Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Eur J Sport Sci ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118274

RESUMEN

The measurement of skeletal muscle fatigue in response to cycling exercise is commonly done in isometric conditions, potentially limiting its ecological validity, and creating challenges in monitoring the time course of muscle fatigue across an exercise bout. This study aimed to determine if muscle fatigue could be reliably assessed by measuring quadriceps twitch force evoked while pedaling, using instrumented pedals. Nine participants completed three laboratory visits: a step incremental test to determine power output at lactate threshold, and on separate occasions, two constant-intensity bouts at a power output 10% above lactate threshold. Femoral nerve electrical stimulation was applied to elicit quadriceps twitch force both while pedaling (dynamic) and at rest (isometric). The test-retest reliability of the dynamic twitch forces and the agreement between the dynamic and isometric twitch forces were evaluated. Dynamic twitch force was found to have excellent reliability in an unfatigued state (intraclass correlation coefficient (ICC) = 0.920 and mean coefficient of variation (CV) = 7.5%), and maintained good reliability at task failure (ICC = 0.846 and mean CV = 11.5%). When comparing dynamic to isometric twitch forces across the task, there was a greater relative decline in the dynamic condition (P = 0.001). However, when data were normalized to the 5 min timepoint when potentiation between conditions was presumed to be more similar, this difference disappeared (P = 0.207). The reliability of this method was shown to be commensurate with the gold standard method utilizing seated isometric dynamometers and offers a new avenue to monitor the kinetics of muscle fatigue during cycling in real time.

2.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125700

RESUMEN

Chronic lipid overconsumption, associated with the Western diet, causes excessive cardiac lipid accumulation, insulin resistance, and contractile dysfunction, altogether termed lipotoxic cardiomyopathy (LCM). Existing treatments for LCM are limited. Traditional Chinese Medicine (TCM) has been shown as beneficial in diabetes and its complications. The following compounds-Resveratrol, Quercetin, Berberine, Baicalein, and Isorhamnetin-derived from TCM and often used to treat type 2 diabetes. However, virtually nothing is known about their effects in the lipid-overexposed heart. Lipid-induced insulin resistance was generated in HL-1 cardiomyocytes and adult rat cardiomyocytes by 24 h exposure to high palmitate. Upon simultaneous treatment with each of the TCM compounds, we measured myocellular lipid accumulation, insulin-stimulated fatty acid and glucose uptake, phosphorylation levels of AKT and ERK1/2, plasma membrane appearance of GLUT4 and CD36, and expression of oxidative stress-/inflammation-related genes and contractility. In lipid-overloaded cardiomyocytes, all the selected TCM compounds prevented lipid accumulation. These compounds also preserved insulin-stimulated CD36 and GLUT4 translocation and insulin-stimulated glucose uptake in an Akt-independent manner. Moreover, all the TCM compounds prevented and restored lipid-induced contractile dysfunction. Finally, some (not all) of the TCM compounds inhibited oxidative stress-related SIRT3 expression, and others reduced inflammatory TNFα expression. Their ability to restore CD36 trafficking makes all these TCM compounds attractive natural supplements for LCM treatment.


Asunto(s)
Medicina Tradicional China , Miocitos Cardíacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Animales , Ratas , Medicina Tradicional China/métodos , Resistencia a la Insulina , Contracción Miocárdica/efectos de los fármacos , Glucosa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Ratones , Línea Celular , Antígenos CD36/metabolismo , Antígenos CD36/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino
3.
Echo Res Pract ; 11(1): 17, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004742

RESUMEN

BACKGROUND: Global longitudinal active strain energy density (GLASED) is an innovative method for assessing myocardial function and quantifies the work performed per unit volume of the left ventricular myocardium. The GLASED, measured using MRI, is the best prognostic marker currently available. This study aimed to evaluate the feasibility of measuring the GLASED using echocardiography and to investigate potential differences in the GLASED among athletes based on age and sex. METHODS: An echocardiographic study was conducted with male controls, male and female young athletes, and male and female veteran athletes. GLASED was calculated from the myocardial stress and strain. RESULTS: The mean age (in years) of the young athletes was 21.6 for males and 21.4 for females, while the mean age of the veteran athletes was 53.5 for males and 54.2 for females. GLASED was found to be highest in young male athletes (2.40 kJ/m3) and lowest in female veterans (1.96 kJ/m3). Veteran males exhibited lower values (1.96 kJ/m3) than young male athletes did (P < 0.001). Young females demonstrated greater GLASED (2.28 kJ/m3) than did veteran females (P < 0.01). However, no significant difference in the GLASED was observed between male and female veterans. CONCLUSION: Our findings demonstrated the feasibility of measuring GLASED using echocardiography. GLASED values were greater in young male athletes than in female athletes and decreased with age, suggesting possible physiological differences in their myocardium. The sex-related differences observed in GLASED values among young athletes were no longer present in veteran athletes. We postulate that measuring the GLASED may serve as a useful additional screening tool for cardiac diseases in athletes, particularly for those with borderline phenotypes of hypertrophic and dilated cardiomyopathies.

