Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Transl Med ; 22(1): 856, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313812

RESUMEN

Owing to patient-derived tumor tissues and cells, significant advances have been made in personalized cancer treatment and precision medicine, with cancer stem cell-derived three-dimensional tumor organoids serving as crucial in vitro models that accurately replicate the structural, phenotypic, and genetic characteristics of tumors. However, despite their extensive use in drug testing, genome editing, and transplantation for facilitating personalized treatment approaches in clinical practice, the inadequate capacity of these organoids to effectively model immune cells and stromal components within the tumor microenvironment limits their potential. Additionally, effective clinical immunotherapy has led the tumor immune microenvironment to garner considerable attention, increasing the demand for simulating patient-specific tumor-immune interactions. Consequently, co-culture techniques integrating tumor organoids with immune cells and tumor microenvironment constituents have been developed to expand the possibilities for personalized drug response investigations, with recent advancements enhancing the understanding of the strengths, limitations, and applicability of the co-culture approach. Herein, the recent advancements in the field of tumor organoids have been comprehensively reviewed, specifically highlighting the tumor organoid co-culture-related developments with various immune cell models and their implications for clinical research. Furthermore, this review delineates the current state of research and application of organoid models regarding the therapeutic approaches and related challenges for gynecological tumors. This study may provide a theoretical basis for further research on the use of patient-derived organoids in tumor immunity, drug development, and precision medicine.


Asunto(s)
Neoplasias de los Genitales Femeninos , Organoides , Microambiente Tumoral , Humanos , Organoides/inmunología , Microambiente Tumoral/inmunología , Femenino , Neoplasias de los Genitales Femeninos/inmunología , Neoplasias de los Genitales Femeninos/patología , Neoplasias de los Genitales Femeninos/terapia , Técnicas de Cocultivo , Medicina de Precisión , Inmunoterapia/métodos
2.
J Dairy Sci ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265837

RESUMEN

[Objective] This study aimed to investigate the interaction between Lactobacillus helveticus H9 (H9) and Bifidobacterium animalis ssp. lactis Probio-M8 (M8) through metabolomics analysis, focusing on understanding how co-culturing these strains can enhance bacterial growth and metabolism, thereby shortening the fermentation cycle and improving efficiency. [Methods] The H9 and M8 strains were cultured individually and in combination (1:1 ratio) in milk. The fermented milk metabolomes were analyzed using solid-phase microextraction-gas chromatography-mass spectrometry. [Results] In the dual-strain fermentation, the M8 strain exhibited a 2.33-fold increase in viable bacterial count compared with single-strain fermentation. Additionally, the dual-strain fermentation resulted in greater metabolite abundance and diversity. Notably, the dual-strain fermented milk showed significantly elevated levels of metabolites, including 5-methyl-2-hexanone, (E)-3-octen-2-one, acetic acid, alanine, and 3-hydroxy-butanal. [Conclusion] Our results demonstrated that co-culturing the M8 and H9 strains accelerated growth and fermentation efficiency. This enhancement effect is likely attributed to the strong proteolytic ability of the H9 strain, which hydrolyzes casein to produce small molecular peptides, alanine, tyrosine, and other growth-promoting factors. The insights gained from this study have significant implications for probiotics and the dairy industry, potentially leading to shorter fermentation cycles, enhanced cost-effectiveness, and improved nutritional and functional properties of future fermented milk products. Additionally, these findings may contribute to advancements in probiotic research and applications.

