Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Cancers (Basel) ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272785

RESUMEN

The Fas/Fas ligand (FasL) system is a major apoptosis-regulating pathway with a key role in tumor immune surveillance and metastasis. The expression of Fas/FasL on mammary tumor tissues holds prognostic value for breast cancer (BC) patients. We herein assessed Fas/FasL expression on circulating tumor cells (CTCs) and matched peripheral blood mononuclear cells (PBMCs) from 98 patients with metastatic BC receiving first-line treatment. Fas+, FasL+, and Fas+/FasL+ CTCs were identified in 88.5%, 92.3%, and 84.6% of CTC-positive patients, respectively. In addition, Fas+/FasL+, Fas-/FasL+, and Fas-/FasL- PBMCs were identified in 70.3%, 24.2%, and 5.5% of patients, respectively. A reduced progression-free survival (PFS) was revealed among CTC-positive patients (median PFS: 9.5 versus 13.4 months; p = 0.004), and specifically among those harboring Fas+/FasL+ CTCs (median PFS: 9.5 vs. 13.4 months; p = 0.009). On the other hand, an increased overall survival (OS) was demonstrated among patients with Fas+/FasL+ PBMCs rather than those with Fas-/FasL+ and Fas-/FasL- PBMCs (median OS: 35.7 vs. 25.9 vs. 14.4 months, respectively; p = 0.008). These data provide for the first time evidence on Fas/FasL expression on CTCs and PBMCs with significant prognostic value for patients with metastatic BC, thus highlighting the role of the Fas/FasL system in the peripheral immune response and metastatic progression of BC.

2.
Diagnostics (Basel) ; 14(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39335743

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are powerful molecular targeted therapeutic agents for lung cancer. We recently developed an original immunocytology and glass slide-based circulating tumor cell (CTC) detection platform for both CTC enumeration and EGFR mutation analysis with DNA extracted from CTCs. METHODS: Using this platform, we conducted a pilot clinical study for CTC enumeration in peripheral blood (PB), pulmonary arterial blood (PA), and pulmonary venous blood (PV) from 33 patients with lung cancer (Stage I-III) who underwent surgery, followed by digital PCR-based EGFR mutation analysis of CTCs in PV from 12 patients. RESULTS: The results showed that CTC levels were significantly higher in PV and PA than in PB (p < 0.05, p < 0.01. respectively), with a notably greater number of small and large CTC clusters (p < 0.01). Genetic analysis of EGFR mutations of CTCs from PV (n = 12) revealed six mutations, including three Exon19del and three L856R, in CTCs and eight EGFR mutations, including five Exon19del and three L856R, in lung tumor tissue. CTC mutation status matched that of tissue samples in nine patients, was unmatched in two patients, and controversial in one patient, indicating a sensitivity of 0.75 (6/8) and specificity of 1.0 (4/4) with some false-negative results for the mutation analysis of CTCs. CONCLUSIONS: This immunocytology-based CTC detection platform is a convenient method for detecting both CTC number and EGFR mutation status under microscopy, suggesting its potential as a liquid biopsy tool in the hospital for patients with lung cancer in some clinical settings.

3.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39337304

RESUMEN

Circulating tumor cells (CTCs) are detected in approximately 30% of metastatic non-small-cell lung cancer (NSCLC) cases using the CellSearch system, which relies on EpCAM immunomagnetic enrichment and Cytokeratin detection. This study evaluated the effectiveness of immunomagnetic enrichment targeting oncofetal chondroitin sulfate (ofCS) using recombinant VAR2CSA proteins (rVAR2) to improve the recovery of different NSCLC cell lines spiked into lysed blood samples. Four NSCLC cell lines-NCI-H1563, A549, NCI-H1792, and NCI-H661-were used to assess capture efficiency. The results demonstrated that the combined use of anti-EpCAM antibody and rVAR2 significantly enhanced the capture efficiency to an average of 88.2% compared with 40.6% when using only anti-EpCAM and 56.6% when using only rVAR2. These findings suggest that a dual-marker approach using anti-EpCAM and rVAR2 can provide a more robust and sensitive method for CTC enrichment in NSCLC, potentially leading to better diagnostic and prognostic outcomes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Molécula de Adhesión Celular Epitelial , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/inmunología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Separación Inmunomagnética/métodos , Biomarcadores de Tumor , Proteínas Recombinantes , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/inmunología , Células A549 , Sulfatos de Condroitina/metabolismo , Antígenos de Protozoos
4.
Cancer Med ; 13(18): e70216, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39302034

