Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 774
Filtrar
1.
Plant Sci ; : 112282, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389316

RESUMEN

Anthocyanins are water-soluble natural pigments found broadly in plants. As members of the flavonoid family, they are widely distributed in various tissues and organs, including roots, leaves, and flowers, responsible for purple, red, blue, and orange colors. Beyond pigmentation, anthocyanins play a role in plant propagation, stress response, defense mechanisms, and human health benefits. Anthocyanin biosynthesis involves a series of conserved enzymes encoded by structural genes regulated by various transcription factors. In rice, anthocyanin-mediated pigmentation serves as an important morphological marker for varietal identification and purification, a critical nutrient source, and a key trait in studying rice domestication. Anthocyanin biosynthesis in rice is regulated by a ternary conserved MBW transcriptional complexes comprising MYB transcription factors (TFs), basic-helix-loop-helix (bHLH) TFs, and WD40 repeat protein, which activate the expression of structure genes. Wild rice (Oryza rufipogon) commonly has purple hull, purple stigma, purple apiculus, purple leaf, and red pericarp due to the accumulations of anthocyanin or proanthocyanin. However, most cultivated rice (Oryza sativa) varieties lose the anthocyanin phenotypes due to the function variations of some regulators including OsC1, OsRb, and Rc and the structure gene OsDFR. Over the past decades, significant progress has been made in understanding the molecular and genetic mechanisms of anthocyanin biosynthesis. This review summarizes research progress in rice anthocyanin biosynthetic pathways, genes involvements, distribution regulations, and domestication processes. Furthermore, it discusses future prospects for anthocyanin biosynthesis research in rice, aiming to provide a theoretical foundation for future investigations and applications, and to assist in breeding new rice varieties with organ-targeted anthocyanin deposition.

2.
Structure ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39383875

RESUMEN

ß-carotene (BCR) is the most abundant carotenoid, a colorant, antioxidant, and provitamin A. The extreme hydrophobicity of this hydrocarbon requires special mechanisms for distribution in aqueous media, including water-soluble carotenoproteins. However, all known carotenoproteins prefer oxygenated carotenoids and bind BCR inefficiently. Here, we present the crystal structure of the BCR-binding protein (BBP) from gregarious male locusts, which is responsible for their vivid yellow body coloration, in complex with its natural ligand, BCR. BBP forms an antiparallel tubular homodimer with α/ß-wrap folded monomers, each forming a hydrophobic 47 Å long, coaxial tunnel that opens outward and is occupied by one s-cisC6-C7, all-trans BCR molecule. In the BCR absence, BBP accepts a range of xanthophylls, with reduced efficiency depending on the position and number of oxygen atoms, but rejects lycopene. The structure captures a pigment complex with a Takeout 1 protein and inspires potential applications of BBP as a BCR solubilizer.

3.
Malar J ; 23(1): 299, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375756

RESUMEN

BACKGROUND: Battling malaria's morbidity and mortality rates demands innovative methods related to malaria diagnosis. Thick blood smears (TBS) are the gold standard for diagnosing malaria, but their coloration quality is dependent on supplies and adherence to standard protocols. Machine learning has been proposed to automate diagnosis, but the impact of smear coloration on parasite detection has not yet been fully explored. METHODS: To develop Coloration Analysis in Malaria (CAM), an image database containing 600 images was created. The database was randomly divided into training (70%), validation (15%), and test (15%) sets. Nineteen feature vectors were studied based on variances, correlation coefficients, and histograms (specific variables from histograms, full histograms, and principal components from the histograms). The Machine Learning Matlab Toolbox was used to select the best candidate feature vectors and machine learning classifiers. The candidate classifiers were then tuned for validation and tested to ultimately select the best one. RESULTS: This work introduces CAM, a machine learning system designed for automatic TBS image quality analysis. The results demonstrated that the cubic SVM classifier outperformed others in classifying coloration quality in TBS, achieving a true negative rate of 95% and a true positive rate of 97%. CONCLUSIONS: An image-based approach was developed to automatically evaluate the coloration quality of TBS. This finding highlights the potential of image-based analysis to assess TBS coloration quality. CAM is intended to function as a supportive tool for analyzing the coloration quality of thick blood smears.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Malaria , Color
4.
Behav Ecol ; 35(5): arae060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39372492

