corporal , Relojes Circadianos , Ritmo Circadiano , Animales , Relojes Circadianos/fisiología , Relojes Circadianos/genética , Regulación de la Temperatura Corporal/fisiología , Humanos , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Temperatura Corporal/fisiología , Ratones , Regulación de la Expresión Génica
4.
Biomedicines ; 12(9)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39335475

RESUMEN

Circadian rhythms are endogenous behavioral or physiological cycles that are driven by a daily biological clock that persists in the absence of geophysical or environmental temporal cues. Circadian rhythm-related genes code for clock proteins that rise and fall in rhythmic patterns driving biochemical signals of biological processes from metabolism to physiology and behavior. Clock proteins have a pivotal role in liver metabolism and homeostasis, and their disturbances are implicated in various liver disease processes. Encoded genes play critical roles in the initiation and progression of metabolic dysfunction-associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC) and their proteins may become diagnostic markers as well as therapeutic targets. Understanding molecular and metabolic mechanisms underlying circadian rhythms will aid in therapeutic interventions and may have broader clinical applications. The present review provides an overview of the role of the liver's circadian rhythm in metabolic processes in health and disease, emphasizing MASH progression and the oncogenic associations that lead to HCC.

5.
JID Innov ; 4(6): 100308, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39314650

RESUMEN

Many aspects of skin biochemistry and physiology are known to vary over the course of the 24-hour day. Traditional approaches to study circadian rhythms in the skin have employed rodents or human subjects, which limit the experimental variables that can be studied. Although explants derived from discarded surgical skin are a commonly used model in the skin biology field, circadian rhythms have yet to be examined ex vivo. In this study, using human panniculectomy skin, we used RT-qPCR to monitor the epidermal expression of 4 core circadian clock genes over the course of 1 day ex vivo. Although significant interindividual variability in overall gene expression profiles was observed, robust circadian oscillations were observed in many of the genes and individual explants. Comparison of our gene expression data with microarray data from 2 previous human-subject studies involving primarily young adult White males revealed both similarities and differences, including greater distribution in the time of day of peak expression in the skin explants. This increased variability appears to be due in part to the increased age and altered sex distribution of the donated skin. Nonetheless, our results indicate that skin explants offer an additional experimental system for studying circadian skin biology.

6.
Clin Sci (Lond) ; 138(19): 1209-1226, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222031

RESUMEN

Allergens and Th2 cytokines affect the homeostatic environment in the airways, leading to increased mucus production by goblet cells associated with altered adherens junctional complex (AJC) and tight junction (TJ) proteins responsible for maintaining epithelial barrier function. Circadian clock-dependent regulatory mechanisms such as inflammation and epithelial barrier function are gaining more attention due to their therapeutic potential against allergic inflammatory lung diseases. Currently, there are no studies to support whether REV-ERBα activation can attenuate Th2 cytokine-induced epithelial barrier dysfunction in human bronchial epithelial cells. We hypothesized that Th2 cytokine-induced epithelial barrier dysfunction may be protected by activating REV-ERBα. Treatment with Th2 cytokines or HDM significantly reduced the cell impedance, as confirmed by transepithelial electrical resistance (TEER). However, pre-treatment with SR10067 attenuated Th2 cytokine-induced barrier dysfunction, such as decreased permeability, improved TEER, localization of AJC and TJ proteins, and mRNA and protein levels of selected epithelial barrier and circadian clock targets. Overall, we showed for the first time that REV-ERBα activation regulates altered epithelial barrier function that may have direct implications for the treatment of asthma and other allergic diseases.


Asunto(s)
Bronquios , Citocinas , Células Epiteliales , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Células Th2 , Humanos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Citocinas/metabolismo , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Th2/efectos de los fármacos , Células Th2/inmunología , Células Th2/metabolismo , Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos , Impedancia Eléctrica , Tiofenos/farmacología , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo
7.
Heliyon ; 10(18): e37475, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39328525

