Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.403
Filtrar
1.
Discov Nano ; 19(1): 117, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009869

RESUMEN

Plant diseases cause colossal crop loss worldwide and are the major yield constraining component in agriculture. Nanotechnology, which has the possible to revolutionize numerous fields of science, innovation, drug, and agriculture. Nanotechnology can be utilized for combating the plant infectious diseases and nano-materials can be utilized as transporter of dynamic elements of pesticides, host defense etc. to the pathogens. The analysis of diseases, finding of pathogens may turn out to be substantially more precise and fast with the utilization of nanosensors. As worldwide demand for food production raises against an evolving atmosphere, nanotechnology could reasonably alleviate numerous challenges in disease managing by diminishing chemical inputs and advancing quick recognition of pathogens. The major goal of this review is to increase growth and productivity using supplements with nanoparticles. (i.e., metals, metal oxides, and carbon) to treat crop diseases and make agricultural practices more productive and sustainable. Prominently, this improved crop may not only be straight connected to the diminished occurrence of pathogenic microorganisms, yet in might possibly add nutritional benefits of the nanoparticles themselves, particularly for the micronutrients important for generating host resistance.

2.
Sci Rep ; 14(1): 16241, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004630

RESUMEN

Proper utilization of agricultural land is a big challenge as they often laid over as waste lands. Farming is a significant occupation in any country and improving it further by promoting more farming opportunities will take the country towards making a huge leap forward. The issue in achieving this would be the lack of knowledge of cultivable land for food crops. The objective of this work is to utilize modern computer vision technology to identify and map cultivable land for agricultural needs. With increasing population and demand for food, improving the farming sector is crucial. However, the challenge lies in the lack of suitable land for food crops cultivation. To tackle this issue, we propose to use sophisticated image processing techniques on satellite images of the land to determine the regions that are capable of growing food crops. The solution architecture includes enhancement of satellite imagery using sophisticated pan sharpening techniques, notably the Brovey transformation, aiming to transform dull satellite images into sharper versions, thereby improving the overall quality and interpretability of the visual data. Making use of the weather data on the location observed and taking into factors like the soil moisture, weather, humidity, wind, sunlight times and so on, this data is fed into a generative pre-trained transformer model which makes use of it and gives a set of crops that are suitable to be grown on this piece of land under the said conditions. The results obtained by the proposed fusion approach is compared with the dataset provided by the government for different states in India and the performance was measured. We achieved an accuracy of 80% considering the crop suggested by our model and the predominant crop of the region. Also, the classification report detailing the performance of the proposed model is presented.

3.
Plant Methods ; 20(1): 104, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004764

RESUMEN

BACKGROUND: Agriculture is one of the most crucial assets of any country, as it brings prosperity by alleviating poverty, food shortages, unemployment, and economic instability. The entire process of agriculture comprises many sectors, such as crop cultivation, water irrigation, the supply chain, and many more. During the cultivation process, the plant is exposed to many challenges, among which pesticide attacks and disease in the plant are the main threats. Diseases affect yield production, which affects the country's economy. Over the past decade, there have been significant advancements in agriculture; nevertheless, a substantial portion of crop yields continues to be compromised by diseases and pests. Early detection and prevention are crucial for successful crop management. METHODS: To address this, we propose a framework that utilizes state-of-the-art computer vision (CV) and artificial intelligence (AI) techniques, specifically deep learning (DL), for detecting healthy and unhealthy cotton plants. Our approach combines DL with feature extraction methods such as continuous wavelet transform (CWT) and fast Fourier transform (FFT). The detection process involved employing pre-trained models such as AlexNet, GoogLeNet, InceptionV3, and VGG-19. Implemented models performance was analysed based on metrics such as accuracy, precision, recall, F1-Score, and Confusion matrices. Moreover, the proposed framework employed ensemble learning framework which uses averaging method to fuse the classification score of individual DL model, thereby improving the overall classification accuracy. RESULTS: During the training process, the framework achieved better performance when features extracted from CWT were used as inputs to the DL model compared to features extracted from FFT. Among the learning models, GoogleNet obtained a remarkable accuracy of 93.4% and a notable F1-score of 0.953 when trained on features extracted by CWT in comparison to FFT-extracted features. It was closely followed by AlexNet and InceptionV3 with an accuracy of 93.4% and 91.8% respectively. To further improve the classification accuracy, ensemble learning framework achieved 98.4% on the features extracted from CWT as compared to feature extracted from FFT. CONCLUSION: The results show that the features extracted as scalograms more accurately detect each plant condition using DL models, facilitating the early detection of diseases in cotton plants. This early detection leads to better yield and profit which positively affects the economy.

