Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ultrasonics ; 142: 107357, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838609

RESUMEN

Composite laminates are widely used in various fields, but their structures are prone to cracks and damage. Due to the difference in angles of the instantaneous direction of the wave front propagation and the direction of the energy flow in an anisotropic material, the use of Lamb waves for damage localization in composite laminates is a challenging task. Establishing the wave front shape equation can overcome the difficulty of damage localization caused by anisotropy, but this usually requires a priori knowledge of the acoustic velocity distribution of the laminates, which is not convenient for efficient damage localization. In this paper, a damage localization method based on wave front shapes for composite laminates without any knowledge of the velocity profile is presented. Numerical simulation and experimental results show that the proposed method works. This method shows good damage localization accuracy and has broad application prospects in non-destructive testing for plate structures with strong anisotropy.

2.
Sensors (Basel) ; 24(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38894240

RESUMEN

The time difference of arrival (TDOA) method has traditionally proven effective for locating acoustic emission (AE) sources and detecting structural defects. Nevertheless, its applicability is constrained when applied to anisotropic materials, particularly in the context of fiber-reinforced composite structures. In response, this paper introduces a novel COmposite LOcalization using Response Surface (COLORS) algorithm based on a two-step approach for precise AE source localization suitable for laminated composite structures. Leveraging a response surface developed from critical parameters, including AE velocity profiles, attenuation rates, distances, and orientations, the proposed method offers precise AE source predictions. The incorporation of updated velocity data into the algorithm yields superior localization accuracy compared to the conventional TDOA approach relying on the theoretical AE propagation velocity. The mean absolute error (MAE) for COLORS and TDOA were found to be 6.97 mm and 8.69 mm, respectively. Similarly, the root mean square error (RMSE) for COLORS and TODA methods were found to be 9.24 mm and 12.06 mm, respectively, indicating better performance of the COLORS algorithm in the context of source location accuracy. The finding underscores the significance of AE signal attenuation in minimizing AE wave velocity discrepancies and enhancing AE localization precision. The outcome of this investigation represents a substantial advancement in AE localization within laminated composite structures, holding potential implications for improved damage detection and structural health monitoring of composite structures.

3.
Polymers (Basel) ; 16(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38794579

RESUMEN

In this paper, an enhanced VARTM process is proposed and its pressure effect on resin infusion behavior and composite material performance is studied to reveal the control mechanism of the fiber volume fraction and void content. The molding is vacuumized during the resin injection stage while it is pressurized during the mold filling and curing stages via a VARTM pressure control system designed in this paper. Theoretical calculations and simulation methods are used to reveal the resin's in-plane, transverse, and three-dimensional flow patterns in multi-layer media. For typical thin-walled components, the infiltration behavior of resin in isotropic porous media is studied, elucidating the control mechanisms of fiber volume fraction and void content. The experiments demonstrate that the enhanced VARTM process significantly improves mold filling efficiency and composite's performance. Compared to the regular VARTM process, the panel thickness is reduced by 4% from 1.7 mm, the average tensile strength is increased by 7.3% to 760 MPa, the average flexural strength remains at approximately 720 MPa, porosity is decreased from 1.5% to below 1%, and the fiber volume fraction is increased from 55% to 62%.

4.
Materials (Basel) ; 16(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895801

RESUMEN

Experimental methodologies for fatigue lifetime prediction are time-intensive and susceptible to environmental variables. Although the cohesive zone model is popular for predicting adhesive fatigue lifetime, entropy-based methods have also displayed potential. This study aims to (1) provide an understanding of the durability characteristics of carbon fiber-reinforced plastic (CFRP) adhesive joints by incorporating an entropy damage model within the context of the finite element method and (2) examine the effects of different adhesive layer thicknesses on single-lap shear models. As the thickness of the adhesive layer increases, damage variables initially increase and then decrease. These peak at 0.3 mm. This observation provides a crucial understanding of the stress behavior at the resin-CFRP interface and the fatigue mechanisms of the resin.

