Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros












Intervalo de año de publicación
1.
Chem Asian J ; : e202401052, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385335

RESUMEN

Crown ether anchored organic-inorganic hybrid halides have been recently reported as interesting luminescent materials in the visible region of electromagnetic spectrum. Is it possible to develop such crown ether anchored hybrid materials for near infrared emission? Motivated by this question, we designed a new hybrid material, namely, [(18-Crown-6)K][MoOCl4(H2O)]. 18-Crown-6 ether bound with K+ form the cationic part [(18-Crown-6)K]+. The K+ of [(18-Crown-6)K]+ electrostatically interacts with Cl- of the anionic part [MoOCl4(H2O)]-, forming the hybrid crystal [(18-Crown-6)K][MoOCl4(H2O)]. It crystallizes in orthorhombic crystal system with Pnma space group. The Mo(V) possesses one d-electron (d1) in C4v point group symmetry in the [MoOCl4(H2O)]- polyhedra. This electronic configuration leads to multiple spin-allowed d-d transitions along with a ligand to metal charge transfer (LMCT) resulting into multiple optical absorption bands in the near UV-visible-near infrared (NIR) region. The lowest energy d-d transition via 2E  to 2B2 leads to NIR PL with peak at 952 nm, but with a poor intensity at room temperature.

2.
Molecules ; 29(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39202853

RESUMEN

Carbon nitrides can form coordination compounds or metallic oxides in the presence of transition metals, depending on the reaction conditions. By adjusting the pH to basic levels for mild synthesis with metals, composites like g-C3N4-M(OH)x (where M represents metals) were obtained for nickel (II) and manganese (II), while copper (II) yielded coordination compounds such as Cu-g-C3N4. These materials underwent spectroscopic and electrochemical characterization, revealing their photocatalytic potential to generate superoxide anion radicals-a feature consistent across all metals. Notably, the copper coordination compound also produced significant hydroxyl radicals. Leveraging this catalytic advantage, with band gap energy in the visible region, all compounds were activated to disinfect E. coli bacteria, achieving total disinfection with Cu-g-C3N4. The textural properties influence the catalytic performance, with copper's stabilization as a coordination compound enabling more efficient activity compared to the other metals. Additionally, the determination of radicals generated under light in the presence of dicloxacillin supported the proposed mechanism and highlighted the potential for degrading organic molecules with this new material, alongside its disinfectant properties.

3.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39201335

RESUMEN

In this work, energetic coordination compounds (ECCs) of transition metals (Fe, Ni, Cu, Zn) containing aliphatic amines as ligands were synthesized: ethylenediamine; 1,3-diaminopropane; tris(2-aminoethyl)amine; tris(3-aminopropyl)amine. The compounds were investigated in terms of ignition/explosion temperature, friction and impact sensitivity. For selected compounds, structural characterisation was presented (IR-ATR spectroscopy, Raman spectroscopy) and their morphology was determined (SEM, powder XRD). They were also investigated by differential scanning calorimetry (DSC). In order to assess the potential application of selected ECCs in detonators, underwater explosion tests were carried out, determining energetic performance. The results achieved for detonators containing ECCs were compared with those for reference detonators (containing pentaerythritol tetranitrate, PETN), indicating their potential use as a "green" alternative to nitric acid esters.


Asunto(s)
Complejos de Coordinación , Sustancias Explosivas , Ligandos , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Sustancias Explosivas/química , Aminas/química , Elementos de Transición/química , Rastreo Diferencial de Calorimetría , Espectrometría Raman
4.
Eur J Med Chem ; 276: 116697, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047610