RESUMEN

Skeletal muscle plays a critical role in regulating systemic metabolic homeostasis. It has been demonstrated that time-restricted feeding (TRF) during the rest phase can desynchronize the suprachiasmatic nucleus (SCN) and peripheral clocks, thereby increasing the risk of metabolic diseases. However, the impact of dietary timing on the muscle clock and health remains poorly understood. Here, through the analysis of cycling genes and differentially expressed genes in the skeletal muscle transcriptome, we identified disruptions in muscle diurnal rhythms by 2 weeks of light-phase TRF. Furthermore, compared with ad libitum (AL) feeding mice, 2 weeks of light-phase TRF was found to induce insulin resistance, muscle fiber type remodeling, and changes in the expression of muscle growth-related genes, while both light-phase and dark-phase TRF having a limited impact on bone quality relative to AL mice. In summary, our research reveals that the disruption of the skeletal muscle clock may contribute to the abnormal metabolic phenotype resulting from feeding restricted to the inactive period. Additionally, our study provides a comprehensive omics atlas of the diurnal rhythms in skeletal muscle regulated by dietary timing.

8.
Biochem Biophys Res Commun ; 733: 150734, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39332156

RESUMEN

Pseudo-Response Regulator (PRR) proteins constitute a fundamental set of circadian clock components in plants. PRRs have an amino acid sequence stretch with similarity to the receiver (REC) domain of response regulators (RRs) in the Multi-Step Phosphorelay (MSP). However, it has never been elucidated whether PRRs interact with Histidine-containing Phosphotransfer (HPt) proteins, which transfer a phosphate to RRs. Here, we studied whether PRRs interact with HPts in the moss Physcomitrium patens by the Yeast Two-Hybrid system and Bimolecular Fluorescence Complementation. P. patens PRR1/2/3 interacted with HPt1/2 in the nucleus, but not with HPt3, suggesting that P. patens PRRs function as authentic RRs. We discuss these results in relation to the evolution and diversity of the plant circadian clocks.

9.
HERD ; : 19375867241278599, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39262317

RESUMEN

Background: Timely light exposure is a vital aspect to achieve better sleep and well-being. As there are risks with a disturbed circadian rhythm and benefits with light settings that stimulate the rhythm, the circadian effective light, circadian stimulus (CS), for radiographers was examined. Aim: The aim of the study was to compare radiographers' light environment on the workstations, at a university hospital in Southern Sweden in the form of CS and relate that to recommendations published by the Swedish Environmental Protection Agency. Method: A cross-sectional method has been applied. The measurements for CS were collected in all labs in the radiology department in the middle of January. Result: A total of 804 measures were evenly collected resulting in a median for the 19 labs, where the observed median for all labs was 0.091 CS which is significantly lower than the recommended value of 0.3 CS (p < .001). Comparing work light settings with maximum light levels in the brightest and darkest labs showed a significant difference (p < .001). Conclusion: The CS values in the labs, at the radiology department at a university hospital in Southern Sweden, do not reach the recommended values of circadian stimulus published by the Swedish Environmental Protection Agency when the radiographers themselves set the light. There is a potential for improvement as a significant difference could be seen between the chosen level of light and the maximum possible level of light.

10.
Discov Oncol ; 15(1): 429, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259370

RESUMEN

BACKGROUND: Evidence suggests that the circadian clock (CIC) is among the important factors for tumorigenesis. We aimed to provide new insights into CIC-mediated molecular subtypes and gene prognostic indexes for prostate cancer (PCa) patients undergoing radical prostatectomy (RP) or radical radiotherapy (RT). METHODS: PCa data from TCGA was analyzed to identify differentially expressed genes (DEGs) with significant fold changes and p-values. A prognostic index called CIC-related gene prognostic index (CICGPI) was developed through clustering methods and survival analysis and validated on multiple data sets. The diagnostic accuracy of CICGPI for resistance to chemotherapy and radiotherapy was confirmed. Additionally, the interaction between tumor immune environment and CICGPI score was explored, along with their correlation with prognosis. RESULTS: TOP2A, APOE, and ALDH2 were used to classify the PCa patients into two subtypes. Cluster 2 had a higher risk of biochemical recurrence (BCR) than cluster 1 for PCa patients undergoing RP or RT. A CIC-related gene prognostic index (CICGPI) was constructed using the above three genes for PCa patents in the TCGA database. The CICGPI score showed good prognostic value in the TCGA database and was externally confirmed by PCa patients in GSE116918, MSKCC2010 and GSE46602. In addition, the CICGPI score had a certain and high diagnostic accuracy for tumor chemoresistance (AUC: 0.781) and radioresistance (AUC: 0.988). For gene set variation analysis, we observed that both beta alanine metabolism and limonene and pinene degradation were upregulated in cluster 1 for PCa patients undergoing RP or RT. For PCa patients undergoing RP, cell cycle, homologous recombination, mismatch repair, and DNA replication were upregulated in cluster 2. A strongly positive relationship between cancer-related fibroblasts and CICGPI score was observed in PCa patients undergoing RP or RT. Moreover, a high density of CAFs was highly closely associated with poorer BCR-free survival of PCa patients. CONCLUSIONS: In this study, we established CIC-related immunological prognostic index and molecular subtypes, which might be useful for the clinical practice.

