Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 158, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959530

RESUMEN

BACKGROUND: A large variation in seed coat colors and seed phenolic metabolites is present in common bean (Phaseolus vulgaris L.). The study of the relationships between seed coat color phenotype and the phenolic profile is an important step in the elucidation of the gene network involved in the phenylpropanoid biosynthetic pathway. However, this relationship is still poorly understood in this species. RESULTS: A genome-wide association study (GWAS) was used to investigate the genomic regions associated with the synthesis of 10 flavonoids (5 anthocyanins and 5 flavonols) and with 10 seed coat color traits using a set of 308 common bean lines of the Spanish Diversity Panel (SDP) which have been genotyped with 11,763 SNP markers.. A total of 31 significant SNP-trait associations (QTNs) were identified, grouped in 20 chromosome regions: 6 for phenolic metabolites on chromosomes Pv01, Pv02, Pv04, Pv08, and Pv09, 13 for seed coat color on chromosomes Pv01, Pv02, Pv06, Pv07, and Pv10, and 1 including both types of traits located on chromosome Pv08. In all, 58 candidate genes underlying these regions have been proposed, 31 of them previously described in the phenylpropanoid pathway in common bean, and 27 of them newly proposed in this work based on the association study and their homology with Arabidopsis anthocyanin genes. CONCLUSIONS: Chromosome Pv08 was identified as the main chromosome involved in the phenylpropanoid pathway and in consequence in the common bean seed pigmentation, with three independent chromosome regions identified, Phe/C_Pv08(2.7) (expanding from 2.71 to 4.04 Mbp), C_Pv08(5.8) (5.89-6.59 Mbp), and Phe_Pv08(62.5) (62.58 to 63.28 Mbp). Candidate genes previously proposed by other authors for the color genes V and P were validated in this GWAS. Candidate genes have been tentatively proposed from this study for color genes B and Rk on Pv02, Asp on Pv07, and complex C on Pv08. These results help to clarify the complex network of genes involved in the genetic control of phenolic compounds and seed color in common bean and provide the opportunity for future validation studies.


Asunto(s)
Phaseolus , Fenoles , Antocianinas/genética , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Phaseolus/genética , Semillas/genética
2.
Genes (Basel) ; 11(6)2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531980

RESUMEN

Altered melanosome transport in melanocytes, resulting from variants in the melanophilin (MLPH) gene, are associated with inherited forms of coat color dilution in many species. In dogs, the MLPH gene corresponds to the D locus and two variants, c.-22G > A (d1) and c.705G > C (d2), leading to the dilution of coat color, as described. Here, we describe the independent investigations of dogs whose coat color dilution could not be explained by known variants, and who report a third MLPH variant, (c.667_668insC) (d3), which leads to a frameshift and premature stop codon (p.His223Profs*41). The d3 allele is found at low frequency in multiple dog breeds, as well as in wolves, wolf-dog hybrids, and indigenous dogs. Canids in which the d3 allele contributed to the grey (dilute) phenotype were d1/d3 compound heterozygotes or d3 homozygotes, and all non-dilute related dogs had one or two D alleles, consistent with a recessive inheritance. Similar to other loci responsible for coat colors in dogs, this, alongside likely additional allelic heterogeneity at the D locus, or other loci, must be considered when performing and interpreting genetic testing.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Color , Color del Cabello/genética , Pigmentación/genética , Alelos , Animales , Codón sin Sentido/genética , Perros , Exones/genética , Mutación del Sistema de Lectura/genética , Homocigoto , Humanos , Fenotipo
3.
Forensic Sci Int Genet ; 45: 102226, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31884178

RESUMEN

A molecular genetic protocol for distinguishing pure and hybrid South American camelids was developed to provide strong, quantifiable, and unbiased species identification. We detail the application of the approach in the context of a criminal case in the Andes Mountains of central Chile where the defendants were alleged to have illegally hunted three wild guanacos (Lama guanicoe), as opposed to hybrid domestic llama (Lama glama)/wild guanaco crosses, which are unregulated. We describe a workflow that differentiates among wild, domestic and hybrid South American camelids (Lama versus Vicugna) based on mitochondrial cytochrome b genetic variation (to distinguish between Lama and Vicugna), and MC1R and exon 4 variation of the ASIP gene (to differentiate wild from domestic species). Additionally, we infer the population origin and sex of each of the three individuals from a panel of 15 autosomal microsatellite loci and the presence or absence of the SRY gene. Our analyses strongly supported the inference that the confiscated carcasses corresponded with 2 male and 1 female guanacos that were hunted illegally. Statistical power analyses suggested that there was an extremely low probability of misidentifying domestic camelids as wild camelids (an estimated 0 % Type I error rate), or using more conservative approached a 1.17 % chance of misidentification of wild species as domestic camelids (Type II error). Our case report and methodological and analytical protocols demonstrate the power of genetic variation in coat color genes to identify hybrids between wild and domestic camelid species and highlight the utility of the approach to help combat illegal wildlife hunting and trafficking.