RESUMEN

Copper complexes have shown promising anticancer properties, but they are often poorly soluble in aqueous solutions, thus limiting their possible medical developments and applications. We have recently isolated some copper(II) complexes with salicylaldehyde thiosemicarbazone ligands exhibiting remarkable nanomolar cytotoxic activity, but in vivo tests evidenced several difficulties related to their poor solubility. To overcome these limitations and increase solubility in aqueous solution, herein we report the synthetic strategy that led to the introduction of the sulfonic group on the ligands, then separated as salts (NaH2L1 - NaH2L5), as well as the synthesis and characterization of the related copper(II) complexes. The characterization of the complexes is completed by the analysis of the structures obtained by X-rays diffraction on single crystals on the species [Cu(HL5)(H2O)]2.2H2O, [Cu(HL2)(H2O)2].2H2O, and [Cu(HL1)(H2O]2.2H2O. While the uncoordinated ligands do not affect cancer cell viability, copper(II) complexes exhibit low to sub-micromolar cytotoxic activity, which is maintained in 3D (HCT-15 and 2008) spheroidal models of cancer cell. Notably, copper(II) complexes were selective towards cancer cells, showing high selectivity indexes. Investigations focused on elucidating the mechanism of action evidenced the protein disulfide-isomerase as an innovative molecular target for this class of water-soluble copper(II) complexes. Finally, preliminary in vivo experiments performed with the most representative derivative in the murine Lewis Lung Carcinoma, highlight its significant antitumor efficacy and better tolerability profile with respect to the reference metallodrug, suggesting for this sulfonated Cu(II) complex a potential clinical relevance.


Asunto(s)
Antineoplásicos , Cobre , Ensayos de Selección de Medicamentos Antitumorales , Proteína Disulfuro Isomerasas , Solubilidad , Tiosemicarbazonas , Agua , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Humanos , Agua/química , Animales , Cobre/química , Cobre/farmacología , Ratones , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral
5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 3): 171-181, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713102

RESUMEN

A new photoactive cobalt coordination compound, [Co(NH3)5NO2]BrNO3 (I), was obtained. Its crystal structure was shown to be isostructural with previously known [Co(NH3)5NO2]ClNO3 (II) for which linkage isomerization accompanied with mechanical response of the crystal has been already reported. Single crystals of I are transformed into nitrito isomer [Co(NH3)5ONO]BrNO3 (III) on irradiation with blue light (λ = 465 nm) without being destroyed. The crystal structure of III was also solved using single-crystal X-ray diffraction and compared with previously known [Co(NH3)5ONO]ClNO3 (IV). A detailed comparison of the structures of I, II, III and IV, including unit-cell parameters, the distribution of free space (in particular, reaction cavities around the nitro ligand), the lengths of hydrogen bonds, coordination and Voronoi-Dirichlet polyhedra has been performed. Single-crystal X-ray diffraction data were complemented with IR spectra. The effect of the replacement of Cl- by Br- on the crystal structure and on the nitro-nitrito photoisomerization is discussed.

6.
Small Methods ; : e2400432, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767183

RESUMEN

Electrocatalytic carbon dioxide reduction reaction (CO2RR) has emerged as a promising and sustainable approach to cut carbon emissions by converting greenhouse gas CO2 to value-added chemicals and fuels. Metal-organic coordination compounds, especially the copper (Cu)-based coordination compounds, which feature well-defined crystalline structures and designable metal active sites, have attracted much research attention in electrocatalytic CO2RR. Herein, the recent advances of electrochemical CO2RR on pristine Cu-based coordination compounds with different types of Cu active sites are reviewed. First, the general reaction pathways of electrocatalytic CO2RR on Cu-based coordination compounds are briefly introduced. Then the highly efficient conversion of CO2 on various kinds of Cu active sites (e.g., single-Cu site, dimeric-Cu site, multi-Cu site, and heterometallic site) is systematically discussed, along with the corresponding catalytic reaction mechanisms. Finally, some existing challenges and potential opportunities for this research direction are provided to guide the rational design of metal-organic coordination compounds for their practical application in electrochemical CO2RR.

7.
J Biol Inorg Chem ; 29(3): 331-338, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38717473

RESUMEN

Two new lanthanide-complexes based on the 5-nitropicolinate ligand (5-npic) were obtained and fully characterized. Single-crystal X-ray diffraction revealed that these compounds are isostructural to a Dy-complex, previously published by us, based on dinuclear monomers link together with an extended hydrogen bond network, providing a final chemical formula of [Ln2(5-npic)6(H2O)4]·(H2O)2, where Ln = Dy (1), Gd (2), and Tb (3). Preliminary photoluminescent studies exhibited a ligand-centered emission for all complexes. The potential antitumoral activity of these materials was assayed in a prostatic cancer cell line (PC-3; the 2nd most common male cancerous disease), showing a significant anticancer activity (50-60% at 500 µg·mL-1). In turn, a high biocompatibility by both, the complexes and their precursors in human immunological HL-60 cells, was evidenced. In view of the strongest toxic effect in the tumoral cell line provided by the free 5-npic ligand (~ 40-50%), the overall anticancer complex performance seems to be triggered by the presence of this molecule.