11.
Front Chem ; 12: 1436322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220829

RESUMEN

Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/ß and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.

13.
J Cell Sci ; 137(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140137

RESUMEN

Mechanotransduction, which is the integration of mechanical signals from the external environment of a cell to changes in intracellular signaling, governs many cellular functions. Recent studies have shown that the mechanical state of the cell is also coupled to the cellular circadian clock. To investigate possible interactions between circadian rhythms and cellular mechanotransduction, we have developed a computational model that integrates the two pathways. We postulated that translocation of the transcriptional regulators MRTF (herein referring to both MRTF-A and MRTF-B), YAP and TAZ (also known as YAP1 and WWTR1, respectively; collectively denoted YAP/TAZ) into the nucleus leads to altered expression of circadian proteins. Simulations from our model predict that lower levels of cytoskeletal activity are associated with longer circadian oscillation periods and higher oscillation amplitudes, which is consistent with recent experimental observations. Furthermore, accumulation of YAP/TAZ and MRTF in the nucleus causes circadian oscillations to decay in our model. These effects hold both at the single-cell level and within a population-level framework. Finally, we investigated the effects of mutations in YAP or lamin A, the latter of which result in a class of diseases known as laminopathies. In silico, oscillations in circadian proteins are substantially weaker in populations of cells with mutations in YAP or lamin A, suggesting that defects in mechanotransduction can disrupt the circadian clock in certain disease states; however, reducing substrate stiffness in the model restores normal oscillatory behavior, suggesting a possible compensatory mechanism. Thus, our study identifies that mechanotransduction could be a potent modulatory cue for cellular clocks and that this crosstalk can be leveraged to rescue the circadian clock in disease states.


Asunto(s)
Relojes Circadianos , Mecanotransducción Celular , Proteínas Señalizadoras YAP , Humanos , Animales , Proteínas Señalizadoras YAP/metabolismo , Simulación por Computador , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transactivadores/metabolismo , Transactivadores/genética , Modelos Biológicos , Núcleo Celular/metabolismo , Mamíferos/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo
14.
J Hepatol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173955

RESUMEN

BACKGROUND & AIMS: Liver fibrosis is the major driver of hepatocellular carcinoma and liver disease-related death. Approved antifibrotic therapies are absent and compounds in development have limited efficacy. Increased TGF-ß signaling drives collagen deposition by hepatic stellate cells (HSCs)/myofibroblasts. Here, we aimed to dissect the role of the circadian clock (CC) in controlling TGF-ß signaling and liver fibrosis. METHODS: Using CC-mutant mice, enriched HSCs and myofibroblasts obtained from healthy and fibrotic mice in different CC phases and loss-of-function studies in human hepatocytes and myofibroblasts, we investigated the relationship between CC and TGF-ß signaling. We explored hepatocyte-myofibroblast communication through bioinformatic analyses of single-nuclei transcriptomes and performed validation in cell-based models. Using mouse models for MASH (metabolic dysfunction-associated steatohepatitis)-related fibrosis and spheroids from patients with liver disease, we performed proof-of-concept studies to validate pharmacological targetability and clinical translatability. RESULTS: We discovered that the CC oscillator temporally gates TGF-ß signaling and this regulation is broken in fibrosis. We demonstrate that HSCs and myofibroblasts contain a functional CC with rhythmic expression of numerous genes, including fibrogenic genes. Perturbation studies in hepatocytes and myofibroblasts revealed a reciprocal relationship between TGF-ß activation and CC perturbation, which was confirmed in patient-derived ex vivo and in vivo models. Pharmacological modulation of CC-TGF-ß signaling inhibited fibrosis in mouse models in vivo as well as in patient-derived liver spheroids. CONCLUSION: The CC regulates TGF-ß signaling, and the breakdown of this control is associated with liver fibrosis in patients. Pharmacological proof-of-concept studies across different models have uncovered the CC as a novel therapeutic target for liver fibrosis - a growing unmet medical need. IMPACT AND IMPLICATIONS: Liver fibrosis due to metabolic diseases is a global health challenge. Many liver functions are rhythmic throughout the day, being controlled by the circadian clock (CC). Here we demonstrate that regulation of the CC is perturbed upon chronic liver injury and this perturbation contributes to fibrotic disease. By showing that a compound targeting the CC improves liver fibrosis in patient-derived models, this study provides a novel therapeutic candidate strategy to treat fibrosis in patients. Additional studies will be needed for clinical translation. Since the findings uncover a previously undiscovered profibrotic mechanism and therapeutic target, the study is of interest for scientists investigating liver disease, clinical hepatologists and drug developers.