5.
Materials (Basel) ; 16(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176452

RESUMEN

Orthogonal antisymmetric composite laminates embedded with shape memory alloys (SMAs) wires have the potential to improve the sound quality of vibro-acoustics by taking advantage of the special superelasticity, temperature phase transition, and pre-strain characteristics of SMAs. In this research, space discretion and mode decoupling were employed to establish a vibro-acoustic sound quality model of SMA composite laminates. The association between the structural material parameters of SMA composite laminates and the sound quality index is then approached through methodologies. Numerical analysis was implemented to discuss the effects of SMA tensile pre-strain, SMA volume fraction, and the ratio of resin-to-graphite in the matrix on the vibro-acoustic sound quality of SMA composite laminates within a temperature environment. Subsequently, the sound quality test for SMA composite laminates is thus completed. The theoretically predicted value appears to agree well with the experimental outcomes, which validates the accuracy and applicability of the dynamic modeling theory and method for the sound quality of SMA composite laminates. The results indicate that attempting to alter the SMA tensile pre-strain, SMA volume fraction, and matrix material ratio can be used to modify loudness, sharpness, and roughness, which provides new ideas and a theoretical foundation for the design of composite laminates with decent sound quality.

6.
Polymers (Basel) ; 15(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37177317

RESUMEN

This article presents the development and implementation of the Delamination Plug-in, an open-source tool for modeling delamination tests in the ABAQUS software. Specifically designed for stochastic modeling of 3D printed composites, the plug-in combines the benefits of the graphical user interface (GUI) and the programming of commercial finite element (FE) software. The Delamination Plug-in offers an effortless alternative to the time-consuming analytical modeling and GUI work involved in delamination tests and includes algorithms for several tests, such as the double cantilever beam, end-loaded split, end-notched flexure, and modified end-loaded split tests, solved using the virtual crack closure technique and the cohesive zone method. It enables the user to develop simulations for both simple symmetric laminates and generally layered laminates with additional thermal stresses. The applicability of the tool is demonstrated through its use in two distinct delamination problems, one for conventional and one for 3D printed composite laminates, and its results are compared to analytical models and experimental data from the open literature. The results demonstrate that the Delamination Plug-in is efficient and applicable for such materials. This establishes the tool as an important means of automating delamination analysis and for the development and testing of 3D printed composites, making it a valuable tool for both researchers and industry professionals.

7.
Materials (Basel) ; 16(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37110104

RESUMEN

The analysis of cumulative fatigue damage is an important factor in predicting the life of composite elements and structures that are exposed to field load histories. A method for predicting the fatigue life of composite laminates under varying loads is suggested in this paper. A new theory of cumulative fatigue damage is introduced grounded on the Continuum Damage Mechanics approach that links the damage rate to cyclic loading through the damage function. A new damage function is examined with respect to hyperbolic isodamage curves and remaining life characteristics. The nonlinear damage accumulation rule that is presented in this study utilizes only one material property and overcomes the limitations of other rules while maintaining implementation simplicity. The benefits of the proposed model and its correlation with other relevant techniques are demonstrated, and a broad range of independent fatigue data from the literature is used for comparison to investigate its performance and validate its reliability.

8.
Polymers (Basel) ; 15(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36771828

RESUMEN

In fiber-reinforced polymer (FRP) composite laminate structures operating under fluctuating stresses, interface delamination is seen as one of the significant damage mechanisms. The constant degradation of their relatively low interlaminar strength and stiffness are the primary reasons for delamination. This study develops an interlaminar fatigue damage model to quantify the mechanics of the damage process and address the reliability of composite structures. The model considers the failure process in two stages: (1) damage due to degradation of interlaminar elastic properties, and (2) damage due to dissipation of fracture energy through the damage evolution process. The model is examined for a case study of mode I fatigue loading of a carbon-fiber-reinforced polymer (CFRP) composite laminate. The results show that the interlaminar normal stress is confined to the crack front region, with tensile stress peaks at 70% of the interlaminar strength. Furthermore, a stable interface crack growth is predicted initially, followed by a sudden crack "jump" at 14,000 cycles. The simulation results are compared with the experimental data, with very good agreement, showing a successful validation of the fatigue model.