Asunto(s)
Antineoplásicos , Elementos de la Serie de los Lantanoides , Ácidos Picolínicos , Humanos , Elementos de la Serie de los Lantanoides/química , Elementos de la Serie de los Lantanoides/farmacología , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Masculino , Ensayos de Selección de Medicamentos Antitumorales , Modelos Moleculares , Células HL-60 , Cristalografía por Rayos X , Estructura Molecular , Línea Celular Tumoral , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
8.
Biometals ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647983

RESUMEN

Acanthamoeba spp. emerged as a clinically important pathogen related to amoebic keratitis. It is among the main causes of corneal transplantation and vision loss in ophthalmology. The treatment protocols have a low cure rate, high toxicity, and need for drug combination. Transition metal compounds have shown promising antiprotozoal effects. This study evaluates the amoebicidal activity of copper(II) coordination compounds in combination with chlorhexidine and the cytotoxicity to topical ocular application. These copper(II) coordination compounds were screened against Acanthamoeba castellanii trophozoites (ATCC 50492). The cytotoxicity on rabbit corneal cell line (ATCC-CCL 60) was performed. The compounds showed high amoebicidal potential, with inhibition of trophozoite viability above 80%. The Cp12 and Cp13 compounds showed Minimal Inhibitory Amoebicidal Concentration (MIAC) at 200 µM and mean inhibitory concentration (IC50) values lower than 10 µM. Against the cysts, Cp12 showed a reduction in viability (48%) in the longest incubation period. A synergistic effect for Cp12 with chlorhexidine was observed. The compounds have a dose-dependent effect against rabbit corneal cells. Compound Cp12 has potential for future application in developing ophthalmic formulations against Acanthamoeba keratitis and its use in multipurpose solutions is highlighted.

9.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474580

RESUMEN

Most diseases that affect human beings across the world are now treated with drugs of organic origin. However, some of these are associated with side effects, toxicity, and resistance phenomena. For the treatment of many illnesses, the development of new molecules with pharmacological potential is now an urgent matter. The biological activities of metal complexes have been reported to have antitumor, antimicrobial, anti-inflammatory, anti-infective and antiparasitic effects, amongst others. Metal complexes are effective because they possess unique properties. For example, the complex entity possesses the effective biological activity, then the formation of coordination bonds between the metal ions and ligands is controlled, metal ions provide it with extraordinary mechanisms of action because of characteristics such as d-orbitals, oxidation states, and specific orientations; metal complexes also exhibit good stability and good physicochemical properties such as water solubility. Platinum is a transition metal widely used in the design of drugs with antineoplastic activities; however, platinum is associated with side effects which have made it necessary to search for, and design, novel complexes based on other metals. Copper is a biometal which is found in living systems; it is now used in the design of metal complexes with biological activities that have demonstrated antitumoral, antimicrobial and anti-inflammatory effects, amongst others. In this review, we consider the open horizons of Cu(II)- and Pt(II)-based complexes, new trends in their design, their synthesis, their biological activities and their targets of action.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Complejos de Coordinación , Humanos , Cobre/química , Complejos de Coordinación/química , Platino (Metal)/química , Antineoplásicos/farmacología , Antiinfecciosos/farmacología , Iones , Antiinflamatorios , Ligandos
10.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474599