RESUMEN

PURPOSE: To investigate the value of 2-deoxy-18f-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) and circulating tumor cells (CTCs) for the differential diagnosis of patients with benign lung diseases and those with NSCLC. To explore the phenotypic heterogeneity of CTCs and their correlation with FDG uptake in patients with Stage I-IV NSCLC. METHODS: Blood specimens from patients with benign lung diseases and patients with primary NSCLC were collected for the detection of CTCs and their subtypes (epithelial, mixed, and mesenchymal) and analyzed for 18F-FDG PET/CT tumor metabolic parameters, including the maximum standardized uptake value (SUVmax), standard uptake value (SUL), metabolic tumor volume of primary lesion (MTV), total lesion glycolysis of primary lesion (TLG). Clinical data including age, gender, smoking history, tumor size, TNM stage and pathology type were also collected. The value of the two method alone and in combination for the differential diagnosis of benign and malignant was comparatively analyzed. Finally, the differences in CTC and its subtypes in different stages of NSCLC were compared, and FDG metabolic parameters were correlated with CTC subtypes. RESULTS: There were a total of 65 patients with pulmonary diseases, including 12 patients with benign pulmonary diseases and 53 patients with NSCLC. The mean age was 67 ± 10 (38-89 years), 27 were females and 38 were males. 31 (22 males and 9 females) had a long history of smoking. The mean size of the largest diameter of all single lesions was 36 ± 22 mm with a range of 10-108 mm. Seven out of 12 benign diseases were inflammatory granulomatous lesions and 5 were inflammatory pseudotumours. Twenty-four out of 53 NSCLC were adenocarcinomas and 29 were squamous carcinomas. Twelve out of 53 patients with NSCLC were in Stage I, 10 were in Stage II, 17 were in Stage III and 14 were in Stage IV. SUVmax, SUL, MTV, TLG, total CTCs, epithelial CTCs, and mixed CTCs were all valuable in the differential diagnosis of benign and malignant. TLG combined with mixed CTCs was statistically different from all other diagnostic methods (p < 0.05) and higher than any other diagnostic criteria. In the differential diagnosis of benign and Stage I NSCLC, only total CTC (Z = -2.188 p = 0.039) and mixed CTCs (Z = -3.020 p = 0.014) had certain diagnostic efficacy, and there was no statistical difference between them (p = 0.480). Only mesenchymal CTCs differed in Stage I-IV NSCLC, with a higher number of those who developed distant metastases than those who had non-distant metastases. Epithelial CTCs correlated with SUVmax (r = 0.333, p = 0.015) and SUL (r = 0.374, p = 0.006). Mmesenchymal CTCs correlated with MTV (r = 0.342, p = 0.018) and TLG (r = 0.319, p = 0.02). Further subgroup analyses revealed epithelial CTCs were correlated with SUVmax (r = 0.543, p = 0.009) and SUL (r = 0.552, p = 0.008), and the total CTCs was correlated with SUVmax (r = 0.622, p = 0.003), SUL (r = 0.652, p = 0.003), MTV (r = 0.460, p = 0.031), and TLG (r = 0.472, p = 0.027) in the early group (Stage I-II). Only mesenchymal CTCs was associated with MTV (r = 0.369, p = 0.041), and TLG (r = 0.415, p = 0.02) in the intermediate-late group (Stage III-IV). CONCLUSION: Both FDG PET metabolic parameters and CTCs demonstrated diagnostic value for NSCLC, and combining TLG with mixed CTCs could enhance their diagnostic efficacy. The total CTCs and mixed CTCs showed greater diagnostic value than FDG PET in distinguishing benign lesions from Stage I NSCLC. In NSCLC patients, the epithelial CTCs exhibited a positive correlation with SUVmax and SUL, while mesenchymal CTCs correlated with MTV, and TLG. Besides, epithelial CTCs showed stronger correlations with SUVmax and SUL, and total CTCs showed stronger correlations with SUVmax, SUL, MTV, and TLG in Stage I-II NSCLC. Only mesenchymal CTCs in Stage III-IV NSCLC showed correlations with MTV and TLG. Stage IV NSCLC cases displayed a higher number of mesenchymal CTCs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Fluorodesoxiglucosa F18 , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Masculino , Femenino , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Persona de Mediana Edad , Anciano , Diagnóstico Diferencial , Estadificación de Neoplasias , Adulto , Anciano de 80 o más Años , Radiofármacos
5.
Transl Cancer Res ; 13(7): 3589-3598, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39145074