4.
J Physiol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861348

RESUMEN

Older adults are vulnerable to glucocorticoid-induced muscle atrophy and weakness, with sex potentially influencing their susceptibility to those effects. Aerobic exercise can reduce glucocorticoid-induced muscle atrophy in young rodents. However, it is unknown whether aerobic exercise can prevent glucocorticoid myopathy in aged muscle. The objectives of this study were to define the extent to which sex influences the development of glucocorticoid myopathy in aged muscle, and to determine the extent to which aerobic exercise training protects against myopathy development. Twenty-four-month-old female (n = 30) and male (n = 33) mice were randomized to either sedentary or aerobic exercise groups. Within their respective groups, mice were randomized to either daily treatment with dexamethasone (DEX) or saline. Upon completing treatments, the contractile properties of the triceps surae complex were assessed in situ. DEX marginally lowered muscle mass and soluble protein content in both sexes, which was attenuated by aerobic exercise only in females. DEX increased sub-tetanic force and rate of force development only in females, which was not influenced by aerobic exercise. Muscle fatigue was higher in both sexes following DEX, but aerobic exercise prevented fatigue induction only in females. The sex-specific differences to muscle function in response to DEX treatment coincided with sex-specific changes to the content of proteins related to calcium handling, mitochondrial quality control, reactive oxygen species production, and glucocorticoid receptor in muscle. These findings define several important sexually dimorphic changes to aged skeletal muscle physiology in response to glucocorticoid treatment and define the capacity of short-term aerobic exercise to protect against those changes. KEY POINTS: There are sexually dimorphic effects of glucocorticoids on aged skeletal muscle physiology. Glucocorticoid-induced changes to aged muscle contractile properties coincide with sex-specific differences in the content of calcium handling proteins. Aerobic exercise prevents glucocorticoid-induced fatigue only in aged females and coincides with differences in the content of mitochondrial quality control proteins and glucocorticoid receptors.

5.
Cryobiology ; 116: 104927, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38857777

RESUMEN

Victims of severe accidental hypothermia are frequently treated with catecholamines to counteract the hemodynamic instability associated with hypothermia-induced cardiac contractile dysfunction. However, we previously reported that the inotropic effects of epinephrine are diminished after hypothermia and rewarming (H/R) in an intact animal model. Thus, the goal of this study was to investigate the effects of Epi treatment on excitation-contraction coupling in isolated rat cardiomyocytes after H/R. In adult male rats, cardiomyocytes isolated from the left ventricle were electrically stimulated at 0.5 Hz and evoked cytosolic [Ca2+] and contractile responses (sarcomere length shortening) were measured. In initial experiments, the effects of varying concentrations of epinephrine on evoked cytosolic [Ca2+] and contractile responses at 37 °C were measured. In a second series of experiments, cardiomyocytes were cooled from 37 °C to 15 °C, maintained at 15 °C for 2 h, then rewarmed to 37 °C (H/R protocol). Immediately after rewarming, the effects of epinephrine treatment on evoked cytosolic [Ca2+] and contractile responses of cardiomyocytes were determined. At 37 °C, epinephrine treatment increased both cytosolic [Ca2+] and contractile responses of cardiomyocytes in a concentration-dependent manner peaking at 25-50 nM. The evoked contractile response of cardiomyocytes after H/R was reduced while the cytosolic [Ca2+] response was slightly elevated. The diminished contractile response of cardiomyocytes after H/R was not mitigated by epinephrine (25 nM) and epinephrine treatment reduced the exponential time decay constant (Tau), but did not increase the cytosolic [Ca2+] response. We conclude that epinephrine treatment does not mitigate H/R-induced contractile dysfunction in cardiomyocytes.