RESUMEN

Redox non-innocent ligands react with metal precursors to form complexes where the oxidation states of the ligand and thus the metal atom cannot be easily defined. A well-known example of such ligands is bis(o-aminophenol) N,N'-bis(3,5-di-tertbutyl-2-hydroxy-phenyl)-1,2-phenylenediamine, previously developed by the Wieghardt group, which has a potentially tetradentate coordination mode and four distinct protonation states, whereas its electrochemical behavior allows for five distinct oxidation states. This rich redox chemistry, as well as the ability to coordinate to various transition metals, has been utilized in the syntheses of metal complexes with M2L, ML and ML2 stoichiometries, sometimes supported with other ligands. Different oxidation states of the ligand can adopt different coordination modes. For example, in the fully oxidized form, two N donors are sp2-hybridized, which makes the ligand planar, whereas in the fully reduced form, the sp3-hybridized N donors allow the formation of more flexible chelate structures. In general, the metal can be reduced during complexation, but redox processes of the isolated complexes typically occur on the ligand. Combination of this non-innocent ligand with redox-active transition metals may lead to complexes with interesting magnetic, electrochemical, photonic and catalytic properties.

11.
Chemphyschem ; 25(12): e202400074, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38517325

RESUMEN

In the framework of the design, synthesis and testing of a library of copper complexes and nanostructured assemblies potentially endowed with antitumor and antiviral activity and useful for several applications, from drugs and related delivery systems to the development of biocidal nanomaterials, we present the detailed spectroscopic investigation of the molecular and electronic structure of copper-based coordination compounds and of a new conjugated system obtained by grafting Cu(I) complexes to gold nanorods. More in detail, the electronic and molecular structures of two Cu complexes and one AuNRs/Cu-complex adduct were investigated by X-ray photoelectron spectroscopy (XPS), synchrotron-induced XPS (SR-XPS) and near edge X-ray absorption spectroscopy (NEXAFS) in solid state, and the local structure around copper ion was assessed by X-ray absorption spectroscopy (XAS) both in solid state and water solution for the AuNRs/Cu-complex nanoparticles. The proposed multi-technique approach allowed to properly define the coordination geometry around the copper ion, as well as to ascertain the molecular structures of the coordination compounds, their stability and modifications upon interaction with gold nanoparticles, by comparing solid state and liquid phase data.

12.
Future Microbiol ; 19: 385-395, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38381028

RESUMEN

Background: New chemotherapeutics are urgently required to treat Candida infections caused by drug-resistant strains. Methods: The effects of 16 1,10-phenanthroline (phen)/1,10-phenanthroline-5,6-dione/dicarboxylate complexed with Mn(II), Cu(II) and Ag(I) were evaluated against ten different Candida species. Results: Proliferation of Candida albicans, Candida dubliniensis, Candida famata, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis and Candida tropicalis was inhibited by three of six Cu(II) (MICs 1.52-21.55 µM), three of three Ag(I) (MICs 0.11-12.74 µM) and seven of seven Mn(II) (MICs 0.40-38.06 µM) complexes. Among these [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O, where oda = octanedioic acid, exhibited effective growth inhibition (MICs 0.4-3.25 µM), favorable activity indexes, low toxicity against Vero cells and good/excellent selectivity indexes (46.88-375). Conclusion: [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O represents a promising chemotherapeutic option for emerging, medically relevant and drug-resistant Candida species.


Candida species are widespread fungi that can cause a variety of infections in humans, and some of them exhibit resistance profile to existing antifungal drugs. Consequently, it is imperative to discover novel treatments for these clinically relevant human infections. Complexes are chemical compounds containing metal ion components that are well-known for their antimicrobial properties, including antifungal activity. In the present study, we investigated the effects of 16 novel complexes against ten medically relevant Candida species, including some strains resistant to commonly used clinical antifungals. Our findings revealed that all complexes containing manganese and silver metals effectively inhibited the growth of all Candida species tested, albeit to varying extents. Some of these complexes exhibited superior antifungal activity and lower toxicity to mammalian cells compared to traditional antifungals, such as fluconazole. In conclusion, these new complexes hold promise as a potential novel approach for treating fungal infections, especially those caused by drug-resistant Candida strains.