4.
Indian J Microbiol ; 64(2): 318-327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39011019

RESUMEN

In the current scenario of growing world population, limited cultivable land resources, plant diseases, and pandemics are some of the major factors responsible for declining global food security. Along with meeting the food demand, the maintenance of food quality is also required to ensure healthy consumption and marketing. In agricultural fields, pest infestations and bacterial diseases are common causes of crop damage, leading to massive yield losses. Conventionally, antibiotics and several pesticides have been used to manage and control these plant pathogens. However, the overuse of antibiotics and pesticides has led to the emergence of resistant strains of pathogenic bacteria. The bacteriophages are the natural predators of bacteria and are host-specific in their action. Therefore, the use of bacteriophages for the biocontrol of pathogenic bacteria is serving as a sustainable and green solution in crop protection and production. In this review, we have discussed the important plant pathogens and their impact on plant health and yield loss. Further, we have abridged the role of bacteriophages in the protection of crops from bacterial disease by discussing various greenhouse and field trials. Finally, we have discussed the impact of bacteriophages on the plant microbiome, phage resistance, and legal challenges in the registration and commercial production of bacteriophage-based biopesticides. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01204-x.

5.
Plant Dis ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017583

RESUMEN

Wheat (Triticum aestivum L.) is the predominant grain crop and plays a pivotal role in grain production in Xinjiang Uygur Autonomous Region (XUAR), China. Its cultivated area constitutes approximately half of the total sown area of grain crops in XUAR, with 1.14 million hectares in 2021. Fusarium crown rot (FCR) of wheat, caused by Fusarium culmorum (W.G. Smith) Sacc., is one of the most devastating soil-borne diseases known to seriously reduce grain yield (Ma et al. 2024; Saad et al. 2023). In 2016, FCR of wheat, caused by F. culmorum, was firstly identified in Henan Province, China (Li et al. 2016). In June 2023, during the investigation of FCR of wheat in Aksu Prefecture, XUAR, FCR on winter wheat (cv. Xindong 20) was found (82.761349°E, 41.612202°N). The grain-filling period for winter wheat in early June coincided with a period of high temperatures and water demand in Aksu Prefecture. Approximately 8% of the Xindong 20 wheat plants exhibited symptoms of white heads and browning at the stem base, with the disease present in 82% of the wheat fields surveyed. To identify the pathogens, 20 samples of diseased stem basal tissue, each 0.5 cm in length, were collected and sterilized with 75% alcohol for 30s and 5% NaOCl solution for 2 min, followed by three rinses with sterile water. These samples were then plated onto potato dextrose agar (PDA) medium at 25°C for 5 days. A total of 17 isolates with consistent morphological characteristics were obtained using single-spore technique, with an isolation rate of 85%. The isolated strains exhibited rapid growth on PDA, producing fluffy, pale-yellow hyphae, and accumulating a pale-yellow to dark red pigment on the bottom of the medium. On carnation leaf agar (CLA), these strains formed orange colonies due to the aggregation of a large number of macroconidia. The macroconidia were short and thick, with three to four septa and rounded apical cell, averaging 31.94 to 40.96 × 5.62 to 6.71 µm (Magnification of ×400). Microconidia were not observed. These morphological characters were consistent with those of F. culmorum (Leslie and Summerell. 2006). Two isolates (D-9 and D-11) were selected for molecular identification. The EF-1α gene fragment was amplified using primers EF1/EF2 (5'-ATGGGTAAGGARGACAAGAC-3'/5'-GGARGTACCAGTSATCATG-3') as previously described by O'Donnell et al. (1998). The two 665 bp PCR products were sequenced and submitted to GenBank (GenBank Accession No: PP763247 and PP763248) with 99. 7% identity to the published F. culmorum sequences (e.g., OP985478, OP985477, MG195126, KX702638). The molecular identification was further confirmed by F. culmorum species-specific PCR primers FcOIF/FcOIR (Nicholson et al. 1998). The expected PCR products of 553 bp were produced only in F. culmorum. Strains D-9 and D-11 were used to conduct the pathogenicity experiment on 7-day-old winter wheat (cv. Xindong 20) using drip in the lower stem inoculation method with a 10-µl of 106 macroconidia ml-1 suspension, and the control 7-day-old winter wheat were treated with sterile water (Xu et al. 2017). The experiments were replicated five times in a greenhouse at temperatures ranging from 20℃ to 25℃. After 4 weeks, all inoculated wheat seedlings showed stem base browning or even death. No symptoms were observed on the control plants. The fungus was reisolated from all inoculated wheat plants by the method described above and identified by morphological and PCR amplification using F. culmorum species-specific primers FcOIF/FcOIR. No F. culmorum was isolated from the control wheat plants, fulfilling Koch's postulates. To the best of our knowledge, this is the first report of F.culmorum causing FCR on winter wheat in XUAR, China. Considering wheat is the predominant grain crop and plays a pivotal role in grain production in China, necessary measures should be taken to prevent the spread of F. culmorum to other regions.