9.
Materials (Basel) ; 16(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36676515

RESUMEN

The mechanical response and damage accumulation of carbon-fiber-reinforced composite laminates subjected to repeated low-velocity impacts were experimentally investigated. The repeated impact tests were conducted on [902/-452/02/452]S quasi-isotropic and [902/02]2S cross-ply composite laminates under 16.8 J impact energy, respectively. For each impact, impact responses such as force-time, force-displacement and energy-time curves were recorded. The trends of peak force, maximum central displacement, energy absorption rate and bending stiffness with the increasing impact number were summarized, and the maximum number of repeated impacts corresponded to the occurrence of penetration events. The results showed that the delamination initiation, fiber breakage and penetration were the three typical characteristics describing the damage evolution of the repeated impacts. The damage accumulation of both the laminates was characterized by employing appropriate damage indices. By contrast, the quasi-isotropic laminates had higher impact resistance and damage tolerance, and their damage accumulation was relatively slower.

10.
Materials (Basel) ; 15(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36234303

RESUMEN

Auxetic materials are those that exhibit negative Poisson's ratios. Such a unique property was shown to improve the indentation and impact resistances. Angle-ply composite laminates can be designed to produce negative Poisson's ratio at the laminate level due to the large anisotropicity of the individual layer and the strain mismatch between adjacent layers. This paper investigates the effect of through-thickness negative Poisson's ratio on the low velocity impact behaviors of carbon fiber reinforced polymer matrix composite laminates, including the global impact behaviors, as well as the delamination, and the fiber and matrix damage. Results from numerical investigations show consistently reduced fiber and matrix tensile damage in the auxetic laminate in all plies, in comparison to the non-auxetic counterpart laminates (up to 40% on average). However, the auxetic laminate does not present a clear advantage on mitigating the delamination damage or the matrix compressive damage.

11.
Polymers (Basel) ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36297900

RESUMEN

The present study explores the failure and surface characteristics of Glass Fiber-Reinforced Polymers (GFRP). Stepwise loading was applied in this study to understand the multi-static loading effect on the laminates before final failure. The loading was set three times to reach 10 kN with loading-unloading movement before final load until failure. The results showed that the angle of the GFRP UD laminates' position significantly impacts the system's failure. The results were analyzed using theoretical calculation experiment analysis, and then the failure sample was identified using ASTM D3039 standard failure. The laminates with 0° layer on edge ([0/90]S laminates) underwent preliminary failure before final failure. The mechanism of stepwise loading can be used to detect the effect of preliminary failure on the laminates. The [0/90]S laminates are subjected to stress concentration on the edge due to fiber alignment and discontinued fibers in the 0-degree direction. This fiber then fails due to debonding between the fiber and the matrix. The laminates' strength showed that [90/0]S specimens have an average higher strength with 334.45 MPa than the [0/90]S laminates with 227.8 MPa. For surface roughness, the value of Ra increases more than six times in the 0° direction and three times in the 90° direction. Moreover, shore D hardness showed that the hardness was decreased from 85.6 SD then decreased to 70.4 SD for [0/90]S and 65.9 SD for [90/0]S. The matrix debonding, layer delamination and fiber breakage were reported as the failure mode behavior of the laminates.