Asunto(s)
Antifúngicos , Cobre , Fenantrolinas , Animales , Chlorocebus aethiops , Cobre/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Plata/farmacología , Manganeso/farmacología , Células Vero , Candida , Candida albicans , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica
13.
Front Chem ; 12: 1342772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410816

RESUMEN

Coumarin (2H-1-benzopyran-2-one) presents the fundamental structure of an enormous class of biologically active compounds of natural, semi-synthetic, and synthetic origin. Extensive efforts are continually being put into the research and development of coumarin derivatives with medicinal properties by the broad scientific community. Transition metal coordination compounds with potential biological activity are a "hot topic" in the modern search for novel drugs. Complexation with transition metals can enhance the physiological effect of a molecule, modify its safety profile, and even imbue it with novel attributes of interest in the fields of medicine and pharmacy. The present review aims to inform the reader of the latest developments in the search for coumarin transition metal complexes with biological activity, their potential applications, and structure-activity relationships, where such can be elucidated. Each section of the present review addresses a certain kind of biological activity (antiproliferative, antioxidant, antimicrobial, etc.), explores the most recent discoveries in the field, and, at the same time, tries to offer useful perspectives for potential future investigations.

14.
J Inorg Biochem ; 251: 112440, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38065049

RESUMEN

As an inherent metal ion, copper has been the subject of investigation for developing a novel antitumoral compound that exhibits fewer adverse effects. Copper serves as a cofactor in multiple enzymes, generates reactive oxygen species (ROS), facilitates tumour evolution, metastasis and angiogenesis and has been detected at elevated concentrations in the serum and tissues of various human cancer types. In the given setting, utilising two methodologies in developing novel Copper-based pharmaceuticals for anti-cancer applications is standard practice. These approaches involve either the sequestration of unbound Copper ions or the synthesis of Copper complexes that induce cellular apoptosis. In the past four decades, the latter system has been used, leading to numerous reviews that have examined the anticancer characteristics of a wide range of Copper complexes. These analyses have consistently demonstrated that multiple factors frequently influence the efficacy of these compounds. This review examines the possible anticancer properties of copper and Cu(II) complexes that incorporate Schiff base ligands containing 1,10-phenanthroline. The present study will comprehensively analyse the examined cell lines and mechanistic research associated with each complex.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Bases de Schiff/farmacología , Cobre , Fenantrolinas/farmacología , Ligandos , Cristalografía por Rayos X
15.
Biometals ; 37(2): 321-336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37917351

RESUMEN

Candida spp. are the commonest fungal pathogens worldwide. Antifungal resistance is a problem that has prompted the discovery of novel anti-Candida drugs. Herein, 25 compounds, some of them containing copper(II), cobalt(II) and manganese(II) ions, were initially evaluated for inhibiting the growth of reference strains of Candida albicans and Candida tropicalis. Eight (32%) of the compounds inhibited the proliferation of these yeasts, displaying minimum inhibitory concentrations (MICs) ranging from 31.25 to 250 µg/mL and minimum fungicidal concentration (MFCs) from 62.5 to 250 µg/mL. Drug-likeness/pharmacokinetic calculated by SwissADME indicated that the 8 selected compounds were suitable for use as topical drugs. The complex CTP, Cu(theo)2phen(H2O).5H2O (theo = theophylline; phen = 1,10-phenanthroline), was chosen for further testing against 10 medically relevant Candida species that were resistant to fluconazole/amphotericin B. CTP demonstrated a broad spectrum of action, inhibiting the growth of all 20 clinical fungal isolates, with MICs from 7.81 to 62.5 µg/mL and MFCs from 15.62 to 62.5 µg/mL. Conversely, CTP did not cause lysis in erythrocytes. The toxicity of CTP was evaluated in vivo using Galleria mellonella and Tenebrio molitor. CTP had no or low levels of toxicity at doses ranging from 31.25 to 250 µg/mL for 5 days. After 24 h of treatment, G. mellonella larvae exhibited high survival rates even when exposed to high doses of CTP (600 µg/mL), with the 50% cytotoxic concentration calculated as 776.2 µg/mL, generating selectivity indexes varying from 12.4 to 99.4 depending on each Candida species. These findings suggest that CTP could serve as a potential drug to treat infections caused by Candida species resistant to clinically available antifungals.