6.
Eur J Appl Physiol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847870

RESUMEN

PURPOSE: Our study aimed to compare the immediate and prolonged effects of submaximal eccentric (ECC) and concentric (CON) fatiguing protocols on the etiology of hamstrings' motor performance fatigue. METHODS: On separate days, 16 males performed sets of 5 unilateral ECC or CON hamstrings' contractions at 80% of their 1 Repetition Maximum (1 RM) until a 20% decrement in maximal voluntary isometric contraction (MVC) torque was reached. Electrical stimulations were delivered during and after MVCs at several time points: before, throughout, immediately after (POST) and 24 h (POST 24) after the exercise. Potentiated twitch torques (T100 and T10, respectively) were recorded in response to high and low frequency paired electrical stimulations, and hamstrings' voluntary activation (VA) level was determined using the interpolated twitch technique. For statistical analysis, all indices of hamstrings' motor performance fatigue were expressed as a percentage of their respective baseline value. RESULTS: At POST, T100 (ECC: -13.3%; CON: -9.7%; p < 0.001), T10 (ECC: -5.1%; CON: -11.8%; p < 0.05) and hamstrings' VA level (ECC: -3.0%; CON: -2.4%; p < 0.001) were significantly reduced from baseline, without statistical differences between fatigue conditions. At POST24, all indices of hamstrings' motor performance fatigue returned to their baseline values. CONCLUSION: These results suggest that the contribution of muscular and neural mechanisms in hamstrings' motor performance fatigue may not depend on contraction type. This may have implications for practitioners, as ECC and CON strengthening could be similarly effective to improve hamstrings' fatigue resistance.

7.
Food Chem Toxicol ; 190: 114777, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824989

RESUMEN

Air pollution (gases and particulate matter -PM) and child undernutrition are globally recognized stressors with significant consequences. PM and its components breach the respiratory alveolar-capillary barrier, entering the vasculature transporting not only harmful particles and its mediators but, altering vascular paracrine and autocrine functions. The aim of this study was to investigate the effects of Residual Oil Fly Ash (ROFA), on the vasculature of young animals with nutritional growth retardation (NGR). Weanling rats were fed a diet restricted 20% (NGR) compared to ad libitum intake (control-C) for 4 weeks. Rats were intranasally instilled with 1 mg/kg BW of ROFA. After 24h exposure, histological and immunohistochemical, biochemical and contractile response to NA/ACh were evaluated in aortas. ROFA induced changes in the tunica media of the aorta in all groups regarding thickness, muscular cells and expression of Connexin-43. ROFA increased TGF-ß1 and decreased eNOs levels and calcium channels in C and NGR animals. An increment in cytokines IL-6 and IL-10 was observed in C, with no changes in NGR. ROFA exposure altered the vascular contractile capacity. In conclusion, ROFA exposure could increase the risk for CVD through the alteration of vascular biochemical parameters, a possible step of the endothelial dysfunction.


Asunto(s)
Contaminación del Aire , Desnutrición , Animales , Ratas , Masculino , Desnutrición/fisiopatología , Desnutrición/complicaciones , Contaminación del Aire/efectos adversos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ceniza del Carbón/toxicidad , Ratas Wistar , Conexina 43/metabolismo , Material Particulado/toxicidad , Aorta/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Contaminantes Atmosféricos/toxicidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-38768297

RESUMEN

BACKGROUND: Identifying the imaging method that best predicts all-cause mortality, cardiovascular adverse events and heart failure risk is crucial for tailoring optimal management. Potential prognostic markers include left ventricular myocardial mass, ejection fraction, myocardial strain, stroke work, contraction fraction, pressure-strain product and a new measurement called global longitudinal active strain density (GLASED). OBJECTIVES: This study sought to compare the utility of 23 potential left ventricular prognostic markers of structure and contractile function in a community-based cohort. METHODS: The impact of cardiovascular magnetic resonance image-derived markers extracted by machine learning algorithms was compared to the future risk of adverse events in a group of 44,957 UK Biobank participants. RESULTS: Most markers, including the left ventricular ejection fraction, have limited prognostic value. GLASED was significantly associated with all-cause mortality and major adverse cardiovascular events, with the largest hazard ratio, highest ranking and differentiated risk in all three tertiles (P ≤ 0.0003). CONCLUSIONS: GLASED predicted all-cause mortality and major cardiovascular adverse events better than conventional markers of risk and is recommended for assessing patient prognosis.