12.
Philos Trans A Math Phys Eng Sci ; 380(2232): 20210340, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35909361

RESUMEN

The present paper investigates the impact behaviour of both pristine carbon-fibre-reinforced-plastic (CFRP) composite laminates and repaired CFRP laminates. For the patch-repaired CFRP specimen, the pristine CFRP panel specimen has been damaged by cutting out a central disc of the CFRP material and then repaired using an adhesively bonded patch of CFRP to cover the hole. Drop-weight, impact tests are performed on these two types of specimens and a numerical elastic-plastic, three-dimensional damage model is developed and employed to simulate the impact behaviour of both types of specimen. This numerical model is meso-scale in nature and assumes that cracks initiate in the CFRP at a nano-scale, in the matrix around fibres, and trigger sub-micrometre intralaminar matrix cracks during the impact event. These localized regions of intralaminar cracking then lead to interlaminar, i.e. delamination, cracking between the neighbouring plies which possess different fibre orientations. These meso-scale, intralaminar and interlaminar, damage processes are modelled using the numerical finite-element analysis model with each individual ply treated as a continuum. Good agreement is found between the results from the experimental studies and the predictions from the numerical simulations. This article is part of the theme issue 'Nanocracks in nature and industry'.

13.
Polymers (Basel) ; 14(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35890679

RESUMEN

Curing deformation prediction plays an important role in guiding the tools, curing process design, etc. Analytical methods can provide a rapid prediction and in-depth understanding of the curing deformation mechanism. In this paper, an analytical model is presented to study the cure-induced deformation of composite laminates. Based on the classical laminate theory, the thermal stress and deformation of composites during the curing process are calculated by considering the evolution of the mechanical properties of resin. Additionally, the coupling stiffness of the laminate is taken into consideration in the analytical model. An interface layer between the tool and the part is developed to simulate the variation of the tool-part interaction with the degree of resin cure. The maximum curing deformations and deformation profiles of different lay-up composite parts predicted by the proposed model are compared with the results of the finite element method and previous literature reports. Then, a comprehensive parametric study is carried out to investigate the influence of curing cycle, geometry, tool thermal expansion, and resin characteristics on the curing deformation of composite parts. The results reveal that geometry has a significant influence on the curing deformation of composite parts, but for dimensionally determined parts, curing deformation is mainly attributable to their own anisotropy in macro and micro aspects, as well as the stretching effect of the tool on the part. The percentage contribution of different factors to curing deformation composites with different lay-ups and geometries is also discussed.

14.
Polymers (Basel) ; 14(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35746044

RESUMEN

Natural and synthetic fibres are in high demand due to their superior properties. Natural fibres are less expensive and lighter as compared to synthetic fibres. Synthetic fibres have drawn much attention, especially for their outstanding properties, such as durability, and stability. The hybridisation between natural and synthetic fibres composite are considered as an alternative to improve the current properties of natural and synthetic fibres. Therefore, this study aimed to determine the physical and mechanical properties of pineapple leaf fibre (PALF) and Kevlar reinforced unsaturated polyester (UP) hybrid composites. The PALF/Kevlar hybrid composites were fabricated by using hand layup method utilising unsaturated polyester as the matrix. These composites were laid up to various laminated configurations, such as [PKP]s, [PPK]s, [KPP]s, [KKP]s, [PPP]s and [KKK]s, whereby PALF denoted as P and Kevlar denoted as K. Next, they were cut into size and dimensions according to standards. Initially, the density of PALF/Kevlar reinforced unsaturated polyester were evaluated. The highest density result was obtained from [KKK]s, however, the density of hybrid composites was closely indistinguishable. Next, moisture absorption behaviour and its effects on the PALF/Kevlar reinforced unsaturated polyester were investigated. The water absorption studies showed that the hybridisation between all PALF and Kevlar specimens absorbed moisture drastically at the beginning of the moisture absorption test and the percentage of moisture uptake increased with the volume fraction of PALF in the samples. The tensile test indicated that all specimens exhibited nonlinear stress-strain behaviour and shown a pseudo-ductility behaviour. [KKP]s and [KPK]s hybrid composites showed the highest tensile strength and modulus. The flexural test showed that [KPK]s had the highest flexural strength of 164.0 MPa and [KKP]s had the highest flexural modulus of 12.6 GPa. In terms of the impact strength and resistance, [KKP]s outperformed the composite laminates. According to SEM scans, the hybrid composites demonstrated a stronger interfacial adhesion between the fibres and matrix than pure PALF composite.