6.
Front Plant Sci ; 15: 1440120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015288

RESUMEN

The epigenetic machinery has received extensive attention due to its involvement in plant growth, development, and adaptation to environmental changes. Recent studies often highlight the epigenetic regulatory network by discussing various epigenetic mutants across various plant species. However, a systemic understanding of essential epigenetic regulatory mechanisms remains limited due to a lack of representative mutants involved in multiple biological processes. Colorless Non-ripening (Cnr), a spontaneous epimutant isolated from a commercial population, was initially characterized for its role in fruit ripening regulation. Cnr fruits exhibit an immature phenotype with yellow skin, attributed to hypermethylation of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-CNR (SlSPL-CNR) promoter, resulting in the repression of gene expression. In addition to DNA methylation, this process also involves histone modification and microRNA, integrating multiple epigenetic regulatory factors. Interestingly, knockout mutants of SlSPL-CNR display phenotypical distinctions from Cnr in fruit ripening, indicating complex genetic and epigenetic control over the non-ripening phenotype in Cnr fruits. Accumulating evidence suggests that Cnr epimutation is pleiotropic, participating in various biological processes such as Cd stress, Fe deficiency, vivipary, and cell death. Therefore, the Cnr epimutant serve as an excellent model for unveiling how epigenetic mechanisms are involved in diverse biological processes. This review paper focuses on recent research advances regarding the Cnr epimutant, delving into its complex genetic and epigenetic regulatory mechanisms, with the aim of enhancing our understanding and facilitating the development of high-quality, high-yield crops through epigenetic modification.

7.
Biodivers Data J ; 12: e120340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015798

RESUMEN

Background: The univoltine leaf beetle Psylliodesattenuata (Koch, 1803) is a pest of Cannabis and Humulus (Cannabaceae) and native to the Palaearctic Region, known from eastern Asia to western Europe. New information: First North American records are presented for P.attenuata from Canada: Ontario and Québec. Adult beetle feeding damage to hops Humuluslupulus L. (Cannabacaea) plants is recorded from Québec. Diagnostic information is presented to distinguish P.attenuata from other North American Chrysomelidae and a preliminary assessment of its potential to spread in North America is presented. While our climate analysis is limited by a lack of data, it appears P.attenuata is physiologically capable of persisting throughout the range of Humulus in North America.The United States of America and Canada are now known to be home to 71 or more species of adventive Chrysomelidae.

8.
Environ Int ; 190: 108859, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38970982

RESUMEN

Metal nanoparticles offer promising prospects in agriculture, enhancing plant growth and ensuring food security. Silver, gold, copper, and zinc nanoparticles possess unique properties making them attractive for plant applications. Understanding molecular interactions between metal nanoparticles and plants is crucial for unlocking their potential to boost crop productivity and sustainability. This review explores metal nanoparticles in agriculture, emphasizing the need to understand these interactions. By elucidating mechanisms, it highlights the potential for enhancing crop productivity, stress tolerance, and nutrient-use efficiency, contributing to sustainable agriculture and food security. Quantifying benefits and risks reveal significant advantages. Metal nanoparticles enhance crop productivity by 20% on average and reduce disease incidence by up to 50% when used as antimicrobial agents. They also reduce nutrient leaching by 30% and enhance soil carbon sequestration by 15%, but concerns about toxicity, adverse effects on non-target organisms, and nanoparticle accumulation in the food chain must be addressed. Metal nanoparticles influence cellular processes including sensing, signaling, transcription, translation, and post-translational modifications. They act as signaling molecules, activate stress-responsive genes, enhance defense mechanisms, and improve nutrient uptake. The review explores their catalytic role in nutrient management, disease control, precision agriculture, nano-fertilizers, and nano-remediation. A bibliometric analysis offers insights into the current research landscape, highlighting trends, gaps, and future directions. In conclusion, metal nanoparticles hold potential for revolutionizing agriculture, enhancing productivity, mitigating environmental stressors, and promoting sustainability. Addressing risks and gaps is crucial for their safe integration into agricultural practices.