RESUMEN

To maximize camouflage across visually heterogeneous habitats, animals have evolved a variety of strategies, including polyphenism, color change, and behavioral background matching. Despite the expected importance of behavioral processes for mediating camouflage, such as selection for matching substrates, behavior has received less attention than color traits themselves, and interactions between color change and behavior are largely unexplored. Here, we investigated behavioral background matching in green and red chameleon prawns (Hippolyte varians) over the course of a color change experiment. Prawns were housed on mismatching green and red seaweeds for 30 days and periodically given a choice test between the same seaweeds in y-choice trials over the experiment. We found that, as prawns change color and improve camouflage (to the perspective of a fish predator), there is a reinforcing shift in behavior. That is, as prawns shift from red to green color, or vice versa, their seaweed color preference follows this. We provide key empirical evidence that plasticity of appearance (color) is accompanied by a plastic shift in behavior (color preference) that reinforces camouflage in a color changing species on its natural substrate. Overall, our research highlights how short-term plasticity of behavior and longer-term color change act in tandem to maintain crypsis over time.

5.
Ann Pathol ; 2024 Oct 04.
Artículo en Francés | MEDLINE | ID: mdl-39368936

RESUMEN

Iron is essential for functioning of cells and of the body as a whole. Perls staining allows the histopathological identification of iron deposits. By classifying hepatic siderosis as parenchymal, mesenchymal or mixed, it may guide the search for its etiology. HFE1 hemochromatosis is the most common siderosis. Its diagnosis is currently based on genetic analysis. Its expressivity being variable and its penetrance incomplete, the demonstration of hepatic siderosis may represent a mode of discovery.

6.
Phys Med Biol ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39357530

RESUMEN

OBJECTIVE: In this study, we present a model to correct the progressive post-irradiation darkening of EBT3 films. The model allows for a clinical use of EBT3 using application and calibration films scanned with different post-irradiation times. Approach. The model is a post-irradiation time- and dose-dependent power-law function, projecting the scanned transmittance of application films to the transmittance matching the same post-irradiation time of calibration films. The model was characterized for two EBT3 production lots within the dose range 0.1-12.8 Gy. A first characterization was performed utilizing calibration films scanned repeatedly for 54 days post-irradiation (lot 1), while a fast re-characterization of a second lot used three post-irradiation times (lot 2). For a long-term validation validation of the model, 16 film strips were irradiated at 2 Gy on different time points starting from the day of film calibration up to 43 days afterwards (lot 1). For the multi-dose validation of the model, 8 strips were irradiated with dose levels ranging 0-12 Gy deposited 25 days after the calibration (lot 2). As a proof of principle, the model was applied to four clinical patient-specific quality assurance film measurements with prescribed dose/fraction ranging 2.66 Gy-8 Gy. Main results. The post-irradiation transmittance decreased for higher doses up to -2.5% at 12.8 Gy, and 54 days post-irradiation. With a lot-specific model correction, the mean dose accuracy of validation strips that ranged from initial -3.4% (triple-channel) and -9.90% (blue-channel) reduced to within 3.0% (all colour channels) for doses above 1 Gy. The median dose difference with the planned dose improved from -3.5% to -1.1%, and the 3%/2 mm local gamma ranged from (48.5 - 92.5)% to (81.2 - 99.2)%. .

7.
Food Chem ; 463(Pt 4): 141469, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39362101

RESUMEN

Elucidating the mechanisms underlying Baijiu production is a shared aspiration among academic groups specializing in the field of Baijiu research. This study comprehensively examined the mechanisms underlying the yellowish coloration of Baijiu through a synergistic application of chromatographic, spectroscopic, and physical methodologies. Aging of Baijiu in earthenware pots involves the infiltration of mineral ions such as iron, aluminum, and calcium; however, these ions are detected at extremely low concentrations and are therefore not linked to the development of Baijiu's yellowish color. Instead, the yellowish coloration is attributed to the diverse colorants generated during the high-temperature fermentation of small-molecule sugars derived from the saccharification of grain materials. Although these colorants exist in minimal quantities and exhibit spectral absorption peaks ranging from 300 to 450 nm, their overlapping spectra collectively contribute to the light-absorbing properties of Baijiu across a broad wavelength range, ultimately accounting for its characteristic yellowish color.