9.
Int J Cardiol ; 408: 132139, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705203

RESUMEN

AIMS: This study compared commonly used methods for calculating left ventricular wall stress with the finite element analysis and evaluated different approaches to strain estimation. We sought to improve the accuracy of contractance estimation by developing a novel stress equation. BACKGROUND: Multiple methods for calculating LV contractile stress and strain exist. Contractance is derived from stress and strain information and is a measure of myocardial work per unit volume of muscle. Precise stress and strain information are essential for its accurate evaluation. METHODS AND RESULTS: We compared widely used methods for stress and strain calculations across diverse clinical scenarios representing distinct types of left ventricular myocardial disease. Our analysis revealed significant discrepancies in both the stress and strain values obtained with different methods. However, a newly developed modified version of the Mirsky equation demonstrated close agreement with the finite element analysis results for circumferential stress, while the Lamé method produced results close to those of finite element analysis for longitudinal stress and improved contractance accuracy. CONCLUSION: This study highlights significant inconsistencies in stress and strain values calculated using different methods, emphasising the potential impact on contractance calculations and subsequent clinical interpretation. We recommend adopting the Lamé method for longitudinal stress assessment and the modified Mirsky equation for circumferential stress analysis. These methods offer a balance between accuracy and feasibility, making them advantageous for clinical practice. By adopting these recommendations, we can improve the accuracy of LV wall stress and strain estimates, leading to more dependable contractance calculations, better prognostication and improved clinical decisions. CLINICAL AND TRANSLATIONAL IMPACT STATEMENT: Accurately estimating myocardial stress and strain is of paramount significance in clinical practice because the calculation of the contractance, defined and quantified by myocardial active strain energy density, necessitates correct stress and strain data. Contractance, which assesses myocardial work per unit muscle volume, has emerged as a promising indicator of contractile function and a predictor of future risk. The new recommendations for calculating myocardial stress improve the reliability of calculating contractance and enhance the understanding of myocardial diseases.


Asunto(s)
Análisis de Elementos Finitos , Contracción Miocárdica , Humanos , Contracción Miocárdica/fisiología , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Estrés Mecánico , Función Ventricular Izquierda/fisiología , Modelos Cardiovasculares
10.
IEEE Open J Eng Med Biol ; 5: 238-249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606403

RESUMEN

Goal: Contractile response and calcium handling are central to understanding cardiac function and physiology, yet existing methods of analysis to quantify these metrics are often time-consuming, prone to mistakes, or require specialized equipment/license. We developed BeatProfiler, a suite of cardiac analysis tools designed to quantify contractile function, calcium handling, and force generation for multiple in vitro cardiac models and apply downstream machine learning methods for deep phenotyping and classification. Methods: We first validate BeatProfiler's accuracy, robustness, and speed by benchmarking against existing tools with a fixed dataset. We further confirm its ability to robustly characterize disease and dose-dependent drug response. We then demonstrate that the data acquired by our automatic acquisition pipeline can be further harnessed for machine learning (ML) analysis to phenotype a disease model of restrictive cardiomyopathy and profile cardioactive drug functional response. To accurately classify between these biological signals, we apply feature-based ML and deep learning models (temporal convolutional-bidirectional long short-term memory model or TCN-BiLSTM). Results: Benchmarking against existing tools revealed that BeatProfiler detected and analyzed contraction and calcium signals better than existing tools through improved sensitivity in low signal data, reduction in false positives, and analysis speed increase by 7 to 50-fold. Of signals accurately detected by published methods (PMs), BeatProfiler's extracted features showed high correlations to PMs, confirming that it is reliable and consistent with PMs. The features extracted by BeatProfiler classified restrictive cardiomyopathy cardiomyocytes from isogenic healthy controls with 98% accuracy and identified relax90 as a top distinguishing feature in congruence with previous findings. We also show that our TCN-BiLSTM model was able to classify drug-free control and 4 cardiac drugs with different mechanisms of action at 96% accuracy. We further apply Grad-CAM on our convolution-based models to identify signature regions of perturbations by these drugs in calcium signals. Conclusions: We anticipate that the capabilities of BeatProfiler will help advance in vitro studies in cardiac biology through rapid phenotyping, revealing mechanisms underlying cardiac health and disease, and enabling objective classification of cardiac disease and responses to drugs.

11.
J Am Heart Assoc ; 13(9): e033744, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38686853

RESUMEN

BACKGROUND: The heart can metabolize the microbiota-derived short-chain fatty acid butyrate. Butyrate may have beneficial effects in heart failure, but the underlying mechanisms are unknown. We tested the hypothesis that butyrate elevates cardiac output by mechanisms involving direct stimulation of cardiac contractility and vasorelaxation in rats. METHODS AND RESULTS: We examined the effects of butyrate on (1) in vivo hemodynamics using parallel echocardiographic and invasive blood pressure measurements, (2) isolated perfused hearts in Langendorff systems under physiological conditions and after ischemia and reperfusion, and (3) isolated coronary arteries mounted in isometric wire myographs. We tested Na-butyrate added to injection solutions or physiological buffers and compared its effects with equimolar doses of NaCl. Butyrate at plasma concentrations of 0.56 mM increased cardiac output by 48.8±14.9%, stroke volume by 38.5±12.1%, and left ventricular ejection fraction by 39.6±6.2%, and lowered systemic vascular resistance by 33.5±6.4% without affecting blood pressure or heart rate in vivo. In the range between 0.1 and 5 mM, butyrate increased left ventricular systolic pressure by up to 23.7±3.4% in isolated perfused hearts and by 9.4±2.9% following ischemia and reperfusion, while reducing myocardial infarct size by 81.7±16.9%. Butyrate relaxed isolated coronary septal arteries concentration dependently with an EC50=0.57 mM (95% CI, 0.23-1.44). CONCLUSIONS: We conclude that butyrate elevates cardiac output through mechanisms involving increased cardiac contractility and vasorelaxation. This effect of butyrate was not associated with adverse myocardial injury in damaged hearts exposed to ischemia and reperfusion.