3.
Sci Rep ; 14(1): 20703, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237637

RESUMEN

This work uses response surface methodology (RSM) to study the co-cultivation of symbiotic indigenous wastewater microalgae and bacteria under different conditions (inoculum ratio of bacteria to microalgae, CO2, light intensity, and harvest time) for optimal bioenergy feedstock production. The findings of this study demonstrate that the symbiotic microalgae-bacteria culture not only increases total microalgal biomass and lipid productivity, but also enlarges microalgal cell size and stimulates lipid accumulation. Meanwhile, inoculum ratio of bacteria to microalgae, light intensity, CO2, and harvest time significantly affect biomass and lipid productivity. CO2 concentration and harvest time have significant interactive effect on lipid productivity. The response of microalgal biomass and lipid productivity varies significantly from 2.1 × 105 to 1.9 × 107 cells/mL and 2.8 × 102 to 3.7 × 1012 Total Fluorescent Units/mL respectively. Conditions for optimum biomass and oil accumulation are 100% of inoculation ratio (bacteria/microalgae), 3.6% of CO2 (v/v), 205.8 µmol/m2/s of light intensity, and 10.6 days of harvest time. This work provides a systematic methodology with RSM to explore the benefits of symbiotic microalgae-bacteria culture, and to optimize various cultivation parameters within complex wastewater environments for practical applications of integrated wastewater-microalgae systems for cost-efficient bioenergy production.


Asunto(s)
Bacterias , Biocombustibles , Biomasa , Dióxido de Carbono , Microalgas , Aguas Residuales , Aguas Residuales/microbiología , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Biocombustibles/microbiología , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Técnicas de Cocultivo/métodos , Simbiosis , Lípidos/biosíntesis , Lípidos/análisis
4.
Mar Environ Res ; 201: 106672, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128428

RESUMEN

Aquaculture of bivalve shellfish and algae offers significant ecological benefits, yet the complex interactions between these organisms can substantially impact local carbon dynamics. This study investigated the effects of co-culturing four intertidal bivalve species Pacific oysters (Crassostrea gigas), Manila clams (Ruditapes philippinarum), Chinese clams (Cyclina sinensis), and hard clams (Mercenaria mercenaria) with microalgae (Isochrysis galbana) on specific water quality parameters, including total particulate matter (TPM), total organic matter (TOM), dissolved inorganic carbon (DIC), dissolved carbon dioxide (dCO2), dissolved oxygen (DO), and ammonium (NH4+) concentrations. The bivalves were divided into smaller and larger groups and cultured under two conditions: with algae (WP) and without (NP), along with matched controls. Total particulate matter (TPM), total organic matter (TOM), dissolved oxygen (DO), ammonium nitrogen (NH4+), dissolved inorganic carbon (DIC), and CO2 (dCO2) were measured before and after 3-h cultivation. Results revealed species-specific impacts on water chemistry. C. gigas, C. sinensis and R. philippinarum showed the strongest reduction in DIC and dCO2 in WP groups, indicating synergistic bioremediation with algae. M. mercenaria notably reduced TPM, highlighting its particle carbon sequestration potential. DO concentrations decreased in most WP or NP groups, reflecting respiration of the cultured bivalves or microalgae. NH4+ levels also declined for most species, indicating nitrogen assimilation by these creatures. Overall, the bivalve size significantly impacted carbon and nitrogen processing capacities. These findings reveal species-specific capabilities in regulating water carbon dynamics. Further research should explore integrating these bivalves in carbon-negative aquaculture systems to mitigate environmental impacts. This study provides valuable insights underlying local carbon dynamics in shallow marine ecosystems.


Asunto(s)
Acuicultura , Bivalvos , Carbono , Microalgas , Calidad del Agua , Animales , Bivalvos/metabolismo , Bivalvos/fisiología , Carbono/metabolismo , Técnicas de Cocultivo , Nitrógeno/metabolismo
5.
Int J Biol Macromol ; 276(Pt 2): 133904, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084992