RESUMEN

Background: Circulating tumor cells (CTCs) has shown important prognostic value in non-small cell lung cancer (NSCLC). However, the present low sensitivity of CTC capture technology restricts their clinical application. This study aims to explore the feasibility of combining the peripheral blood cell (PBC)-derived inflammation-based score with CTCs to increase the prognostic value of CTCs in NSCLC. Methods: Sixty volunteers diagnosed with NSCLC were recruited. CTC count and six inflammation-based scores were examined and the association with progression-free survival (PFS) and overall survival (OS) was explored. The changes in the CTC counts before and after the immunotherapy were observed. Results: Multivariate analysis showed that CTCs >7 [hazard ratio (HR) =9.07; 95% confidence interval (CI): 3.68-22.37, P<0.001] and monocytes-to-lymphocytes ratio (MLR) > 0.2 (HR =3.07; 95% CI: 1.21-7.84; P=0.01) were associated with shorter OS and PFS in patients with NSCLC. Patients with CTCs >7 and MLR >0.2 had 12.30 times increased risk of death (P<0.001) and 6.10 times increased risk of disease progression (P=0.002) compared with those with CTCs ≤7 and MLR ≤0.2. Decreased CTC counts after immunotherapy were closely related to disease control (r=0.535, P=0.01). Conclusions: CTCs and MLR are both independent risk factors for prognosis in patients with NSCLC. The combination of CTCs with MLR significantly increased the prognostic value of CTCs, which would contribute to stratification of NSCLC patients and providing precise treatment. Dynamic monitoring of CTCs efficiently shows the immunotherapy response in NSCLC.

6.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063215

RESUMEN

Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Glioblastoma , Células Neoplásicas Circulantes , Humanos , Glioblastoma/diagnóstico , Glioblastoma/sangre , Glioblastoma/patología , Biopsia Líquida/métodos , Biomarcadores de Tumor/sangre , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/patología , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/líquido cefalorraquídeo
7.
Biosens Bioelectron ; 263: 116575, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067413

RESUMEN

Circulating tumor cells (CTCs) serve as crucial indicators for tumor occurrence, progression, and prognosis monitoring. However, achieving high sensitivity and high purity capture of CTCs remains challenging. Additionally, in situ capture and synchronous clearance hold promise as methods to impede tumor metastasis, but further exploration is needed. In this study, biomimetic cell membrane-coated magnetic nanoparticles (NPs) were designed to address the issue of nonspecific adsorption of capture probes by the immune system during blood circulation. Membranes from human breast cancer cells (tumor cell membranes, TMs) and leukocytes (white blood cell membranes, WMs) were extracted and fused to form a hybrid membrane (HM), which was further modified onto the surface of porous magnetic NPs loaded with indocyanine green (ICG). The incorporation of TM enhanced the material's target specificity, thus increasing capture efficiency, while WM coating reduced interference from homologous white blood cells (WBCs), further enhancing capture purity. Additionally, in conjunction with our novel inverted microfluidic chip, this work introduces the first use of polymer photonic crystals as the capture interface for CTCs. Besides providing an advantageous surface structure for CTC attachment, the 808 nm photonic bandgap effectively amplifies the 808 nm excitation light at the capture surface position. Therefore, upon capturing CTCs, the ICG molecules in the probes facilitate enhanced photothermal (PTT) and photodynamic (PDT) synergistic effects, directly inactivating the captured CTCs. This method achieves capture efficiency and purity exceeding 95% and permits in situ inactivation post-capture, providing an important approach for future research on impeding tumor metastasis in vivo.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Membrana Celular , Separación Celular , Nanopartículas de Magnetita , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patología , Humanos , Nanopartículas de Magnetita/química , Neoplasias de la Mama/patología , Membrana Celular/química , Separación Celular/instrumentación , Separación Celular/métodos , Técnicas Biosensibles/instrumentación , Dispositivos Laboratorio en un Chip , Verde de Indocianina/química , Línea Celular Tumoral , Femenino , Leucocitos/citología
8.
Front Chem ; 12: 1400988, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831912