Asunto(s)
Butiratos , Cardiotónicos , Contracción Miocárdica , Vasodilatación , Vasodilatadores , Función Ventricular Izquierda , Animales , Masculino , Contracción Miocárdica/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Cardiotónicos/farmacología , Butiratos/farmacología , Vasodilatadores/farmacología , Preparación de Corazón Aislado , Ratas , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Gasto Cardíaco/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Ratas Wistar , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/fisiopatología , Relación Dosis-Respuesta a Droga , Modelos Animales de Enfermedad , Ratas Sprague-Dawley
12.
Yakugaku Zasshi ; 144(3): 251-255, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38432933

RESUMEN

Cardiotoxicity induced by anti-cancer drugs is a significant concern for patients undergoing cancer treatment. Some anti-cancer drugs can damage cardiac muscle cells directly or indirectly, potentially leading to severe heart failure. Various risk factors, including the type and dosage of chemotherapy agents as well as patient background, contribute to the development of cardiotoxicity. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which enable patient-specific toxicity prediction, hold great promise in this regard. However, the practical implementation of hiPSC-CMs-based prediction of anti-cancer drug-induced cardiotoxicity still faces hurdles. One major challenge involves establishing and optimizing experimental systems for evaluating contractile dysfunction, the ultimate output of heart failure, using hiPSC-CMs. Such efforts are currently underway globally, focusing on tailoring functional evaluation systems to the characteristics of hiPSC-CMs. In this paper, we provide an overview of the contraction mechanisms of cardiac cells and introduce a method of measuring contraction that we have developed, and discuss the current status of contractile function evaluation methods using hiPSC-CMs.


Asunto(s)
Antineoplásicos , Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos , Cardiotoxicidad/etiología
13.
Life Sci ; 343: 122508, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382873

RESUMEN

Alcohol intake provokes severe organ injuries including alcoholic cardiomyopathy with hallmarks of cardiac remodeling and contractile defects. This study examined the toxicity of facilitated ethanol metabolism in alcoholism-evoked changes in myocardial morphology and contractile function, insulin signaling and various cell death domains using cardiac-selective overexpression of alcohol dehydrogenase (ADH). WT and ADH mice were offered an alcohol liquid diet for 12 weeks prior to assessment of cardiac geometry, function, ER stress, apoptosis and ferroptosis. Alcohol intake provoked pronounced glucose intolerance, cardiac remodeling and contractile anomalies with apoptosis, ER stress, and ferroptosis, the effects were accentuated by ADH with the exception of global glucose intolerance. Hearts from alcohol ingesting mice displayed dampened insulin-stimulated phosphorylation of insulin receptor (tyr1146) and IRS-1 (tyrosine) along with elevated IRS-1 serine phosphorylation, the effect was augmented by ADH. Alcohol challenge dampened phosphorylation of Akt and GSK-3ß, and increased phosphorylation of c-Jun and JNK, the effects were accentuated by ADH. Alcohol challenge promoted ER stress, FK506 binding protein 5 (FKBP5), YAP, apoptosis and ferroptosis, the effects were exaggerated by ADH. Using a short-term ethanol challenge model (3 g/kg, i.p., twice in three days), we found that inhibition of FKBP5-YAP signaling or facilitated ethanol detoxification by Alda-1 alleviated ethanol cardiotoxicity. In vitro study revealed that the ethanol metabolite acetaldehyde evoked cardiac contractile anomalies, lipid peroxidation, and apoptosis, the effects of which were mitigated by Alda-1, inhibition of ER stress, FKBP5 and YAP. These data suggest that facilitated ethanol metabolism via ADH exacerbates alcohol-evoked myocardial remodeling, functional defects, and insulin insensitivity possibly through a FKBP5-YAP-associated regulation of ER stress and ferroptosis.