Asunto(s)
Pelaje de Animal , Animales Domésticos/genética , Animales Salvajes/genética , Camelidae/genética , Genética Forense/métodos , Variación Genética , Proteína de Señalización Agouti/genética , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Crimen/legislación & jurisprudencia , Citocromos b/genética , ADN Mitocondrial/genética , Exones , Femenino , Genes sry , Masculino , Repeticiones de Microsatélite , Receptor de Melanocortina Tipo 1/genética , Análisis para Determinación del Sexo , América del Sur
4.
Electrophoresis ; 37(21): 2862-2866, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27542347

RESUMEN

Molecular methods for the detection of mammalian coat color phenotypes have expanded greatly within the past decade. Many phenotypes are associated with a single nucleotide polymorphism mutation in the genetic sequence. Traditionally, these mutations are detected through sequencing, hybridization assays or mini-sequencing. However, these techniques can be expensive and tedious. Previously, CE-SSCP using the F-108 polymer was able to distinguish SNPs for the melanocortin-1 receptor (mc1r) coat color gene in horses (Equus caballus) that differed by one nucleotide substitution. The objective of this study was to expand the detection of coat color SNPs in horses. The genes for the solute carrier family member 2 (slc45a2/matp), type III receptor protein-tyrosine kinase (kit) and mc1r genes using CE-SSCP and F-108 polymer were compared to mini-sequencing with the SNaPshotTM kit. The F-108 polymer reproducibly resolved homozygous and heterozygous individuals for the mc1r and kit markers, but was unable to resolve heterozygous individuals for slc45a2 at 38ºC. The need for temperatures <15ºC, the SNP position being close to the 5'-end, and conformational structures/free energy with similar values resulted in the inability to resolve the secondary structures. Despite this limitation, the CE-SSCP method could be used to provide a rapid phenotypic description for equine forensic investigations.


Asunto(s)
Electroforesis Capilar/métodos , Color del Cabello/genética , Caballos/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Polimorfismo de Nucleótido Simple/genética , Animales
5.
Tissue Cell ; 48(2): 114-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26905193

RESUMEN

The objective of this research was to evaluate the optimal passage number according to the biological characteristics of mouse skin melanocytes from different passages. Skin punch biopsies harvested from the dorsal region of 2-day old mice were used to establish melanocyte cultures. The cells from passage 4, 7, 10 and 13 were collected and evaluated for their melanogenic activity. Histochemical staining for tyrosinase (TYR) activity and immunostaining for the melanocyte specific markers including S-100 antigen, TYR, tyrosinase related protein 1 (TYRP1), tyrosinase related protein 2 (TYRP2) and micropthalmia associated transcription factor (MITF) confirmed purity and melanogenic capacity of melanocytes from different passages, with better melanogenic activity of passage 10 and 13 cells being observed. Treatment of passage 13 melanocytes with α-melanocyte stimulating hormone (α-MSH) showed increased expression of MITF, TYR and TYRP2 mRNA. However, considering the TYR mRNA dramatically high expression which is the characteristics of melanoma cells, melanocytes from passage 10 was the optimal passage number for the further research. Our results demonstrate culture of pure populations of mouse melanocytes to at least 10 passages and illustrate the potential utility of passage 10 cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in mouse.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Melanocitos/citología , Pigmentación/genética , Piel/citología , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Oxidorreductasas Intramoleculares/biosíntesis , Melanocitos/metabolismo , Glicoproteínas de Membrana/biosíntesis , Ratones , Factor de Transcripción Asociado a Microftalmía/biosíntesis , Monofenol Monooxigenasa/biosíntesis , Oxidorreductasas/biosíntesis , Proteínas S100/biosíntesis , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...