Asunto(s)
Antifúngicos , Candida , Fenantrolinas , Antifúngicos/farmacología , Antifúngicos/química , Cobre/farmacología , Teofilina/farmacología , Candida albicans , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana
16.
Chemistry ; 30(11): e202303455, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38149717

RESUMEN

Novel isomorphous tetranuclear complexes, [(dppf)Cu(µ3 ,η2 : 2 : 2 -E2 {CpMo(CO)2 }2 ]BF4 [E=P (1), As (4), Sb (5), (dppf=1,1'-bis-(diphenylphosphino)-ferrocene)] and [(dppf)Cu(µ3 ,η2 : 2 : 2 -PE{CpMo(CO)2 }2 ]BF4 [E=As (2), Sb(3)] were synthesized from the reactions between [(dppf)Cu(MeCN)2 ][BF4 ] and tetrahedral molybdenum complexes containing unsubstituted homo- and hetero-diatomic group-15 elements [(µ,η2 : 2 -E2 {CpMo(CO)2 }2 ] [E=P (A), As (D), Sb (E)] and [(µ,η2 : 2 -PE{CpMo(CO)2 }2 ] [E=As (B), Sb (C)], respectively. In all these products, the {Mo2 E2 } or {Mo2 PE} moieties coordinate the Cu(I) center via a rare side-on η2 -coordination mode. The X-ray structure analyses of [(dppf)Cu(µ3 ,η2 : 2 : 1 -PSb{CpMo(CO)2 }2 ][BF4 ] demonstrate, for the first time, the utilization of an η1 -coordination mode for the ligand complex C to coordinate to the Cu(I) center. All the products were characterized by X-ray crystallography, NMR and IR spectroscopy, mass spectrometry and elemental analysis. Electrochemical studies also revealed the formation of 1-5, and, further, to understand the structure and bonding of the products, theoretical calculations using density functional theory (DFT) were conducted.

17.
FEMS Yeast Res ; 242024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38124682

RESUMEN

Reactive oxygen species (ROS) are closely related to oxidative stress, aging, and the onset of human diseases. To mitigate ROS-induced damages, extensive research has focused on examining the antioxidative attributes of various synthetic/natural substances. Coordination compounds serving as synthetic antioxidants have emerged as a promising approach to attenuate ROS toxicity. Herein, we investigated the antioxidant potential of a series of Fe(III) (1), Mn(III)Mn(II) (2) and Cu(II) (3) coordination compounds synthesized with the ligand N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]-propylamine in Saccharomyces cerevisiae exposed to oxidative stress. We also assessed the antioxidant potential of these complexes in the alternative model of study, Galleria mellonella. DPPH analysis indicated that these complexes presented moderate antioxidant activity. However, treating Saccharomyces cerevisiae with 1, 2 and 3 increased the tolerance against oxidative stress and extended yeast lifespan. The treatment of yeast cells with these complexes decreased lipid peroxidation and catalase activity in stressed cells, whilst no change in SOD activity was observed. Moreover, these complexes induced the Hsp104 expression. In G. mellonella, complex administration extended larval survival under H2O2 stress and did not affect the insect's life cycle. Our results suggest that the antioxidant potential exhibited by these complexes could be further explored to mitigate various oxidative stress-related disorders.


Asunto(s)
Antioxidantes , Mariposas Nocturnas , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Compuestos Férricos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo
18.
J Biol Inorg Chem ; 29(1): 33-49, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38099935