Asunto(s)
Alcoholismo , Ferroptosis , Intolerancia a la Glucosa , Proteínas de Unión a Tacrolimus , Ratones , Animales , Etanol/farmacología , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/farmacología , Intolerancia a la Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Remodelación Ventricular , Ratones Transgénicos , Alcoholismo/complicaciones , Alcoholismo/metabolismo , Contracción Miocárdica , Insulina/metabolismo , Miocitos Cardíacos/metabolismo
14.
Eur J Heart Fail ; 26(3): 674-682, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38269451

RESUMEN

AIM: Inhibition of microRNA (miR)-132 effectively prevents and reverses adverse cardiac remodelling, making it an attractive heart failure (HF) target. CDR132L, a synthetic antisense oligonucleotide selectively blocking pathologically elevated miR-132, demonstrated beneficial effects on left ventricular (LV) structure and function in relevant preclinical models, and was safe and well tolerated in a Phase 1b study in stable chronic HF patients. Patients with acute myocardial infarction (MI) and subsequent LV dysfunction and remodelling have limited therapeutic options, and may profit from early CDR132L treatment. METHODS: The HF-REVERT (Phase 2, multicenter, randomized, parallel, 3-arm, placebo-controlled Study to Assess Efficacy and Safety of CDR132L in Patients with Reduced Left Ventricular Ejection Fraction after Myocardial Infarction) evaluates the efficacy and safety of CDR132L in HF patients post-acute MI (n = 280), comparing the effect of 5 and 10 mg/kg CDR132L, administered as three single intravenous doses 28 days apart, in addition to standard of care. Key inclusion criteria are the diagnosis of acute MI, the development of systolic dysfunction (LV ejection fraction ≤45%) and elevated N-terminal pro-B-type natriuretic peptide. The study consists of a 6-month double-blinded treatment period with the primary endpoint LV end-systolic volume index and relevant secondary endpoints, followed by a 6-month open-label observation period. CONCLUSION: The HF-REVERT trial may underpin the concept of miR-132 inhibition to prevent or reverse cardiac remodelling in post-MI HF. The results will inform the design of subsequent outcome trials to test CDR132L in HF.


Asunto(s)
Infarto del Miocardio , Volumen Sistólico , Humanos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/complicaciones , Volumen Sistólico/fisiología , Masculino , Femenino , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/etiología , Resultado del Tratamiento , MicroARNs , Remodelación Ventricular/efectos de los fármacos , Persona de Mediana Edad , Anciano , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/administración & dosificación , Método Doble Ciego , Función Ventricular Izquierda/fisiología , Función Ventricular Izquierda/efectos de los fármacos
15.
Appl Physiol Nutr Metab ; 49(3): 293-305, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37913527

RESUMEN

There is growing evidence to support a role for the abductor hallucis (AH) in standing balance control; however, functional properties of the muscle that may provide more insight into AH's specific contribution to upright posture have yet to be characterized. This study was conducted to quantify functional neuromechanical properties of the AH and correlate the measures with standing balance variables. We quantified strength and voluntary activation during maximal voluntary isometric contractions of the great toe abductor in nine (3 females and 6 males) healthy, young participants. During electrically evoked twitch and tetanic contractions, we measured great toe abduction peak force and constructed a force-frequency curve. We also evaluated peak abduction force, contraction time (CT), half-relaxation time (HRT), rate of force development (RFD), and relaxation rate (RR) from twitch contractions evoked using doublet stimuli. Strength, VA, CT, HRT, RFD, and RR were correlated to centre of pressure standard deviation (COP SD) and velocity (COP VEL) variables of the traditional COP trace and its rambling and trembling components during single-legged stance. AH twitch properties (e.g., CT: 169.8 ± 32.3 ms; HRT: 124.1 ± 29.2 ms) and force-frequency curve were similar to other slow contractile muscles. Contractile speed related negatively with COP VEL, suggesting AH may be appropriate for slow, prolonged tasks such as ongoing postural balance control. Correlation coefficient outcomes for all variables were similar between rambling and trembling components. Our results provide further evidence for the importance of AH neuromechanical function for standing balance control, at least during a challenging single-legged posture.


Asunto(s)
Pie , Músculo Esquelético , Masculino , Femenino , Humanos , Pie/fisiología , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Postura/fisiología , Equilibrio Postural/fisiología
16.
NMR Biomed ; 37(3): e5064, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38062865

