Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 33(40)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35671715

RESUMEN

A spin Mn3d5-rich Mn60Bi40alloy reveals a model system in order to tailor profound magnetic properties at unpaired 3d5spins in such alloys of a core-shell structure. As annealed (at a critical temperature 573 K in H2gas), a refined powder (in glycine) grows onα-MnBi seeds (crystallites) present in it at Mn/Bi atoms order over topological layers, preferentially along (110) planes, at a self-confined structure at seeds of an anisotropic shape of hexagonal (h) plates (25-85 nm widths). In terms of the HRTEM images, the atoms turn down at edges (at the plates grow up) in a spiral layer, ≤ 2.1 nm thickness, of small core-shells. A spin model is proposed to delineate a way at the spins can pin down at the edges, form single magnetic domains, and raise coercivity (Hc), with no much loss of net magnetic moment. The X-ray diffraction and HRTEM images corroborate the results of topological pacing of atoms at the h-plates at anneals. A novelty is that a core-shell leads to tailor a superbHc, as much as 11.110 kOe (16.370 kOe at 350 K), with a fairly large magnetization, 76.5 emu g-1, at near 300 K. An enhanced Curie point 650.1 K (628 K at Mn50Bi50alloy) confers a surplus 3d5-Mn spin sensitively tunesα-MnBi stoichiometry and so its final magnetic structure. A refined alloy powder so made is useful to make powerful magnets and devices in the forms of films and bonded magnets in different shapes for uses as small tools, tweezers, and other devices.

2.
Nanotechnology ; 32(43)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34256367

RESUMEN

La2NiMnO6-a ferromagnetic (FM) insulator offers tunable charge carriers and spins useful to devise its multiple properties and applications. In this view, we studied a core-shell La2NiMnO6(2-3 nm shell on 65 - 80 nm core) of a Ni2+/Ni3+(d7) to Mn4+/Mn3+(d4) spin-up conversion- revived a new FM phase-2, raising a spin-densityσs = 0.7 s a-1over the Ni2+/Mn4+species (phase-1),σs = 0.5 s a-1, i.e. 2.12µB/f.u. larger spin moment. HRTEM images studied with x-ray diffraction characterizing core-shell structure that plays a crucial role in tuning the high spin FM phase-2 of profound properties. Below 110 K, the dc magnetization and ac magnetic susceptibilityχ(ω,T) reveal a metastable magnetic behavior on an antiferromagnetic canting of a spin-glass nature. The results follow a Vogel-Fulcher type relaxation with a relaxation timeτ0∼ 10-13s, confirming a spin-glass freezing behavior. Uniquely, FM field of phase-1 controls magnetics of phase 2 of a coupled magnet, modulating joint features with small thermal magnetic hysteresis on heating-cooling cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...