15.
Polymers (Basel) ; 14(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35631958

RESUMEN

With the development of spread-tow, thin-ply technology, ultra-thin composite laminates could be produced. Composite bolted joints are commonly used on aircraft's load-bearing structures and are considered the main cause of stress concentration. The aim of this research is to investigate the bolted joint behavior of composite laminates that combine thin-plies and conventional thick-plies in a predetermined stacking sequence. The impact of thin-ply placement within the stack on bearing strength, including the onset of damages, is examined. The work involves mechanical tests and fractographic activities to understand the damage mechanisms of the plies and their interactions, and its reflections on the bearing load capacity of the joint for double-lap bolted joints. The results showed an improvement in the bearing strength of up to 19% by inserting the thin-plies inside the laminate. The visual examination of the specimens showed a bearing damage mode for all the tested specimens. The computed tomography scans showed damage mechanisms that mostly occurred with the normal plies, rather than breaking the thin-plies. For the specimens of traditional plies, delaminations were noticed at most of the interfaces. For the one with a block of thin-plies in the middle, all the delaminations were forced to the surface layers with an extra large size. Forspecimens with distributed thin-plies, a higher number of smaller delaminations was recognized.

16.
Materials (Basel) ; 16(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36614726

RESUMEN

The transverse cracking behavior of a carbon-fiber-reinforced plastic (CFRP) cross-ply laminate is investigated using a fatigue test and an entropy-based failure criterion in this study. The results of fatigue experiments show that the crack accumulation behavior depends on the cyclic number level and frequency, in which two obvious transverse cracks are observed after 104 cyclic loads and 37 transverse cracks occur after 105 cycles. The final numbers of transverse cracks decrease from 29 to 11 when the load frequency increases from 5 Hz to 10 Hz. An entropy-based failure criterion is proposed to predict the long-term lifetime of laminates under cyclic loadings. The transverse strength of 90° ply is approximated by the Weibull distribution for a realistic simulation. Progressive damage and transverse cracking behavior in CFRP ply can be reproduced due to entropy generation and strength degradation. The effects of stress level and load frequency on the transverse cracking behavior are investigated. It is discovered that, at the edge, the stress σ22 + σ33 that is a dominant factor for matrix tensile failure mode is greater than the interior at the first cycle load, and as stress levels rise, a transverse initial crack forms sooner. However, the initial transverse crack initiation is delayed as load frequencies increase. In addition, transverse crack density increases quickly after initial crack formation and then increases slowly with the number of load cycles. The proposed method's results agree well with those of the existing experimental method qualitatively. In addition, the proposed entropy-based failure criterion can account for the effect of load frequency on transverse crack growth rate, which cannot be addressed by the well-known Paris law.

17.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34883703

RESUMEN

The aim of the present paper is to evaluate the effect of the hybridization with external layers of glass fibers on the durability of flax fiber reinforced composites in severe aging conditions. To this scope, full glass, full flax and hybrid glass-flax pinned laminates were exposed to a salt-fog environment for up to 60 days. Double-lap pinned joint tests were performed to assess the pin-hole joints performances at varying the laminate stacking sequence. In order to better discriminate the relationship between the mechanical behavior and the fracture mechanisms of joints at increasing the aging time, different geometries (i.e., by varying both the hole diameter D and the free edge distance from the center of the hole E) were investigated after 0 (i.e., unaged samples), 30 and 60 days of salt-fog exposition. It was shown that the hybridization positively affects the mechanical performance as well as the stability of pinned composites: i.e., improvements in both strength and durability against the salt-fog environment were evidenced. Indeed, the hybrid laminate exhibited a reduction in the bearing strength of about 20% after 60 days of aging, despite to full flax laminate, for which a total reduction in the bearing strength of 29% was observed. Finally, a simplified joint failure map was assessed, which clusters the main failure mechanisms observed for pinned composites at varying aging conditions, thus assisting the joining design of flax-glass hybrid laminates.