RESUMEN

This study proposed Hibiscus sabdariffa as a novel substrate for BC production with Komagataeibacter species and their consortia. K. intermedius is found as the most efficient producer (5.98 g/L BC, 3.56 × 10-2 g-1 h-1 productivity rate) following K. maltaceti (4.44 g/L BC, 2.64 × 10-2 g-1 h-1 productivity rate) and K. nataicola (3.67 g/L BC, 2.18 × 10-2 g-1 h-1 productivity rate). Whereas agitation increased BC production with K. nataicola (1.22-fold, 4.49 g/L BC), K. maltaceti (1.24-fold, 5.52 g/L BC) and K. intermedius (1.27-fold, 7.63 g/L BC), irregular shaped BC was obtained. This could be a novel result as Komagataeibacter consortia increased BC production by 1.17-2.01-fold compared to monocultures resulting as 8.11 g/L BC through the co-cultivation of K. maltaceti-K. intermedius. Maximum increase was found to be 1.75-fold (1.79-fold WHC), occurring with monoculture of K. maltaceti, while 1.94-fold (1.26-fold WHC) with K. maltaceti-K. intermedius consortium when H. sabdariffa-based media compared Hestrin-Schramm media. Based on these results, this could be a novel result as H. sabdariffa-based media may replace the use of HS media in BC production by means of a bioactive content-rich plant and obtaining 3-D ultrafine porous structure with high thermal resistant (∼460-500 °C) BC with mono and co-cultivation of Komagataeibacter species to be used in industrial area.


Asunto(s)
Acetobacteraceae , Celulosa , Hibiscus , Acetobacteraceae/metabolismo , Celulosa/biosíntesis , Celulosa/metabolismo , Fermentación
6.
Nat Prod Bioprospect ; 14(1): 38, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886261

RESUMEN

The marine holothurian-derived fungal strain KMM 4401 has been identified as Paragliomastix luzulae using 28S rDNA, ITS regions and the partial TEF1 gene sequences. The metabolite profile of the fungal culture was studied by UPLC-MS technique. The strain KMM 4401 is a source of various virescenoside-type isopimarane glycosides suggested as chemotaxonomic feature for this fungal species. Also Px. luzulae KMM 4401 was proposed as possible source of new bioactive secondary metabolites especially antimicrobials. Moreover, the co-cultures of Px. luzulae KMM 4401 with another marine fungus Penicillium hispanicum KMM 4689 inoculated simultaneously or after two weeks were investigated by same way. It was shown, that P. hispanicum KMM 4689 suppressed the production of most of Px. luzulae KMM 4401 metabolites. On the other hand, the co-cultivation of P. hispanicum KMM 4689 and Px. luzulae KMM 4401 resulted in increasing of production of main deoxyisoaustamide alkaloids of P. hispanicum KMM 4689 on 50-190%.

7.
Sci Total Environ ; 945: 174065, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897470

RESUMEN

Kelps are recognized for providing many ecosystem services in coastal areas and considered in ocean acidification (OA) mitigation. However, assessing OA modification requires an understanding of the multiple parameters involved in carbonate chemistry, especially in highly dynamic systems. We studied the effects of sugar kelp (Saccharina latissima) on an experimental farm at the north end of Hood Canal, Washington-a low retentive coastal system. In this field mesocosm study, two oyster species (Magallana gigas, Ostrea lurida) were exposed at locations in the mid, edge, and outside the kelp array. The Hood Head Sugar Kelp Farm Model outputs were used to identify dominating factors in spatial and temporal kelp dynamics, while wavelet spectrum analyses helped in understanding predictability patterns. This was linked to the measured biological responses (dissolution, growth, isotopes) of the exposed organisms. Positioned in an area of high (sub)-diel tidal fluxes with low retention potential, there were no measurable alterations of the seawater pH at the study site, demonstrating that the kelp array could not induce a direct mitigating effect against OA. However, beneficial responses in calcifiers were still observed, which are linked to two causes: increased pH predictability and improved provisioning through kelp-derived particulate organic resource utilization and as such, kelp improved habitat suitability and indirectly created refugia against OA. This study can serve as an analogue for many coastal bay habitats where prevailing physical forcing drives chemical changes. Future macrophyte studies that investigate OA mitigating effects should focus also on the importance of predictability patterns, which can additionally improve the conditions for marine calcifiers and ecosystem services vulnerable to or compromised by OA, including aquaculture sustainability.