8.
Integr Zool ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350489

RESUMEN

Urbanization is a global phenomenon that involves the transformation of natural areas into urban spaces, thereby subjecting organisms to new selective pressures including a wide variety of pollutants and changes in intra- and interspecific interactions. Considering that projections indicate that by the year 2050, 65% of the human population will live in urban areas and that urbanization is a phenomenon with an upward pattern, identifying these phenotypic traits is vital to implementing conservation and management plans for urban fauna. The urban environment may exert different selective pressures on sexually selected traits than more pristine environments, a phenomenon which has been well studied in birds but is less understood in other vertebrates such as lizards, although they are common inhabitants of urban environments. Here, we compare sexual coloration, parasite load, and immune response in Sceloporus torquatus lizards in urban and non-urban environments of Central Mexico. Our study shows that sexual coloration is more saturated (bluer) in male lizards from urban environments, while UV chroma was higher in non-urban lizards. The average parasite load is lower in urban lizards than in non-urban lizards, and we found a negative relationship between hemoparasite count and sexual coloration in male lizards from non-urban environments but not in male lizards from urban environments. Additionally, non-urban lizards exhibited a higher immune response. In female lizards, sexual coloration differed significantly between urban and non-urban environments, but parasite load and immune response did not differ. These results may be useful to improve herpetofauna conservation plans in urbanized environments.

9.
Soc Sci Med ; 360: 117334, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39278013

RESUMEN

Deliberate lightening of skin among African women is a complex phenomenon that intersects with cultural identity, health, beauty, and societal influence. The scientific literature has scarcely explored a comprehensive approach by interviewing users of skin lightening products. This article aims to analyze, through a comprehensive approach, the motivations underlying the deliberate lightening of skin among Burkinabe women. The research encompasses a narrative literature review and a qualitative field study in Bobo-Dioulasso, Burkina Faso. It targeted 59 women, categorized into current users, former users, and non-users of skin lightening products. Individual interviews and focus groups were utilized to gather qualitative data. The comprehensive approach enabled contextualization of the phenomenon, focusing on personal and collective motivations, while adhering to ethical principles. Participants gived various motivations for deliberate lightening of skin, including the pursuit of beauty, seduction, and social valorization. The majority used fairthese products to achieve a lightly pigmented, equating it with beauty and allure. Some aimed to enhance their seductive capital or improve their social status. Reasons for discontinuing the practice included awareness of health risks, societal pressure, and unmet objectives. Non-users cited reasons such as attachment to their natural skin tone, health concerns, and financial constraints. Deliberate lightening of skin can be viewed as a strategy to increase various forms of capital: aesthetic, seductive, social, and symbolic. This practice reflects socio-cultural dynamics and environmental influences, emphasizing the role of the body as capital in contemporary society. The findings reveal a heightened awareness among women of their body as a multifaceted capital, convertible into other forms of capital under certain conditions.

10.
ACS Appl Mater Interfaces ; 16(38): 51253-51264, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39283192

RESUMEN

In this study, we present an all-solid-state electrochromic device (ECD) that eliminates the need for hard-to-obtain materials and conventional liquid/gel electrolytes. Using a cost-effective and industrially scalable spray coating technique, we developed an ECD containing a layer of zinc oxide nanorods (ZnOnano) synthesized via a simple solochemical route. The device configuration includes a preformed Al-coated glass substrate, acting as a counter electrode, within a glass/Al/ZnOnano/PEDOT:PSS architecture. The device exhibits reversible switching between light blue and dark blue states upon application of -1.2 V and +2.8 V, respectively, with a significant difference in transmittance between bleached and colored states in the visible-NIR spectrum, featuring a high coloration efficiency of 275.62 cm2/C at 600 nm. The response times required for both coloring and bleaching states were 9.92 s and 7.51 s, respectively, for a sample with an active area of 5.5 × 2.5 cm2. Regarding the electrochemical stability of the ZnO-based ECD, the transmittance modulation reached around 8.01% at 600 nm after 12,800 s, following initial variations observed during the first 10 cycles. These results represent significant progress in electrochromic technology, offering a sustainable and efficient alternative to traditional ECDs. The use of economical fabrication techniques and the exclusion of critical materials highlight the potential for widespread industrial adoption of this novel ECD design.