RESUMEN

Static quantitative magnetic resonance imaging (MRI) provides readouts of structural changes in diseased muscle, but current approaches lack the ability to fully explain the loss of contractile function. Muscle contractile function can be assessed using various techniques including phase-contrast MRI (PC-MRI), where strain rates are quantified. However, current two-dimensional implementations are limited in capturing the complex motion of contracting muscle in the context of its three-dimensional (3D) fiber architecture. The MR acquisitions (chemical shift-encoded water-fat separation scan, spin echo-echoplanar imaging with diffusion weighting, and two time-resolved 3D PC-MRI) wereperformed at 3 T. PC-MRI acquisitions and performed with and without load at 7.5% of the maximum voluntary dorsiflexion contraction force. Acquisitions (3 T, chemical shift-encoded water-fat separation scan, spin echo-echo planar imaging with diffusion weighting, and two time-resolved 3D PC-MRI) were performed with and without load at 7.5% of the maximum voluntary dorsiflexion contraction force. Strain rates and diffusion tensors were calculated and combined to obtain strain rates along and perpendicular to the muscle fibers in seven lower leg muscles during the dynamic dorsi-/plantarflexion movement cycle. To evaluate strain rates along the proximodistal muscle axis, muscles were divided into five equal segments. t-tests were used to test if cyclic strain rate patterns (amplitude > 0) were present along and perpendicular to the muscle fibers. The effects of proximal-distal location and load were evaluated using repeated measures ANOVAs. Cyclic temporal strain rate patterns along and perpendicular to the fiber were found in all muscles involved in dorsi-/plantarflexion movement (p < 0.0017). Strain rates along and perpendicular to the fiber were heterogeneously distributed over the length of most muscles (p < 0.003). Additional loading reduced strain rates of the extensor digitorum longus and gastrocnemius lateralis muscle (p < 0.001). In conclusion, the lower leg muscles involved in cyclic dorsi-/plantarflexion exercise showed cyclic fiber strain rate patterns with amplitudes that varied between muscles and between the proximodistal segments within the majority of muscles.


Asunto(s)
Tobillo , Pierna , Humanos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Imagen por Resonancia Magnética/métodos , Fibras Musculares Esqueléticas , Agua
17.
Exp Physiol ; 108(11): 1422-1433, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37811800

RESUMEN

Intermittent team sports, involving high metabolic and mechanical demands, elicit prolonged impairments in neuromuscular function which persist for ∼48-72 h. Whether impairments in neuromuscular function are exacerbated when such exercise is repeated with incomplete recovery is unknown. This study assessed the neuromuscular, heart rate and metabolic responses to two bouts of ∼90 min modified team sport match simulations separated by 48 h in 12 competitive football players. Before and 2 min after both bouts, knee extensor isometric maximal voluntary contraction (MVC), contractile function (Qtw,pot ) and voluntary activation (VA) were measured. Heart rate (HR), sprint time, blood lactate and glucose were measured throughout both bouts. MVC was reduced relative to baseline at post-bout 1 (21 ± 12%; P = 0.003) and pre-bout 2 (14 ± 11%; P = 0.009), and was lower post-bout 2 (33 ± 14%; P < 0.001) relative to post-bout 1 (P = 0.036). Qtw,pot was reduced post-bout 1 (30 ± 11%; P < 0.001) and pre-bout 2 (9 ± 6%; P = 0.004), and was not different post-bout 2 (28 ± 8%; P < 0.001) relative to post-bout 1 (P = 0.872). VA was reduced post-bout 1 (8 ± 7%; P = 0.023), recovered pre-bout 2 (P = 0.133) and was lower post-bout 2 (16 ± 7%; P < 0.001) relative to post-bout 1 (P = 0.029). Total sprint time was longer, and HR, blood lactate and glucose were lower during bout 2 than bout 1 (P ≤ 0.021). Thus, impairments in neuromuscular function are exacerbated when high-intensity intermittent exercise is performed with incomplete recovery concurrent with accentuated reductions in VA. The lower blood lactate and glucose during the second bout might be due, at least in part, to reduced glycogen availability upon commencing exercise and consequently a greater reliance on glucose extraction. NEW FINDINGS: What is the central question of this study? There is limited evidence on whether impairments in neuromuscular function are exacerbated when prolonged high-intensity intermittent exercise is repeated with incomplete recovery: what are the neuromuscular consequences of performing two bouts of a modified team sport match simulations separated by 48 h? What is the main finding and its importance? Impairments in knee extensor force generating capacity are exacerbated concurrent with accentuated reductions in nervous system activation of muscle when prolonged high-intensity intermittent exercise is repeated with 48 h recovery.


Asunto(s)
Ejercicio Físico , Deportes de Equipo , Humanos , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Glucosa , Lactatos
18.
Basic Res Cardiol ; 118(1): 37, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688627