18.
Polymers (Basel) ; 13(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34771237

RESUMEN

Interleaving composite laminates by nanofibers is a well-known method of increasing interlaminar fracture toughness. Among many possibilities, polycaprolactone (PCL) nanofibers is one of the best choices for toughening composite laminates. The influence of PCL on delamination mode of failure is considered before. However, the effect of PCL on other damage modes, such as fiber breakage and matrix cracking, is yet to be studied. In this study, the acoustic emission (AE) technique is applied to determine the effect of toughening composite laminates by PCL nanofibers on matrix cracking, fiber/matrix debonding, and fiber breakage failure mechanisms. For this purpose, mode I and mode II fracture tests are conducted on modified and non-modified glass/epoxy laminates. Three different methods, i.e., peak frequency, wavelet transform, and sentry function, are utilized for analyzing the recorded AE data from mode I test. The results show that applying PCL nanofibers not only increases the mode I critical strain energy release rate by about 38%, but also decreases different failure mechanisms by between 75 and 94%.

19.
Polymers (Basel) ; 13(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34685250

RESUMEN

This paper proposes a multi-scale analysis technique based on the micromechanics of failure (MMF) to predict and investigate the damage progression and ultimate strength at failure of laminated composites. A lamina's representative volume element (RVE) is developed to predict and calculate constituent stresses. Damages that occurred in the constituents are calculated using separate failure criteria for both fiber and matrix. Subsequently, the volume-based damage homogenization technique is utilized to prevent the localization of damage throughout the total matrix zone. The proposed multiscale analysis procedure is then used to investigate the notched and unnotched behavior of three multi-directional composite layups, [30, 60, 90, -60, 30]2S, [0, 45, 90, -45]2S, and [60, 0, -60]3S, subjected to static tension and compression loading. The specimen is fabricated from unidirectionally reinforced composite (IM7/977-3). The prediction of ultimate strength at failure and equivalent stiffness are then benchmarked against the experimental test data. The comparative analysis with various failure models is also carried out to validate the proposed model. MMF demonstrated the capability to correctly predict the ultimate strength at failure for a range of multidirectional composites laminates under tensile and compressive load. The numerically predicted findings revealed a good agreement with the experimental test data. Out of the three investigated composite layups, the simulated results for the quasi-isotropic [0, 45, 90, -45]2S layup agreed extremely well with the experimental results with all the percentage errors within 10% of the measured failure loads.

20.
ACS Appl Mater Interfaces ; 13(44): 53099-53110, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34705416

RESUMEN

The advocacy of carbon neutrality and circular economy encourages people to pursue self-healing and recycling of glassy thermoset polymers in a more realistic and energy-saving manner, the best being intrinsic healing under room temperature. However, the high mechanical robustness and healing ability are mutually exclusive because of their completely opposite requirements for the mobility of the polymer networks. Here, we report a dual-cross-linked network by slightly coupling the low-molecular-weight branched polyethylenimine with an ester-containing epoxy monomer in a nonstoichiometric proportion. The highly mobile and dense noncovalent hydrogen bonds at the chain branches and ends can not only complement the mechanical robustness (tensile strength of 61.6 MPa, elastic modulus of 1.6 GPa, and toughness of 19.2 MJ/m3) but also endow the glassy thermoset polymer (Tg > 40 °C) with intrinsic self-healing ability (healing efficiency > 84%) at 20 °C. Moreover, the resultant covalent adaptive network makes the thermoset polymer stable to high temperatures and solvents, yet it is readily dissolved in ethylene glycol through internal catalyzed transesterification. The application to room temperature delamination healing and carbon fiber recycling was demonstrated as a proof-of-concept.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...