9.
Plant Physiol Biochem ; 214: 108849, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38991592

RESUMEN

The manuscript revealed the ameliorative effects of exogenous melatonin in two distinct reproductive stages, i.e., developing grains (20 days after pollination) and matured grains (40 days after pollination) in two contrasting indica rice genotypes, viz., Khitish (arsenic-susceptible) and Muktashri (arsenic-tolerant), irrigated with arsenic-contaminated water throughout their life-cycle. Melatonin administration improved yield-related parameters like rachis length, primary and secondary branch length, number of grains per panicle, number of filled and empty grains per panicle, grain length and breadth and 1000-grain per weight. Expression of GW2, which negatively regulates grain development, was suppressed, along with concomitant induction of positive regulators like GIF1, DEP1 and SPL14 in both Khitish and Muktashri. Melatonin lowered arsenic bioaccumulation in grains and tissue biomass, more effectively in Khitish. Unregulated production of reactive oxygen species, leading to cellular necrosis caused by arsenic, was reversed in presence of melatonin. Endogenous melatonin level was stimulated due to up-regulation of the key biosynthetic genes, SNAT and ASMT. Melatonin enhanced the production of diverse antioxidants like anthocyanins, flavonoids, total phenolics and ascorbic acid and also heightened the production of thiol-metabolites (cysteine, reduced glutathione, non-protein thiols and phytochelatin), ensuring effective chelation and arsenic detoxification. Altogether, our observation, supported by principal component analysis, proved that melatonin re-programs the antioxidative metabolome to enhance plant resilience against arsenic stress to mitigate oxidative damages and reduce arsenic translocation from the soil to tissue biomass and edible grains.

10.
Plant Dis ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003505

RESUMEN

Turfgrasses are susceptible to a wide variety of ectotrophic root-infecting (ERI) fungi that cause root rot (Tredway et al., 2023). Among the root rot diseases, fairway patch, caused by Phialocephala bamuru P.T.W. Wong & C. Dong sp. nov., was recently identified and characterized in Australia infecting bermudagrass (Cynodon dactylon) and kikuyu (Pennisetum clandestinum) grass (Wong et al., 2015). Symptoms begin as small, 5-10 cm diameter patches of yellowed turf that may coalesce into larger areas of diseased grass. A characteristic sign of fairway patch is roots colonized by dark brown to black, ectotrophic mycelium. In June 2020, many tan colored, irregular-shaped patches ranging from 10-30 cm in diameter developed on a hard fescue (Festuca brevipila) cultivar 'Beacon' turfgrass field in North Brunswick, New Jersey, USA. The centers of these patches later died and became sunken or filled in partially by recovering hard fescue. The patches grew into tan irregular-shaped rings with diameters up to 3 m by Aug 2023. Symptoms were indicative of a root disease. Five 'Beacon' hard fescue soil cores at the interface of the symptomatic and non-symptomatic area were sampled in Aug 2023. Root and crown samples were observed under a dissecting microscope and dark ectotrophic hyphae were observed on both. Roots with visible ectotrophic mycelium were removed, rinsed in sterile water three times, cut into 5 mm pieces, and plated onto 10% potato dextrose agar amended with streptomycin and gentamicin at 100 mg/L (PDA+). The plates were incubated at 25°C in the dark for 5 days. The most abundant colonies being characteristic long, septate hyphae that were hyaline at the edge and dark brown to black in the center and resembled the fungus described in Wong et al., 2015. These colonies were subcultured onto PDA+ medium and selected for molecular identification. Other less abundant colonies could be identified using morphology after subcultured and had no record being pathogenic to turfgrass. To confirm the isolate's identity, its internal transcribed spacer (ITS) region was amplified in PCR using the ITS1F/ITS4 primers (Bellemain et al., 2010). The amplicon was then sequenced with both ITS1 and ITS4 primers by Sanger sequencing. Sequences were assembled (GenBank #PP000819). The consensus sequence was then BLASTn analyzed with default settings, and the result showed 99.64% sequence identity with P. bamuru (GenBank #MG195534.1). Koch's postulate was conducted in an environmentally controlled growth chamber. Six healthy 'Beacon' hard fescue plugs were sampled from the field. Three of the six plugs (treatment) were each inoculated with P. bamuru by placing 20 g of P. bamuru colonized millets beneath and around the plug before filling the pots with sand. The other three plugs (control) received the same treatment except the P. bamuru colonized millets were autoclaved. The pots were incubated in the growth chamber with a 16 h light period and 25/20°C day/night temperatures. Symptoms resembling those observed in the field appeared on the treatment pots after 21 days of incubation while the control pots remained healthy. The roots from the treatment pots were examined under the dissecting microscope to confirm the colonization of P. bamuru on the roots, and P. bamuru was reisolated and confirmed using the aforementioned morphological traits and molecular assays (GenBank #PP000820). This is the first report of a turfgrass root rot disease caused by P. bamuru in the United States. Further epidemiological, disease ecological, and pathogen biological studies are required to clarify the importance of this disease in the United States and establish proper disease containment or control measures.