RESUMEN

The ketone body 3-hydroxybutyrate (3-OHB) increases cardiac output and myocardial perfusion without affecting blood pressure in humans, but the cardiovascular sites of action remain obscure. Here, we test the hypothesis in rats that 3-OHB acts directly on the heart to increase cardiac contractility and directly on blood vessels to lower systemic vascular resistance. We investigate effects of 3-OHB on (a) in vivo hemodynamics using echocardiography and invasive blood pressure measurements, (b) isolated perfused hearts in Langendorff systems, and (c) isolated arteries and veins in isometric myographs. We compare Na-3-OHB to equimolar NaCl added to physiological buffers or injection solutions. At plasma concentrations of 2-4 mM in vivo, 3-OHB increases cardiac output (by 28.3±7.8%), stroke volume (by 22.4±6.0%), left ventricular ejection fraction (by 13.3±4.6%), and arterial dP/dtmax (by 31.9±11.2%) and lowers systemic vascular resistance (by 30.6±11.2%) without substantially affecting heart rate or blood pressure. Applied to isolated perfused hearts at 3-10 mM, 3-OHB increases left ventricular developed pressure by up to 26.3±7.4 mmHg and coronary perfusion by up to 20.2±9.5%. Beginning at 1-3 mM, 3-OHB relaxes isolated coronary (EC50=12.4 mM), cerebral, femoral, mesenteric, and renal arteries as well as brachial, femoral, and mesenteric veins by up to 60% of pre-contraction within the pathophysiological concentration range. Of the two enantiomers that constitute racemic 3-OHB, D-3-OHB dominates endogenously; but tested separately, the enantiomers induce similar vasorelaxation. We conclude that increased cardiac contractility and generalized systemic vasorelaxation can explain the elevated cardiac output during 3-OHB administration. These actions strengthen the therapeutic rationale for 3-OHB in heart failure management.


Asunto(s)
Vasodilatación , Función Ventricular Izquierda , Humanos , Animales , Ratas , Volumen Sistólico , Ácido 3-Hidroxibutírico , Gasto Cardíaco , Hidroxibutiratos , Cuerpos Cetónicos
19.
J Diabetes Complications ; 37(8): 108559, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37480704

RESUMEN

AIMS: To investigate whether the obesity associated to T2DM presented cardiomyocyte myocardial contractility dysfunction due to damage in Ca2+ handling, concomitantly with increased biomarkers of oxidative stress. METHODS: Male Wistar rats were randomized into two groups: control (C): fed with standard diet; and obese (Ob) that fed a saturated high-fat. After the characterization of obesity (12 weeks), the Ob animals were submitted to T2DM induction with a single dose of intraperitoneal (i.p.) injection of streptozotocin (30 mg/kg). Thus, remained Ob rats that were characterized as to the presence (T2DMOb; n = 8) and/or absence (Ob; n = 10) of T2DM. Cardiac remodeling was measured by post-mortem morphological, isolated cardiomyocyte contractile function, as well as by intracellular Ca2+-handling analysis. RESULTS: T2DMOb presented a significant reduction of all fat pads, total body fat and adiposity index. T2DMOb group presented a significant increase in protein carbonylation and superoxide dismutase (SOD) activity, respectively. T2DMOb promoted elevations in fractional shortening (15.6 %) and time to 50 % shortening (5.8 %), respectively. Time to 50 % Ca2+ decay was prolonged in T2DMOb, suggesting a possible impairment in Ca2+recapture and/or removal. CONCLUSION: Type 2 diabetes mellitus in obesity promotes prolongation of cardiomyocyte contractile function with protein carbonylation damage and impaired Ca2+ handling.


Asunto(s)
Diabetes Mellitus Tipo 2 , Miocitos Cardíacos , Animales , Masculino , Ratas , Calcio , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Obesidad/metabolismo , Carbonilación Proteica , Ratas Wistar
20.
Artículo en Inglés | MEDLINE | ID: mdl-37302568

RESUMEN

Cold acclimation of zebrafish causes changes to the structure and composition of the heart. However, little is known of the consequences of these changes on heart function or if these changes are reversible with rewarming back to the initial temperature. In the current study, zebrafish were acclimated from 27℃ to 20°C, then after 17 weeks, a subset of fish were rewarmed to 27°C and held at that temperature for 7 weeks. The length of this trial, 23 weeks, was chosen to mimic seasonal changes in temperature. Cardiac function was measured in each group at 27°C and 20°C using high frequency ultrasound. It was found that cold acclimation caused a decrease in ventricular cross-sectional area, compact myocardial thickness, and total muscle area. There was also a decrease in end-diastolic area with cold acclimation that reversed upon rewarming to control temperatures. Rewarming caused an increase in the thickness of the compact myocardium, total muscle area, and end-diastolic area back to control levels. This is the first experiment to demonstrate that cardiac remodeling, induced by cold acclimation, is reversible upon re-acclimation to control temperature (27°C). Finally, body condition measurements reveal that fish that had been cold-acclimated and then reacclimated to 27°C, were in poorer condition than the fish that remained at 20°C as well as the control fish at week 23. This suggests that the physiological responses to the multiple changes in temperature had a significant energetic cost to the animal. SUMMARY STATEMENT: The decrease in cardiac muscle density, compact myocardium thickness and diastolic area in zebrafish caused by cold acclimation, was reversed with rewarming to control temperatures.


Asunto(s)
Recalentamiento , Pez Cebra , Animales , Pez Cebra/fisiología , Remodelación Ventricular , Miocardio , Temperatura , Frío , Aclimatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...