Asunto(s)
Kelp , Agua de Mar , Agua de Mar/química , Concentración de Iones de Hidrógeno , Animales , Refugio de Fauna , Washingtón , Ecosistema , Monitoreo del Ambiente , Ostreidae , Acidificación de los Océanos
8.
Bioresour Technol ; 406: 131049, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942211

RESUMEN

Increasing evidence shows that microbial synthesis plays an important role in producing high value-added products. However, microbial monoculture generally hampers metabolites production and limits scalability due to the increased metabolic burden on the host strain. In contrast, co-culture is a more flexible approach to improve the environmental adaptability and reduce the overall metabolic burden. The well-defined co-culturing microbial consortia can tap their metabolic potential to obtain yet-to-be discovered and pre-existing metabolites. This review focuses on the use of a co-culture strategy and its underlying mechanisms to enhance the production of products. Notably, the significance of comprehending the microbial interactions, diverse communication modes, genetic information, and modular co-culture involved in co-culture systems were highlighted. Furthermore, it addresses the current challenges and outlines potential future directions for microbial co-culture. This review provides better understanding the diversity and complexity of the interesting interaction and communication to advance the development of co-culture techniques.


Asunto(s)
Técnicas de Cocultivo , Técnicas de Cocultivo/métodos , Consorcios Microbianos/fisiología , Interacciones Microbianas/fisiología , Bacterias/metabolismo
9.
Pest Manag Sci ; 80(10): 5131-5140, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38864543

RESUMEN

BACKGROUND: Attract-and-kill (AK) beads are biological, microbial insecticides developed as an alternative to synthetic soil insecticides. For wireworm control, beads are based on calcium alginate/starch co-encapsulating the carbon dioxide (CO2) producing yeast Saccharomyces cerevisiae H205 as the attract component, and the entomopathogenic fungus Metarhizium brunneum CB15-III as the kill component. However, the physicochemical processes inside beads during co-cultivation are still unclear. Here we reveal for the first time the spatiotemporal conditions of oxygen and pH inside AK beads measured with microelectrodes and describe the impact of S. cerevisiae on CO2 and conidia formation. RESULTS: Measurements revealed a steep oxygen gradient already 2 days after co-encapsulation, with an internal hypoxic zone. Encapsulating either S. cerevisiae or M. brunneum already decreased the average pH from 5.5 to 4.7 and 4.6, respectively. However, on day 3, co-cultivation lead to temporal strong acidification of beads down to pH 3.6 which followed the maximum CO2 productivity and coincided with the maximum conidiation rate. Decreasing the yeast load decreased the total CO2 productivity to half, and the conidial production by 93%, while specific productivities normalized to 1% yeast load increased eight-fold and three-fold, respectively, with day 3 being an exception. CONCLUSION: Our findings indicate a general beneficial interaction between M. brunneum and S. cerevisiae, but also suggest competition for resources. These findings will contribute to develop innovative co-formulations with maximum efficiency to save application rates and costs. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Alginatos , Dióxido de Carbono , Metarhizium , Saccharomyces cerevisiae , Metarhizium/fisiología , Metarhizium/metabolismo , Saccharomyces cerevisiae/metabolismo , Alginatos/química , Dióxido de Carbono/metabolismo , Control Biológico de Vectores , Concentración de Iones de Hidrógeno , Esporas Fúngicas , Animales , Técnicas de Cocultivo
10.
BioTech (Basel) ; 13(2)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38804297

RESUMEN

The enzymatic hydrolysis of agricultural residues like wheat bran enables the valorization of otherwise unused carbon sources for biotechnological processes. The co-culture of Aspergillus niger and Trichoderma reesei with wheat bran particles as substrate produces an enzyme set consisting of xylanases, amylases, and cellulases that is suitable to degrade lignocellulosic biomass to sugar monomers (D-glucose, D-xylose, and L-arabinose). An integrated one-pot process for enzyme production followed by hydrolysis in stirred tank bioreactors resulted in hydrolysates with overall sugar concentrations of 32.3 g L-1 and 24.4 g L-1 at a 25 L and a 1000 L scale, respectively, within 86 h. Furthermore, the residual solid biomass consisting of fermented wheat bran with protein-rich fungal mycelium displays improved nutritional properties for usage as animal feed due to its increased content of sugars, protein, and fat.