RESUMEN

Circulating tumor cells (CTCs) have significant clinical value in early tumor detection, dynamic monitoring and immunotherapy. CTC detection stands out as a leading non-invasive approach for tumor diagnostics and therapeutics. However, the high heterogeneity of CTCs and the occurrence of epithelial-mesenchymal transition (EMT) during metastasis pose challenges to methods relying on EpCAM-positive enrichment. To address these limitations, a method based on negative enrichment of CTCs using specific leukocyte targets has been developed. In this study, aiming to overcome the low purity associated with immunomagnetic beads targeting solely the leukocyte common antigen CD45, we introduced CD66b-modified immunomagnetic beads. CD66b, a specific target for neutrophils with abundant residues, was chosen as a complementary approach. The process involved initial collection of nucleated cells from whole blood samples using density gradient centrifugation. Subsequently, magnetically labeled leukocytes were removed by magnetic field, enabling the capture of CTCs with higher sensitivity and purity while retaining their activity. Finally, we selected 20 clinical blood samples from patients with various cancers to validate the effectiveness of this strategy, providing a new generalized tool for the clinical detection of CTCs.

9.
Asian Pac J Cancer Prev ; 25(5): 1559-1566, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809627

RESUMEN

INTRODUCTION: Circulating tumor cells (CTCs) and Programmed death-ligand 1 (PD-L1) play pivotal roles in cancer biology and therapy response. This exploratory study aimed to elucidate the influence of neoadjuvant radiotherapy on PD-L1 expression in tumor tissues and CTCs of patients with inoperable locally advanced breast cancer. METHODS: We conducted a prospective cohort study at Universitas Andalas Hospital Padang from January to December 2022 with 27 patients. Biopsies and blood draws were executed before and after the tenth fractions of neoadjuvant radiotherapy. Following radiotherapy, CTCs were isolated using magnetic beads enrichment, followed by an RT-PCR analysis for PD-L1 expression. Correlations between PD-L1 expression and tumor response, evaluated via local response and RECIST criteria before and after radiotherapy breast CT scan, were examined using Fisher's exact and chi-square tests. RESULTS: Our data revealed no significant alterations in PD-L1 expression in either tumor tissues or CTCs during radiotherapy (p=0.848 for tissue, p=0.548 for CTCs). Notably, PD-L1 expression in tumor tissue before treatment was significantly associated with RECIST (p=0.021), while other correlations with local response and RECIST were not statistically significant. CONCLUSION: The study implies radiotherapy may not significantly influence PD-L1 expression in tumor tissue and CTCs. However, pre-treatment PD-L1 expression in tumor tissue correlates with RECIST criteria. These findings highlight the need for additional, comprehensive studies to elucidate further the interplay between PD-L1, CTCs, and radiotherapy response.


Asunto(s)
Antígeno B7-H1 , Biomarcadores de Tumor , Neoplasias de la Mama , Células Neoplásicas Circulantes , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/efectos de la radiación , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/sangre , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Estudios de Seguimiento , Terapia Neoadyuvante , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/efectos de la radiación , Pronóstico , Estudios Prospectivos
10.
Mol Biomed ; 5(1): 17, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724687

RESUMEN

Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".


Asunto(s)
Heterogeneidad Genética , Melanoma , Terapia Molecular Dirigida , Neoplasias de la Úvea , Humanos , Melanoma/genética , Melanoma/patología , Melanoma/terapia , Melanoma/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/terapia , Neoplasias de la Úvea/patología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Biomarcadores de Tumor/genética , Mutación , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Biopsia Líquida/métodos
11.
Artículo en Inglés | MEDLINE | ID: mdl-38751670

RESUMEN

Liquid biopsy has emerged as a crucial tool in managing breast cancer (BC) patients, offering a minimally invasive approach to detect circulating tumor biomarkers. Until recently, the majority of the studies in BC focused on evaluating a single liquid biopsy analyte, primarily circulating tumor DNA and circulating tumor cells (CTCs). Despite the proven prognostic and predictive value of CTCs, their low abundance when detected using enrichment methods, especially in the early stages, poses a significant challenge. It is becoming evident that combining diverse circulating biomarkers, each representing different facets of tumor biology, has the potential to enhance the management of patients with BC. This article emphasizes the importance of considering these biomarkers as complementary/synergistic rather than competitive, recognizing their ability to contribute to a comprehensive disease profile. The review provides an overview of the clinical significance of simultaneously analyzing CTCs and other biomarkers, including cell-free circulating DNA, extracellular vesicles, non-canonical CTCs, cell-free RNAs, and non-malignant cells. Such a comprehensive liquid biopsy approach holds promise not only in BC but also in other cancer types, offering opportunities for early detection, prognostication, and therapy monitoring. However, addressing associated challenges, such as refining detection methods and establishing standardized protocols, is crucial for realizing the full potential of liquid biopsy in transforming our understanding and approach to BC. As the field evolves, collaborative efforts will be instrumental in unlocking the revolutionary impact of liquid biopsy in BC research and management.