11.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39337339

RESUMEN

Physalis pubescens and Physalis alkekengi, members of the Physalis genus, are valued for their delicious and medicinal fruits as well as their different ripened fruit colors-golden for P. pubescens and scarlet for P. alkekengi. This study aimed to elucidate the pigment composition and genetic mechanisms during fruit maturation in these species. Fruit samples were collected at four development stages, analyzed using spectrophotometry and high-performance liquid chromatography (HPLC), and complemented with transcriptome sequencing to assess gene expression related to pigment biosynthesis. ß-carotene was identified as the dominant pigment in P. pubescens, contrasting with P. alkekengi, which contained both lycopene and ß-carotene. The carotenoid biosynthesis pathway was central to fruit pigmentation in both species. Key genes pf02G043370 and pf06G178980 in P. pubescens, and TRINITY_DN20150_c1_g3, TRINITY_DN10183_c0_g1, and TRINITY_DN23805_c0_g3 in P. alkekengi were associated with carotenoid production. Notably, the MYB-related and bHLH transcription factors (TFs) regulated zeta-carotene isomerase and ß-hydroxylase activities in P. pubescens with the MYB-related TF showing dual regulatory roles. In P. alkekengi, six TF families-bHLH, HSF, WRKY, M-type MADS, AP2, and NAC-were implicated in controlling carotenoid synthesis enzymes. Our findings highlight the intricate regulatory network governing pigmentation and provide insights into Physalis germplasm's genetic improvement and conservation.


Asunto(s)
Carotenoides , Frutas , Regulación de la Expresión Génica de las Plantas , Physalis , Physalis/genética , Physalis/metabolismo , Physalis/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Carotenoides/metabolismo , Pigmentación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentos Biológicos/metabolismo , Pigmentos Biológicos/biosíntesis , Transcriptoma , beta Caroteno/metabolismo , beta Caroteno/biosíntesis , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Perfilación de la Expresión Génica/métodos
12.
J Integr Plant Biol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315817

RESUMEN

Ethylene treatment promotes orange coloration in the flavedo of Satsuma mandarin (Citrus unshiu Marc.) fruit, but the corresponding regulatory mechanism is still largely unknown. In this study, we identified a C2H2-type zinc-finger transcription factor, CitZAT4, the expression of which was markedly induced by ethylene. CitZAT4 directly binds to the CitPSY promoter and activates its expression, thereby promoting carotenoid biosynthesis. Transient expression in Satsuma mandarin fruit and stable transformation of citrus calli showed that overexpressing of CitZAT4 inhibited CitLCYE expression, thus inhibiting α-branch yellow carotenoid (lutein) biosynthesis. CitZAT4 overexpression also enhanced the transcript levels of CitLCYB, CitHYD, and CitNCED2, promoting ß-branch orange carotenoid accumulation. Molecular biochemical assays, including yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR), and luciferase (LUC) assays, demonstrated that CitZAT4 directly binds to the promoters of its target genes and regulates their expression. An ethylene response factor, CitERF061, which is induced by ethylene signaling, was found to directly bound to the CitZAT4 promoter and induced its expression, thus positively regulating CitZAT4-mediated orange coloration in citrus fruit. Together, our findings reveal that a CitZAT4-mediated transcriptional cascade is driven by ethylene via CitERF061, linking ethylene signaling to carotenoid metabolism in promoting orange coloration in the flavedo of Satsuma mandarin fruit. The molecular regulatory mechanism revealed here represents a significant step toward developing strategies for improving the quality and economic efficiency of citrus crops.