11.
Stress Biol ; 4(1): 33, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38981936

RESUMEN

Global crop production is severely affected by environmental factors such as drought, salinity, cold, flood etc. Among these stresses, drought is one of the major abiotic stresses reducing crop productivity. It is expected that drought conditions will further increase because of the increasing global temperature. In general, viruses are seen as a pathogen affecting the crop productivity. However, several researches are showing that viruses can induce drought tolerance in plants. This review explores the mechanisms underlying the interplay between viral infections and the drought response mechanisms in plants. We tried to address the molecular pathways and physiological changes induced by viruses that confer drought tolerance, including alterations in hormone signaling, antioxidant defenses, scavenging the reactive oxygen species, role of RNA silencing and miRNA pathway, change in the expression of several genes including heat shock proteins, cellulose synthase etc. Furthermore, we discuss various viruses implicated in providing drought tolerance and examine the range of plant species exhibiting this phenomenon. By applying current knowledge and identifying gaps in understanding, this review aims to provide valuable insights into the complex dynamics of virus-induced drought tolerance in plants, paving the way for future research directions and practical applications in sustainable agriculture.

12.
Ann Bot ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980751

RESUMEN

BACKGROUND AND AIMS: Five species of cotton (Gossypium) were exposed to 38°C days during early vegetative development. Commercial cotton (Gossypium hirsutum) was contrasted with four wild cotton species (G. australe, G. bickii, G. robinsonii and G. sturtianum) that are endemic to central and northern Australia. METHODS: Plants were grown at daytime maxima of 30°C or 38°C for 25 d, commencing at the four-leaf stage. Leaf areas and shoot biomass were used to calculate relative rates of growth and specific leaf areas. Leaf gas exchange measurements revealed assimilation and transpiration rates, as well as electron transport rates (ETR) and carboxylation efficiency (CE) in steady-state conditions. Finally, leaf morphological traits (mean leaf area and leaf shape were quantified), along with leaf surface decorations, imaged using scanning electron microscopy. KEY RESULTS: Shoot morphology was differentially affected by heat, with three of the four wild species growing faster at 38°C than at 30°C, whereas early growth in G. hirsutum was severely inhibited by heat. Areas of individual leaves and leaf numbers both contributed to these contrasting growth responses, with fewer, smaller leaves at 38°C in G. hirsutum. CO2 assimilation and transpiration rates of G. hirsutum were also dramatically reduced by heat. Cultivated cotton failed to achieve evaporative cooling, contrasting with the transpiration-driven cooling in the wild species. Heat substantially reduced ETR and CE in G. hirsutum, with much smaller effects in the wild species. We speculate that leaf shape, as assessed by invaginations of leaf margins, and leaf size contributed to heat dispersal differentially among the five species. Similarly, reflectance of light radiation was also highly distinctive for each species. CONCLUSIONS: These four wild Australian relatives of cotton have adapted to hot days that are inhibitory to commercial cotton, deploying a range of physiological and structural adaptations to achieve accelerated growth at 38°C.