11.
Food Microbiol ; 121: 104499, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637070

RESUMEN

In this study, we investigated the impact of microbial interactions on Monascus pigment (MP) production. We established diverse microbial consortia involving Monascus purpureus and Lactobacillus fermentum. The addition of Lactobacillus fermentum (4% at 48 h) to the submerged fermentation of M. purpureus resulted in a significantly higher MP production compared to that achieved using the single-fermentation system. Co-cultivation with immobilized L. fermentum led to a remarkable increase of 59.18% in extracellular MP production, while mixed fermentation with free L. fermentum caused a significant decrease of 66.93% in intracellular MPs, contrasting with a marginal increase of 4.52% observed during co-cultivation with immobilized L. fermentum and the control group respectively. The findings indicate an evident enhancement in cell membrane permeability of M. purpureus when co-cultivated with immobilized L. fementum. Moreover, integrated transcriptomic and metabolomic analyses were conducted to elucidate the regulatory mechanisms underlying MP biosynthesis and secretion following inoculation with immobilized L. fementum, with specific emphasis on glycolysis, steroid biosynthesis, fatty acid biosynthesis, and energy metabolism.


Asunto(s)
Monascus , Fermentación , Monascus/genética , Monascus/metabolismo , Pigmentos Biológicos/metabolismo , Consorcios Microbianos , Glucólisis
12.
Biotechnol Lett ; 46(3): 431-441, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578514

RESUMEN

PURPOSE: CO2 fixation methods using green algae have attracted considerable attention because they can be applied for the fixation of dilute CO2 in the atmosphere. However, green algae generally exhibit low CO2 fixation efficiency under atmospheric conditions. Therefore, it is a challenge to improve the CO2 fixation efficiency of green algae under atmospheric conditions. Co-cultivation of certain microalgae with heterotrophic microorganisms can increase the growth potential of microalgae under atmospheric conditions. The objective of this study was to determine the culture conditions under which the growth potential of green algae Chlamydomonas reinhardtii is enhanced by co-culturing with the yeast Saccharomyces cerevisiae, and to identify the cause of the enhanced growth potential. RESULTS: When C. reinhardtii and S. cerevisiae were co-cultured with an initial green algae to yeast inoculum ratio of 1:3, the cell concentration of C. reinhardtii reached 133 × 105 cells/mL on day 18 of culture, which was 1.5 times higher than that of the monoculture. Transcriptome analysis revealed that the expression levels of 363 green algae and 815 yeast genes were altered through co-cultivation. These included genes responsible for ammonium transport and CO2 enrichment mechanism in green algae and the genes responsible for glycolysis and stress responses in yeast. CONCLUSION: We successfully increased C. reinhardtii growth potential by co-culturing it with S. cerevisiae. The main reasons for this are likely to be an increase in inorganic nitrogen available to green algae via yeast metabolism and an increase in energy available for green algae growth instead of CO2 enrichment.