12.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732051

RESUMEN

This review offers a comprehensive exploration of the intricate immunological landscape of breast cancer (BC), focusing on recent advances in diagnosis and prognosis through the analysis of circulating tumor cells (CTCs). Positioned within the broader context of BC research, it underscores the pivotal role of the immune system in shaping the disease's progression. The primary objective of this investigation is to synthesize current knowledge on the immunological aspects of BC, with a particular emphasis on the diagnostic and prognostic potential offered by CTCs. This review adopts a thorough examination of the relevant literature, incorporating recent breakthroughs in the field. The methodology section succinctly outlines the approach, with a specific focus on CTC analysis and its implications for BC diagnosis and prognosis. Through this review, insights into the dynamic interplay between the immune system and BC are highlighted, with a specific emphasis on the role of CTCs in advancing diagnostic methodologies and refining prognostic assessments. Furthermore, this review presents objective and substantiated results, contributing to a deeper understanding of the immunological complexity in BC. In conclusion, this investigation underscores the significance of exploring the immunological profile of BC patients, providing valuable insights into novel advances in diagnosis and prognosis through the utilization of CTCs. The objective presentation of findings emphasizes the crucial role of the immune system in BC dynamics, thereby opening avenues for enhanced clinical management strategies.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/inmunología , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/sangre , Pronóstico , Femenino
13.
Mol Imaging Biol ; 26(4): 603-615, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594545

RESUMEN

PURPOSE: We recently developed an optical instrument to non-invasively detect fluorescently labeled circulating tumor cells (CTCs) in mice called 'Diffuse in vivo Flow Cytometry' (DiFC). OTL38 is a folate receptor (FR) targeted near-infrared (NIR) contrast agent that is FDA approved for use in fluorescence guided surgery of ovarian and lung cancer. In this work, we investigated the use OTL38 for in vivo labeling and detection of FR + CTCs with DiFC. PROCEDURES: We tested OTL38 labeling of FR + cancer cell lines (IGROV-1 and L1210A) as well as FR- MM.1S cells in suspensions of Human Peripheral Blood Mononuclear cells (PBMCs) in vitro. We also tested OTL38 labeling and NIR-DIFC detection of FR + L1210A cells in blood circulation in nude mice in vivo. RESULTS: 62% of IGROV-1 and 83% of L1210A were labeled above non-specific background levels in suspensions of PBMCs in vitro compared to only 2% of FR- MM.1S cells. L1210A cells could be labeled with OTL38 directly in circulation in vivo and externally detected using NIR-DiFC in mice with low false positive detection rates. CONCLUSIONS: This work shows the feasibility of labeling CTCs in vivo with OTL38 and detection with DiFC. Although further refinement of the DiFC instrument and signal processing algorithms and testing with other animal models is needed, this work may eventually pave the way for human use of DiFC.


Asunto(s)
Ratones Desnudos , Células Neoplásicas Circulantes , Animales , Células Neoplásicas Circulantes/patología , Humanos , Línea Celular Tumoral , Coloración y Etiquetado , Femenino , Ratones , Citometría de Flujo , Leucocitos Mononucleares
14.
Biomolecules ; 14(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38672414

RESUMEN

Small-cell lung cancer (SCLC) cases represent approximately 15% of all lung cancer cases, remaining a recalcitrant malignancy with poor survival and few treatment options. In the last few years, the addition of immunotherapy to chemotherapy improved clinical outcomes compared to chemotherapy alone, resulting in the current standard of care for SCLC. However, the advantage of immunotherapy only applies to a few SCLC patients, and predictive biomarkers selection are lacking for SCLC. In particular, due to some features of SCLC, such as high heterogeneity, elevated cell plasticity, and low-quality tissue samples, SCLC biopsies cannot be used as biomarkers. Therefore, the characterization of the tumor and, subsequently, the selection of an appropriate therapeutic combination may benefit greatly from liquid biopsy. Soluble factors, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) are now useful tools in the characterization of SCLC. This review summarizes the most recent data on biomarkers detectable with liquid biopsy, emphasizing their role in supporting tumor detection and their potential role in SCLC treatment choice.