13.
Plant Physiol Biochem ; 216: 109126, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39288572

RESUMEN

Rosa rugosa is limited in landscaping applications due to its monotonous color, especially the lack of red-flowered varieties. Comprehensive assessment of petal color diversity in R. rugosa could promote to explore the mechanism of flower color formation. In this study, the variation and diversity of petal coloring of 193 R. rugosa germplasms were assessed by chromatic values (L∗, a∗, and b∗), and then divided into seven clusters belonging to three groups with pinkish-purple (185 individuals), white (6), and red (2) petals, respectively. Total anthocyanin content was the most important factor affecting flower color diversity and red hue formation of R. rugosa petals. There were significant correlations between petal color chromatic indexes and the sum content and the ratio of two major anthocyanin, namely cyanidin 3,5-O-diglucoside (Cy3G5G), peonidin 3,5-O-diglucoside (Pn3G5G). Both high levels of Cy3G5G + Pn3G5G and Cy3G5G/Pn3G5G were necessary conditions for red phenotype formation. Five cyanidin up-stream structural genes (RrF3'H1, RrDFR1, RrANS1, RrUF3GT1, RrUF35GT1) and one cyanidin down-stream structural gene (RrCCoAOMT1) were the key indicators which contributed to Cy3G5G + Pn3G5G and Cy3G5G/Pn3G5G, respectively. Functional verification showed that overexpression of RrDFR1, combined with silent expression of RrCCoAOMT1, could make R. rugosa petals redder by increasing the levels of Cy3G5G + Pn3G5G and Cy3G5G/Pn3G5G. These results provided a robust theoretical basis for further revealing the molecular mechanism of red petals coloration in R. rugosa.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39291628

RESUMEN

Colorful traits play an important role in animal communication. Melanin-based colorations are the most extended color traits in animals and are produced by two types of endogenous melanic pigments: eumelanins and pheomelanins, the last ones being the least studied in the context of communication. The production of pheomelanin requires a semi-essential amino acid, cysteine, which is also used for the synthesis of an important endogenous antioxidant, glutathione. Hence, it has been proposed that the synthesis of pheomelanin and glutathione may compete for the cysteine available in the organism. In that case, pheomelanic colorations are predicted to be less intense when the individual is facing an oxidative challenge, and therefore, they would provide information on the oxidative status of the bearer. Here, we experimentally evaluated this hypothesis using male Japanese quails (Coturnix japonica) as a model of study, a species with pheomelanin-based plumage in the breast and cheeks. During feather growth, individuals were exposed to one of three possible conditions: Control (saline), an endogenous oxidative challenge (Escherichia coli lipopolysaccharide injections), or an exogenous oxidative challenge (paraquat injections). Contrary to predictions, we found that: (1) Birds from the three groups exhibited less intense pheomelanic colorations in feathers after the experimental manipulation, and the magnitude of this change did not differ among groups. (2) There was no effect of the experimental treatments on the proportion reduced/oxidized glutathione, an index of oxidative status. (3) Lipid peroxidation was lower after the experimental manipulation, with birds exposed to the paraquat challenge experiencing a stronger decline than other groups. (4) Cysteine and total glutathione levels decreased after the experimental manipulation, with no differences per group in the magnitude of the decline. Taken together the results do not support the hypothesis that oxidative status plays a key role at determining the variation in the intensity of pheomelanic colorations.