Asunto(s)
Chlamydomonas reinhardtii , Técnicas de Cocultivo , Saccharomyces cerevisiae , Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Técnicas de Cocultivo/métodos , Dióxido de Carbono/metabolismo , Perfilación de la Expresión Génica
13.
Int J Food Microbiol ; 416: 110680, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38522149

RESUMEN

Population heterogeneity is an important component of the survival mechanism of Listeria monocytogenes, leading to cells in a population with diverse stress resistance levels. We previously demonstrated that several ribosomal gene rpsU mutations enhanced the stress resistance of L. monocytogenes and lowered the growth rate at 30 °C and lower temperatures. This study investigated whether these switches in phenotypes could result in a bias in strain detection when standard enrichment-based procedures are applied to a variety of strains. Detailed growth kinetics analysis of L. monocytogenes strains were performed, including the LO28 wild type (WT) and rpsU variants V14 and V15, during two commonly used enrichment-based procedures described in the ISO 11290-1:2017 and the U.S. Food and Drug Administration Bacteriological Analytical Manual (BAM). WT had a higher growth rate than the variants during the enrichment processes. Co-culture growth kinetics predictions for WT and rpsU variants showed that the detection chances of the rpsU mutants were reduced from ∼52 % to less than ∼13 % and âˆ¼ 3 % during ISO and BAM enrichment, respectively, which were further validated through subsequent qPCR experiments. Higher heat stress resistance of rpsU variants did not lead to faster recovery during enrichment after heat treatment, and different pre-culturing temperatures before heat treatment did not significantly affect the growth kinetics of the WT and rpsU variants. Additionally, post-enrichment isolation procedures involving streaking on selective agar plates did not show preferences for isolating WT or rpsU variants nor affect the detection chance of rpsU variants. The difference in detection chance suggests that the selective enrichment procedures inadequately represent the genotypic diversity present in a sample. Hence, the enrichment bias during the L. monocytogenes isolation procedure may contribute to the observed underrepresentation of the rpsU mutation among L. monocytogenes isolates deposited in publicly available genome databases. The underrepresentation of rpsU mutants in our findings suggests that biases introduced by standard isolation and enrichment procedures could inadvertently skew our understanding of genetic diversity when relying on public databases.


Asunto(s)
Listeria monocytogenes , Microbiología de Alimentos , Agar , Genotipo , Fenotipo , Medios de Cultivo
14.
Molecules ; 29(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338334

RESUMEN

Microbial symbionts of plants constitute promising sources of biocontrol organisms to fight plant pathogens. Bacillus sp. G2112 and Pseudomonas sp. G124 isolated from cucumber (Cucumis sativus) leaves inhibited the plant pathogens Erwinia and Fusarium. When Bacillus sp. G2112 and Pseudomonas sp. G124 were co-cultivated, a red halo appeared around Bacillus sp. G2112 colonies. Metabolite profiling using liquid chromatography coupled to UV and mass spectrometry revealed that the antibiotic phenazine-1-carboxylic acid (PCA) released by Pseudomonas sp. G124 was transformed by Bacillus sp. G2112 to red pigments. In the presence of PCA (>40 µg/mL), Bacillus sp. G2112 could not grow. However, already-grown Bacillus sp. G2112 (OD600 > 1.0) survived PCA treatment, converting it to red pigments. These pigments were purified by reverse-phase chromatography, and identified by high-resolution mass spectrometry, NMR, and chemical degradation as unprecedented 5N-glucosylated phenazine derivatives: 7-imino-5N-(1'ß-D-glucopyranosyl)-5,7-dihydrophenazine-1-carboxylic acid and 3-imino-5N-(1'ß-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid. 3-imino-5N-(1'ß-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid did not inhibit Bacillus sp. G2112, proving that the observed modification constitutes a resistance mechanism. The coexistence of microorganisms-especially under natural/field conditions-calls for such adaptations, such as PCA inactivation, but these can weaken the potential of the producing organism against pathogens and should be considered during the development of biocontrol strategies.