Asunto(s)
Biomarcadores de Tumor , Inmunoterapia , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Carcinoma Pulmonar de Células Pequeñas , Humanos , Biopsia Líquida/métodos , Carcinoma Pulmonar de Células Pequeñas/terapia , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/inmunología , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/diagnóstico , Inmunoterapia/métodos , Biomarcadores de Tumor/metabolismo , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , ADN Tumoral Circulante/sangre , Vesículas Extracelulares/metabolismo
15.
Cancers (Basel) ; 16(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38611055

RESUMEN

Cancer remains a leading cause of mortality worldwide, with metastasis significantly contributing to its lethality. The metastatic spread of tumor cells, primarily through the bloodstream, underscores the importance of circulating tumor cells (CTCs) in oncological research. As a critical component of liquid biopsies, CTCs offer a non-invasive and dynamic window into tumor biology, providing invaluable insights into cancer dissemination, disease progression, and response to treatment. This review article delves into the recent advancements in CTC research, highlighting their emerging role as a biomarker in various cancer types. We explore the latest technologies and methods for CTC isolation and detection, alongside novel approaches to characterizing their biology through genomics, transcriptomics, proteomics, and epigenetic profiling. Additionally, we examine the clinical implementation of these findings, assessing how CTCs are transforming the landscape of cancer diagnosis, prognosis, and management. By offering a comprehensive overview of current developments and potential future directions, this review underscores the significance of CTCs in enhancing our understanding of cancer and in shaping personalized therapeutic strategies, particularly for patients with metastatic disease.

16.
Expert Rev Mol Diagn ; 24(4): 311-331, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38607339

RESUMEN

INTRODUCTION: Oral Squamous Cell Carcinoma (OSCC), the sixth most widespread malignancy in the world, accounts for 90% of all cases of oral cancer. The primary risk factors are tobacco chewing, alcohol consumption, viral infection, and genetic modifications. OSCC has a high morbidity rate due to the lack of early diagnostic methods. Nowadays, liquid biopsy plays a vital role in the initial diagnosis of oral cancer. ctNAs extracted from saliva and serum/plasma offer meaningful insights into tumor genetics and dynamics. The interplay of these elements in saliva and serum/plasma showcases their significance in advancing noninvasive, effective OSCC detection and monitoring. AREAS COVERED: This review mainly focused on the role of liquid biopsy as an emerging point in the diagnosis and prognosis of OSCC and the current advancements and challenges associated with liquid biopsy. EXPERT OPINION: Liquid biopsy is regarded as a new, minimally invasive, real-time monitoring tool for cancer diagnosis and prognosis. Many biomolecules found in bodily fluids, including ctDNA, ctRNA, CTCs, and EVs, are significant biomarkers to identify cancer in its early stages. Despite these groundbreaking strides, challenges persist. Standardization of sample collection, isolation, processing, and detection methods is imperative for ensuring result reproducibility across diverse studies.