15.
Biophys Physicobiol ; 21(Supplemental): e211002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175866

RESUMEN

Identification of the neural circuits in the brain regulating animal behavior and physiology is critical for understanding brain functions and is one of the most challenging goals in neuroscience research. The fruitfly Drosophila melanogaster has often been used to identify the neural circuits involved in the regulation of specific behaviors because of the many neurogenetic tools available to express target genes in particular neurons. Neurons controlling sexual behavior, feeding behavior, and circadian rhythms have been identified, and the number of neurons responsible for controlling these phenomena is small. The search for a few neurons controlling a specific behavior is an important first step to clarify the overall picture of the neural circuits regulating that behavior. We previously found that the clock gene period (per), which is essential for circadian rhythms in Drosophila, is also essential for long-term memory (LTM). We have also found that a very limited number of per-expressing clock neurons in the adult brain are required for the consolidation and maintenance of LTM. In this review, we focus on LTM in Drosophila, introduce the concept of LTM regulation by a few clock neurons that we have recently discovered, and discuss how a few clock neurons regulate Drosophila LTM.

16.
Genes (Basel) ; 15(8)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39202430

RESUMEN

Light is one of the most important factors regulating plant gene expression patterns, metabolism, physiology, growth, and development. To explore how light may induce or alter transcript splicing, we conducted RNA-Seq-based transcriptome analyses by comparing the samples harvested as etiolated seedlings grown under continuous dark conditions vs. the light-treated green seedlings. The study aims to reveal differentially regulated protein-coding genes and novel long noncoding RNAs (lncRNAs), their light-induced alternative splicing, and their association with biological pathways. We identified 14,766 differentially expressed genes, of which 4369 genes showed alternative splicing. We observed that genes mapped to the plastid-localized methyl-erythritol-phosphate (MEP) pathway were light-upregulated compared to the cytosolic mevalonate (MVA) pathway genes. Many of these genes also undergo splicing. These pathways provide crucial metabolite precursors for the biosynthesis of secondary metabolic compounds needed for chloroplast biogenesis, the establishment of a successful photosynthetic apparatus, and photomorphogenesis. In the chromosome-wide survey of the light-induced transcriptome, we observed intron retention as the most predominant splicing event. In addition, we identified 1709 novel lncRNA transcripts in our transcriptome data. This study provides insights on light-regulated gene expression and alternative splicing in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Plantones , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/efectos de la radiación , Oryza/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Transcriptoma , Luz , Empalme Alternativo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos
17.
Proc Natl Acad Sci U S A ; 121(35): e2408322121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163340

RESUMEN

The circadian clock is an endogenous oscillator, and its importance lies in its ability to impart rhythmicity on downstream biological processes, or outputs. Our knowledge of output regulation, however, is often limited to an understanding of transcriptional connections between the clock and outputs. For instance, the clock is linked to plant growth through the gating of photoreceptors via rhythmic transcription of the nodal growth regulators, PHYTOCHROME-INTERACTING FACTORs (PIFs), but the clock's role in PIF protein stability is less clear. Here, we identified a clock-regulated, F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 (CFH1), that specifically interacts with and degrades PIF3 during the daytime. Additionally, genetic evidence indicates that CFH1 functions primarily in monochromatic red light, yet CFH1 confers PIF3 degradation independent of the prominent red-light photoreceptor phytochrome B (phyB). This work reveals a clock-mediated growth regulation mechanism in which circadian expression of CFH1 promotes sustained, daytime PIF3 degradation in parallel with phyB signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Relojes Circadianos , Fitocromo B , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Relojes Circadianos/fisiología , Relojes Circadianos/genética , Fitocromo B/metabolismo , Fitocromo B/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ritmo Circadiano/fisiología , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Luz
18.
Front Neurosci ; 18: 1410139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161651