15.
Ann Pathol ; 2024 Sep 12.
Artículo en Francés | MEDLINE | ID: mdl-39271441

RESUMEN

The aim was to study the prognostic impact of tumor infiltration of the subserosa in colonic adenocarcinoma, by evaluating the degree of tumor infiltration in the subserosa (DISS), tumor-serosa distance (DTS), and invasion of the elastic boundary of the subserosa (ILE) after elastic fiber staining. MATERIAL AND METHODS: All patients operated on for colonic adenocarcinoma classified as pT3 without lymph node or visceral metastasis operated on at the CHU d'Amiens between 2004 and 2017 were included. All slides were reviewed by 2 pathologists. Bivariate and subgroup analyses were performed according to the presence of a DISS≤5mm or>5mm, a DTS≤1mm or>1mm and the presence or absence of an ILE. These statistical analyses were then correlated with the 5-year survival. RESULTS: One hundred and one patients were included in the study. We performed elastic fiber staining on an average of 2 tumor blocks per case and 39.6% of patients had invasion of the elastic boundary. However, bivariate and subgroup analyses showed no statistically significant association between DISS, DTS or ILE and 5-year survival. CONCLUSION: None of these three histopathological criteria proved to have prognostic value in our series, contrary to some results in the literature. However, as these data are subject to a number of confounding factors, we do not recommend that pathologists specify these different criteria in their reports.

16.
Plant Physiol Biochem ; 215: 108980, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102766

RESUMEN

Asparagus is a key global vegetable crop with significant economic importance. Purple asparagus, rich in anthocyanins, stands out for its nutritional value. Despite its prominence, the molecular mechanisms driving purple peel coloration in asparagus remain unclear. This study focuses on three asparagus varieties with distinct peel colors to analyze anthocyanins in both the metabolome and transcriptome, unraveling the regulatory mechanisms. Our findings identify 30 anthocyanins, categorized into five major anthocyanin aglycones across diverse asparagus peel colors. Notably, among the 30 differentially expressed metabolites (DEMs), 18 anthocyanins displayed significantly up-regulated expression in the 'Purple Passion' variety. Key contributors include Cyanidin-3-O-rutinoside-5-O-glucoside and Cyanidin-3-O-sophoroside. Cyanidin-3-O-glucoside is most abundant in 'Purple Passion', while Petunidin-glucoside-galactoside is the least. Analysis of differentially expressed genes (DEGs) displayed 21 structural genes in anthocyanin synthesis, with F3H, DFR, ANS, and one of three UFGTs showing significantly higher expression in the 'Purple Passion' compared to 'Grande' and 'Erasmus'. Additionally, transcription factors (TFs), including 38 MYB, 33 bHLH, and 13 bZIP, also display differential expression in this variety. Validation through real-time qPCR supports the idea that increased expression of anthocyanin structural genes contribute to anthocyanin accumulation. Transient overexpression of AoMYB17 in tobacco further showed that it had the vital function of increasing anthocyanin content. This study sheds light on the mechanisms behind anthocyanin coloration in three distinct asparagus peels. Therefore, it lays the foundation for potential genetic enhancements, aiming to develop new purple-fleshed asparagus germplasms with heightened anthocyanin content.


Asunto(s)
Antocianinas , Asparagus , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Antocianinas/metabolismo , Antocianinas/biosíntesis , Asparagus/genética , Asparagus/metabolismo , Pigmentación/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolómica
17.
Plant Commun ; : 101065, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164970

RESUMEN

Carotenoid biosynthesis is closely associated with abscisic acid (ABA) during the ripening process of non-climacteric fruits, but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear. Here, we identified two master regulators of ABA-mediated citrus fruit coloration, CsERF110 and CsERF53, which activate the expression of carotenoid metabolism genes (CsGGPPS, CsPSY, CsPDS, CsCRTISO, CsLCYB2, CsLCYE, CsHYD, CsZEP, and CsNCED2) to facilitate carotenoid accumulation. Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53. We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53. Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling, thereby orchestrating citrus fruit coloration. Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops, the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches, further contributing to improving the quality of citrus and other carotenoid-rich crops.