Asunto(s)
Bacillus , Bacillus/metabolismo , Pseudomonas/metabolismo , Fenazinas/farmacología , Fenazinas/química , Ácidos Carboxílicos/farmacología , Ácidos Carboxílicos/metabolismo
15.
Mar Drugs ; 22(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38393037

RESUMEN

Co-cultivation, coupled with the OSMAC approach, is considered an efficient method for expanding microbial chemical diversity through the activation of cryptic biosynthetic gene clusters (BGCs). As part of our project aiming to discover new fungal metabolites for crop protection, we previously reported five polyketides, the macrolides dendrodolides E (1) and N (2), the azaphilones spiciferinone (3) and 8α-hydroxy-spiciferinone (4), and the bis-naphtho-γ-pyrone cephalochromin (5) from the solid Potato Dextrose Agar (PDA) co-culture of two marine sediment-derived fungi, Plenodomus influorescens and Pyrenochaeta nobilis. However, some of the purified metabolites could not be tested due to their minute quantities. Here we cultivated these fungi (both axenic and co-cultures) in liquid regime using three different media, Potato Dextrose Broth (PDB), Sabouraud Dextrose Broth (SDB), and Czapek-Dox Broth (CDB), with or without shaking. The aim was to determine the most ideal co-cultivation conditions to enhance the titers of the previously isolated compounds and to produce extracts with stronger anti-phytopathogenic activity as a basis for future upscaled fermentation. Comparative metabolomics by UPLC-MS/MS-based molecular networking and manual dereplication was employed for chemical profiling and compound annotations. Liquid co-cultivation in PDB under shaking led to the strongest activity against the phytopathogen Phytophthora infestans. Except for compound 1, all target compounds were detected in the co-culture in PDB. Compounds 2 and 5 were produced in lower titers, whereas the azaphilones (3 and 4) were overexpressed in PDB compared to PDA. Notably, liquid PDB co-cultures contained meroterpenoids and depside clusters that were absent in the solid PDA co-cultures. This study demonstrates the importance of culture regime in BGC regulation and chemical diversity of fungal strains in co-culture studies.


Asunto(s)
Metaboloma , Espectrometría de Masas en Tándem , Técnicas de Cocultivo , Cromatografía Liquida , Medios de Cultivo , Glucosa
16.
Arch Microbiol ; 206(2): 61, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216809

RESUMEN

It is known that co-cultivation of green algae with heterotrophic microorganisms, such as yeast, improves green algae's growth potential and carbon dioxide fixation, even under low CO2 concentration conditions such as the atmosphere. Introducing mutations into green algae is also expected to enhance their growth potential. In this study, we sought to improve the growth potential of a co-culture system of the green algae Chlamydomonas reinhardtii and the yeast Saccharomyces cerevisiae by introducing mutations into the green algae. Additionally, we performed a transcriptome analysis of the co-culture of the green algae mutant strain with yeast, discussing the interaction between the green algae mutant strain and the yeast. When the green algae mutant strain was co-cultured with yeast, the number of green algae cells reached 152 × 105 cells/mL after 7 days of culture. This count was 2.6 times higher than when the wild-type green algae strain was cultured alone and 1.6 times higher than when the wild-type green algae strain and yeast were co-cultured. The transcriptome analysis also indicated that the primary reason for the increased growth potential of the green algae mutant strain was its enhanced photosynthetic activity and nitrogen utilization efficiency.


Asunto(s)
Chlorophyta , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Técnicas de Cocultivo , Fotosíntesis , Chlorophyta/genética , Mutagénesis , Dióxido de Carbono
17.
Adv Biochem Eng Biotechnol ; 188: 83-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38286901

RESUMEN

Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.