RESUMEN

PD is a complex, multifactorial neurodegenerative disease, which occurs sporadically in aged population, with some genetically linked cases. Patients develop a very obvious locomotor phenotype, with symptoms such as bradykinesia, resting tremor, muscular rigidity, and postural instability. At the cellular level, PD pathology is characterized by the presence of intracytoplasmic neurotoxic aggregates of misfolded proteins and dysfunctional organelles, resulting from failure in mechanisms of proteostasis. Nonmotor symptoms, such as constipation and olfactory deficits, are also very common in PD. They include alteration in the circadian clock, and defects in the sleep-wake cycle, which is controlled by the clock. These non-motor symptoms precede the onset of the motor symptoms by many years, offering a window of therapeutic intervention that could delay-or even prevent-the progression of the disease. The mechanistic link between aberrant circadian rhythms and neurodegeneration in PD is not fully understood, although proposed underlying mechanisms include alterations in protein homeostasis (proteostasis), which can impact protein levels of core components of the clock. Loss of proteostasis depends on the progressive pathological decline in the proteolytic activity of two major degradative systems, the ubiquitin-proteasome and the lysosome-autophagy systems, which is exacerbated in age-dependent neurodegenerative conditions like PD. Accordingly, it is known that promoting proteasome or autophagy activity increases lifespan, and rescues the pathological phenotype of animal models of neurodegeneration, presumably by enhancing the degradation of misfolded proteins and dysfunctional organelles, which are known to accumulate in these models, and to induce intracellular damage. We can enhance proteostasis by pharmacologically inhibiting or down-regulating Usp14, a proteasome-associated deubiquitinating enzyme (DUB). In a previous work, we showed that inhibition of Usp14 enhances the activity of the ubiquitin-proteasome system (UPS), autophagy and mitophagy, and abolishes motor symptoms of two well-established fly models of PD that accumulate dysfunctional mitochondria. In this work we extended the evidence on the protective effect of Usp14 down-regulation, and investigated the beneficial effect of down-regulating Usp14 in a Pink1 Drosophila model of PD that develop circadian and sleep dysfunction. We show that down-regulation of Usp14 ameliorates sleep disturbances and circadian defects that are associated to Pink1 KO flies.

19.
Front Physiol ; 15: 1435848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165284

RESUMEN

Introduction: Type 2 diabetes (T2D) is the predominant form of diabetes mellitus and is among the leading causes of death with an increasing prevalence worldwide. However, the pathological mechanism underlying T2D remains complex and unclear. An increasing number of studies have suggested an association between circadian clock disruption and high T2D prevalence. Method: This review explores the physiological and genetic evidence underlying T2D symptoms associated with circadian clock disturbances, including insulin secretion and glucose metabolism. Results and Discussion: Notably, circadian clock disruption reduces insulin secretion and insulin sensitivity and negatively affects glucose homeostasis. The circadian clock regulates the hypothalamic-pituitary-adrenal axis, an important factor that regulates glucose metabolism and influences T2D progression. Therefore, circadian clock regulation is an attractive, novel therapeutic approach for T2D, and various circadian clock stabilizers play therapeutic roles in T2D. Lastly, this review suggests novel therapeutic and preventive approaches using circadian clock regulators for T2D.

20.
J Clin Sleep Med ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172073

RESUMEN

Neurodevelopmental disorders and sleep disturbances share genetic risk factors. DEAF1 genetic variants are associated with rare syndromes in which sleep disturbances are commonly reported, yet the specific sleep disorders in these patients, and the molecular mechanisms underlying this association, are unknown. We aimed to pinpoint specific biological processes that may be disrupted by pathogenic variants in this gene, comparing a list of DEAF1 regulatory target genes with a list of insomnia-associated genes, and using the intersect gene list as the input for pathway enrichment analysis. Thirty-nine DEAF1 regulatory targets were also identified as insomnia-associated genes, and the intersecting gene list was found to be strongly associated with immune processes, ubiquitin-mediated proteolysis pathways and regulation of the cell cycle. This preliminary study highlights pathways that may be disrupted by DEAF1 pathogenic mutations and might be putative factors underlying the manifestation of insomnia in patients harboring such variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...