18.
Int J Biol Macromol ; 278(Pt 4): 135070, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39187096

RESUMEN

Lipocalin proteins transport hydrophobic molecules, including apolipoprotein D, retinol-binding protein, and crustacyanin (CRCN). CRCN can combine with astaxanthin to cause a bathochromic shift in the emission spectrum of astaxanthin from red to blue. Therefore, CRCN influences the colors and patterns of crustaceans, which are important for various biological functions such as camouflage, reproduction, and communication. For aquatic organisms, body color is economically important and can be indicative of habitat water quality. In this study, thirteen CRCN genes (NdCRCNs) were first discovered in Neocaridina denticulata sinensis, contradicting prior findings of a few isoform genes in a species. The expression pattern of NdCRCNs in tissues showed that the expression of one CRCN isoform gene, named NdCRCN-30, was the highest in the carapace. In situ hybridization (ISH) analysis revealed that NdCRCN-30 was predominantly distributed in the outer epidermis of shrimp. Interference of NdCRCN-30 could cause a change in the color of the carapace. RNA-seq was performed after knockdown with the NdCRCN-30, and differential gene enrichment analysis revealed that this gene is primarily associated with antioxidant function, pigmentation, and molting. Overall, our results will provide new insights into the biological function of the CRCN and genetic breeding for changing body color in economic crustaceans.


Asunto(s)
Isoformas de Proteínas , Animales , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Filogenia , Exoesqueleto/metabolismo , Pigmentación/genética , Regulación de la Expresión Génica/efectos de los fármacos , Penaeidae/genética , Penaeidae/metabolismo , Perfilación de la Expresión Génica , Genoma , Proteínas Portadoras
19.
J Exp Zool A Ecol Integr Physiol ; 341(9): 1041-1052, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39101273

RESUMEN

Common wall lizards (Podarcis muralis) in Italy show a striking variation in body coloration across the landscape, with highly exaggerated black and green colors in hot and dry climates and brown and white colors in cool and wet climates. Males are more intensely colored than females, and previous work has suggested that the maintenance of variation in coloration across the landscape reflects climatic effects on the strength of male-male competition, and through this sexual selection. However climatic effects on the intensity of male-male competition would need to be exceptionally strong to fully explain the geographic patterns of color variation. Thus, additional processes may contribute to the maintenance of color variation. Here we test the hypothesis that selection for green and black ornamentation in the context of male-male competition is opposed by selection against ornamentation because the genes involved in the regulation of coloration have pleiotropic effects on thermal physiology, such that ornamentation is selected against in cool climates. Field observations revealed no association between body coloration and microhabitat use or field active body temperatures. Consistent with these field data, lizards at the extreme ends of the phenotypic distribution for body coloration did not show any differences in critical minimum temperature, preferred body temperature, temperature-dependent metabolic rate, or evaporative water loss when tested in the laboratory. Combined, these results provide no evidence that genes that underlie sexual ornamentation are selected against in cool climate because of pleiotropic effects on thermal biology.


Asunto(s)
Ecosistema , Lagartos , Animales , Lagartos/fisiología , Masculino , Femenino , Pigmentación/fisiología , Caracteres Sexuales , Regulación de la Temperatura Corporal/fisiología , Selección Sexual
20.
Proc Biol Sci ; 291(2028): 20240713, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106954

RESUMEN

Aposematic coloration offers an opportunity to explore the molecular mechanisms underlying canalization. In this study, the role of epigenetic regulation underlying robustness was explored in the aposematic coloration of the milkweed bug, Oncopeltus fasciatus. Polycomb (Pc) and Enhancer of zeste (E(z)), which encode components of the Polycomb repressive complex 1 (PRC1) and PRC2, respectively, and jing, which encodes a component of the PRC2.2 subcomplex, were knocked down in the fourth instar of O. fasciatus. Knockdown of these genes led to alterations in scutellar morphology and melanization. In particular, when Pc was knocked down, the adults developed a highly melanized abdomen, head and forewings at all temperatures examined. In contrast, the E(z) and jing knockdown led to increased plasticity of the dorsal forewing melanization across different temperatures. Moreover, jing knockdown adults exhibited increased plasticity in the dorsal melanization of the head and the thorax. These observations demonstrate that histone modifiers may play a key role during the process of canalization to confer robustness in the aposematic coloration.


Asunto(s)
Heterópteros , Proteínas de Insectos , Pigmentación , Proteínas del Grupo Polycomb , Animales , Proteínas del Grupo Polycomb/metabolismo , Proteínas del Grupo Polycomb/genética , Heterópteros/fisiología , Heterópteros/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Epigénesis Genética , Técnicas de Silenciamiento del Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...