17.
J Exp Clin Cancer Res ; 43(1): 129, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685125

RESUMEN

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise in guiding treatment strategies for advanced gastric cancer (GC). However, their clinical impact has been limited due to challenges in identifying epithelial-mesenchymal transition (EMT)-CTCs using conventional methods. METHODS: To bridge this knowledge gap, we established a detection platform for CTCs based on the distinctive biomarker cell surface vimentin (CSV). A prospective study involving 127 GC patients was conducted, comparing CTCs enumeration using both EpCAM and CSV. This approach enabled the detection of both regular and EMT-CTCs, providing a comprehensive analysis. Spiking assays and WES were employed to verify the reliability of this marker and technique. To explore the potential inducer of CSV+CTCs formation, a combination of Tandem Mass Tag (TMT) quantitative proteomics, m6A RNA immunoprecipitation-qPCR (MeRIP-qPCR), single-base elongation- and ligation-based qPCR amplification method (SELECT) and RNA sequencing (RNA-seq) were utilized to screen and confirm the potential target gene. Both in vitro and in vivo experiments were performed to explore the molecular mechanism of CSV expression regulation and its role in GC metastasis. RESULTS: Our findings revealed the potential of CSV in predicting therapeutic responses and long-term prognosis for advanced GC patients. Additionally, compared to the conventional EpCAM-based CTCs detection method, the CSV-specific positive selection CTCs assay was significantly better for evaluating the therapeutic response and prognosis in advanced GC patients and successfully predicted disease progression 14.25 months earlier than radiology evaluation. Apart from its excellent role as a detection marker, CSV emerges as a promising therapeutic target for attenuating GC metastasis. It was found that fat mass and obesity associated protein (FTO) could act as a potential catalyst for CSV+CTCs formation, and its impact on the insulin-like growth factor-I receptor (IGF-IR) mRNA decay through m6A modification. The activation of IGF-I/IGF-IR signaling enhanced the translocation of vimentin from the cytoplasm to the cell surface through phosphorylation of vimentin at serine 39 (S39). In a GC mouse model, the simultaneous inhibition of CSV and blockade of the IGF-IR pathway yielded promising outcomes. CONCLUSION: In summary, leveraging CSV as a universal CTCs marker represents a significant breakthrough in advancing personalized medicine for patients with advanced GC. This research not only paves the way for tailored therapeutic strategies but also underscores the pivotal role of CSV in enhancing GC management, opening new frontiers for precision medicine.


Asunto(s)
Biomarcadores de Tumor , Células Neoplásicas Circulantes , Neoplasias Gástricas , Vimentina , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Estudios Prospectivos , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Vimentina/metabolismo
18.
J Gastrointest Oncol ; 15(1): 134-146, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38482239

RESUMEN

Background: Colorectal cancer (CRC) is the third most prevalent cancer in the world. Traditional tissue biopsy cannot provide dynamic monitoring of patients' tumors or reflect the characteristics of tumors in real time because the sampling process is invasive and accompanied by risks. Circulating tumor cells (CTCs) are considered a major cause of tumor metastasis, and investigating CTCs helps to understand the biology and vulnerability of malignant tumors during hematogenous metastasis. Methods: We sequentially used epithelial cell adhesion molecule (EpCAM)-coated immunoliposomal magnetic beads (Ep-IMBs) and vimentin-coated immunoliposomal magnetic beads (Vi-IMBs) to capture and characterize CTCs from 110 CRC patients. We further constructed a Cox risk regression model, optimized the model composition using backward stepwise regression, and finally applied nomograms to show the effect of each variable on survival risk. Results: The specificity of the CTCs enrichment and identification system was 100% and the sensitivity was 79.0%. Multivariate analysis indicated total CTC number was an important predictor for bad survival, whereas American Joint Committee on Cancer (AJCC) stage, lymph node metastasis, and carcinoembryonic antigen (CEA) level were associated with prognosis, and the risk of mortality was associated with the AJCC stage of the CRC. Conclusions: The CTC enrichment and identification system constructed in this research demonstrated superior accuracy. In addition, CTCs can be used as an important predictor for prognosis of patients with CRC, and the combination of other clinical predictive factors can help clinicians to better design individualized treatment regimens, which is of great clinical application value.

20.
Cancers (Basel) ; 16(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38398163

RESUMEN

Enzalutamide is a second-generation androgen receptor inhibitor that increases overall survival (OS) rates in patients with metastatic castration-resistant prostate cancer (mCRPC). This study evaluates the efficacy of circulating tumor cell (CTC) status as a prognostic biomarker following enzalutamide administration. A retrospective subgroup analysis and prognostic survey were conducted on 43 patients with mCRPC and bone metastases treated in Juntendo University-affiliated hospitals from 2015 to 2022. Patients were treated with 160 mg enzalutamide daily. CTC analyses on blood samples were performed regularly before and every three months after treatment. The relationship between the patients' clinical factors and the OS rate was analyzed using the log-rank test; the median OS was 37 months. Patients with no detected CTCs at baseline showed significantly longer OS than those with detectable CTCs at baseline. Furthermore, patients demonstrating negative reversion of CTCs during enzalutamide treatment had significantly longer OS than patients with CTC-positivity. Two biomarkers-higher hemoglobin at baseline and achieving negative reversion of CTCs-were significantly associated with prolonged OS. This study suggests that patients achieving CTC-negative reversion during treatment for mCRPC with bone metastases exhibit improved long-term OS. Chronological measurement of CTC status might be clinically useful in the treatment of mCRPC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...