RESUMEN

Tetrahedral copper(II) and zinc(II) coordination compounds from 5-nitroimidazole derivatives, viz. 1-(2-chloroethyl)-2-methyl-5-nitroimidazole (cenz) and ornidazole 1-(3-chloro-2-hydroxypropyl)-2-methyl-5-nitroimidazole (onz), were synthesized and spectroscopically characterized. Their molecular structures were determined by X-ray diffraction studies. The complexes [Cu(onz)2X2], [Zn(onz)2X2], [Cu(cenz)2X2] and [Zn(cenz)2X2] (X- = Cl, Br), are stable in solution and exhibit positive LogD7.4 values that are in the range for molecules capable of crossing the cell membrane via passive difussion. Their biological activity against Toxoplasma gondi was investigated, and IC50 and lethal dose (LD50) values were determined. The ornidazole copper(II) compounds showed very good antiparasitic activity in its tachyzoite morphology. The interaction of the coordination compounds with DNA was examined by circular dichroism, fluorescence (using intercalating ethidium bromide and minor groove binding Hoechst 33258) and UV-Vis spectroscopy. The copper(II) compounds interact with the minor groove of the biomolecule, whereas weaker electrostatic interactions take place with the zinc(II) compounds. The spectroscopic data achieved for the two series of complexes (namely with copper(II) and zinc(II) as metal center) agree with the respective DNA-damage features observed by gel electrophoresis.


Asunto(s)
Complejos de Coordinación , Nitroimidazoles , Ornidazol , Toxoplasma , Cobre/química , Complejos de Coordinación/química , Toxoplasma/metabolismo , Zinc/química , ADN/química , Ligandos , Cristalografía por Rayos X
19.
ACS Appl Bio Mater ; 6(11): 4749-4763, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864581

RESUMEN

A skin wound is prone to bacterial infection and growth. An antibacterial topical hydrogel that can act as a self-drug-delivery (SDD) system is reported here. Two bidentate ligands (L2/L1) derived from imidazole/benzimidazole derivatives when reacted with Zn(NO3)2 and a series of nonsteroidal-anti-inflammatory drugs (NSAIDs) produced crystalline products, which were characterized by single-crystal X-ray diffraction (SXRD). Simple mixing of the ingredients of the crystalline products (stoichiometry guided by the corresponding crystal structure) produced an aqueous gel (DMSO/water) when the bidentate ligand was water-insoluble L2, whereas water-soluble L1 readily produced hydrogels under similar conditions. Dynamic rheology and scanning electron microscopy (SEM) were employed to characterize the gels. Zone inhibition diameters, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and hemolysis data suggested that among the hydrogelators, L1MEC derived from L1, meclofenac and Zn(NO3)2, was found to be the best against the Gram-negative bacteria Escherichia coli. The corresponding hydrogel L1MEC_HG and a piece of a dried cloth bandage coated with the hydrogel also showed appreciable activity against E. coli. The antibacterial property of L1MEC_HG against E. coli, thus demonstrated, is relevant in developing an antibacterial SDD system because E. coli is reported to be present in infected wounds.


Asunto(s)
Antiinflamatorios no Esteroideos , Hidrogeles , Hidrogeles/química , Antiinflamatorios no Esteroideos/química , Escherichia coli , Antibacterianos/química , Zinc/química , Imidazoles/farmacología , Sistemas de Liberación de Medicamentos , Agua
20.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836603

RESUMEN

The therapeutic advantages of some platinum complexes as major anticancer chemotherapeutic agents and of nucleoside analogue-based compounds as essential antiviral/antitumor drugs are widely recognized. Red blood cells (RBCs) offer a potential new strategy for the targeted release of therapeutic agents due to their biocompatibility, which can protect loaded drugs from inactivation in the blood, thus improving biodistribution. In this study, we evaluated the feasibility of loading model nucleobase-containing Pt(II) complexes into human RBCs that were highly stabilized by four N-donors and susceptible to further modification for possible antitumor/antiviral applications. Specifically, platinum-based nucleoside derivatives [PtII(dien)(N7-Guo)]2+, [PtII(dien)(N7-dGuo)]2+, and [PtII(dien)(N7-dGTP)] (dien = diethylenetriamine; Guo = guanosine; dGuo = 2'-deoxy-guanosine; dGTP = 5'-(2'-deoxy)-guanosine-triphosphate) were investigated. These Pt(II) complexes were demonstrated to be stable species suitable for incorporation into RBCs. This result opens avenues for the possible incorporation of other metalated nucleobases analogues, with potential antitumor and/or antiviral activity, into RBCs.


Asunto(s)
Antineoplásicos , Compuestos Organoplatinos , Humanos , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/metabolismo , Distribución Tisular , Platino (Metal) , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Antivirales/farmacología , Eritrocitos/metabolismo , Guanosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...