Asunto(s)
Agricultura , Técnicas de Cocultivo , Cianobacterias , Fertilizantes , Cianobacterias/metabolismo , Cianobacterias/crecimiento & desarrollo , Técnicas de Cocultivo/métodos , Agricultura/métodos , Plantas/metabolismo , Plantas/microbiología , Fijación del Nitrógeno , Nitrógeno/metabolismo
18.
Microbiol Spectr ; 12(1): e0192023, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38051050

RESUMEN

IMPORTANCE: Since the pandemic of coronavirus diseases 2019, the use of real-time PCR assay has become widespread among people who were not familiar with it in virus detection. As a result, whether a high real-time PCR value in one time test indicates virus transmissibly became a complicated social problem, regardless of the difference in assays and/or amplification conditions, the time and number of diagnostic test during the time course of infection. In addition, the multiple positives in the test of respiratory viruses further add to the confusion in the interpretation of the infection. To address this issue, we performed virus isolation using pediatric SARI (severe acute respiratory infections) specimens on air-liquid interface culture of human bronchial/tracheal epithelial cell culture. The result of this study can be a strong evidence that the specimens showing positivity for multiple agents in real-time PCR tests possibly contain infectious viruses.


Asunto(s)
Neumonía , Infecciones del Sistema Respiratorio , Virosis , Virus , Humanos , Niño , Infecciones del Sistema Respiratorio/diagnóstico , Virus/genética , Virosis/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Int J Biol Macromol ; 258(Pt 2): 128977, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154722

RESUMEN

By employing co-cultivation technique on Komagataeibacter xylinum and Lactococcus lactis subsp. lactis, bacterial cellulose (BC)/nisin films with improved antibacterial activity and mechanical properties were successfully produced. The findings demonstrated that increased nisin production is associated with an upregulation of gene expression. Furthermore, results from Scanning electronic microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Thermogravimetric analysis (TG) confirmed the integration of nisin within BC. While being biocompatible with human cells, the BC/nisin composites exhibited antimicrobial activity. Moreover, mechanical property analyses showed a noticeable improvement in Young's modulus, tensile strength, and elongation at break by 161, 271, and 195 %, respectively. Additionally, the nisin content in fermentation broth was improved by 170 % after co-culture, accompanied by an 8 % increase in pH as well as 10 % decrease in lactate concentration. Real-time reverse transcription PCR analysis revealed an upregulation of 11 nisin-related genes after co-cultivation, with the highest increase in nisA (5.76-fold). To our knowledge, this is the first study which demonstrates that an increase in secondary metabolites after co-culturing is modulated by gene expression. This research offers a cost-effective approach for BC composite production and presents a technique to enhance metabolite concentration through the regulation of relevant genes.


Asunto(s)
Lactococcus lactis , Nisina , Humanos , Nisina/química , Lactococcus lactis/metabolismo , Antibacterianos/metabolismo , Ácido Láctico/metabolismo , Fermentación
20.
Metabolites ; 13(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37999234

RESUMEN

An Aspergillus fumigatus KMM 4631 strain was previously isolated from a Pacific soft coral Sinularia sp. sample and was found to be a source of a number of bioactive secondary metabolites. The aims of this work are the confirmation of this strain' identification based on ITS, BenA, CaM, and RPB2 regions/gene sequences and the investigation of secondary metabolite profiles of Aspergillus fumigatus KMM 4631 culture and its co-cultures with Penicillium hispanicum KMM 4689, Amphichorda sp. KMM 4639, Penicillium sp. KMM 4672, and Asteromyces cruciatus KMM 4696 from the Collection of Marine Microorganisms (PIBOC FEB RAS, Vladivostok, Russia). Moreover, the DPPH-radical scavenging activity, urease inhibition, and cytotoxicity of joint fungal cultures' extracts on HepG2 cells were tested. The detailed UPLC MS qTOF investigation resulted in the identification and annotation of indolediketopiperazine, quinazoline, and tryptoquivaline-related alkaloids as well as a number of polyketides (totally 20 compounds) in the extract of Aspergillus fumigatus KMM 4631. The metabolite profiles of the co-cultures of A. fumigatus with Penicillium hispanicum, Penicillium sp., and Amphichorda sp. were similar to those of Penicillium hispanicum, Penicillium sp., and Amphichorda sp. monocultures. The metabolite profile of the co-culture of A. fumigatus with Asteromyces cruciatus differed from that of each monoculture and may be more promising for the isolation of new compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...