13.
Biofabrication ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981495

RESUMEN

One ever-evolving and ever-demanding critical human endeavour is the provision of food security for the growing world population. It could be done by adopting sustainable agriculture through horizontal (expanding the aerable land area) and vertical (intensifying agriculture through sound technological approaches) interventions. Customised formulated nanomaterials have numerous advantages. With their specialised physicochemical properties, some nanoparticulised materials improve plant's natural development and stress tolerance and some other are good nanocarriers. Nanocarriers in agriculture often coat chemicals to form composites having utilities with crop productivity enhancement abilities, environmental management (like ecotoxicity reduction ability), and biomedicines (like the ability of controlled and targeted release of useful nanoscale drugs). The Ag, Fe, Zn, TiO2, ZnO, SiO2 and MgO nanoparticles often employed in advanced agriculture are covered here. Some nanoparticles used for various extended purposes in modern farming practices, including disease diagnostics and seed treatment are covered too. Thus, nanotechnology has revolutionised agrotechnology, which holds promises to transform agricultural (eco)system as a whole to ensure food security in future. Considering the available literature, the article further probes the emergent regulatory issues governing the synthesis and use of nanomaterials in the agriculture sector. If applied responsibly, nanomaterials could help improve soil health. The article provides an overview of the used nanomaterials in distribution of biomolecules, to aid in devising a safer and eco-friendly sustainable agriculture strategy. Through this, agri-systems depending on advanced farming practices might function more effectively and enhance agri-productivity to meet the food demand of the rising world population.

14.
J Sci Food Agric ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984444

RESUMEN

BACKGROUND: Reserved arable lands in China is of great significance for rationally allocating crop planting structures, alleviating the pressure of grain imports, and protecting food security. Owing to data acquisition limitations, obtaining the spatial distribution of reserved arable lands at large spatial scales is relatively rare, and there is little information on predicting the suitability, production capacity, and ecological effects of crop cultivation in reserved arable lands. This study obtained the distribution of reserved arable lands in China by applying restrictive factors, and used the Food and Agriculture Organisation of the United Nations (FAO) suitability index for eight crops to obtain a spatial distribution map of suitable crops, proposed a cropland ecological efficiency index (CEEI) to analyse the ecological impact of crop cultivation in reserved arable lands. RESULTS: China possesses approximately 3.93 million hectares of viable reserved arable lands comprising primarily grasslands (67.68%), sandy land (8.11%), saline-alkali land (20.68%), and bare land (3.53%). The average CEEI for the eight crops under irrigation conditions ranges from 0.844 to 0.865, and that under rain-fed conditions (excluding rice) ranges from 0.609 to 0.779. CONCLUSION: We proposed the development of rain-fed agriculture with sorghum as the primary crop in the central part of Shanxi and Inner Mongolia, while promoting the cultivation of rapeseed and soybeans in the eastern parts of Heilongjiang, Jilin, and Inner Mongolia. Overall, the development of irrigation agriculture focusing on wheat and barley should be pursued only when water resources are guaranteed, particularly in north-western regions such as Gansu, Ningxia, Xinjiang, Qinghai, and Shaanxi. © 2024 Society of Chemical Industry.

15.
Front Microbiol ; 15: 1405842, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993498

RESUMEN

Sunflower (Helianthus annuus L.), a vital crop for global vegetable oil production, encounters sustainability challenges in its cultivation. This study assesses the effects of incorporating a winter cover crop (CC), Avena sativa (L.), on the subsequent growth of sunflower crops and the vitality of their rhizosphere microbial communities over a two-year period. It examines the impact of two methods for suppressing winter CC-chemical suppression using glyphosate and mechanical suppression via rolling-both with and without the addition of phosphorus (P) starter fertilizer. These approaches are evaluated in comparison to the regional best management practices for sunflower cultivation, which involve a preparatory chemical fallow period and the subsequent application of starter P fertilizer. The methodology utilized Illumina sequencing for the analysis of rhizosphere bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) amplicons. Findings indicate a significant improvement (9-37%) in sunflower growth parameters (plant height, stem diameter, head diameter, and head dry weight) when cultivated after glyphosate-suppressed winter CC compared to the chemical fallows. Conversely, rolling of winter CC generally negatively affected sunflower growth. Rhizosphere bacterial communities following chemical suppression of winter CC showed greater Pielou's evenness, indicating a uniform distribution of species. In general, this treatment had more detrimental effects on beneficial sunflower rhizosphere bacteria such as Hymenobacter and Pseudarthrobacter than rolling of the winter CC, suggesting that the overall effect on sunflower growth may be mitigated by the redundancy within the bacterial community. As for fungal diversity, measured by the Chao-1 index, it increased in sunflowers planted after winter CC and receiving P fertilization, underscoring nutrient management's role in microbial community structure. Significant positive correlations between fungal diversity and sunflower growth parameters at the reproductive stage were observed (r = 0.41-0.72; p < 0.05), highlighting the role of fungal communities in plant fitness. The study underscores the positive effects of winter CC inclusion and management for enhancing sunflower cultivation while promoting beneficial microbes in the crop's rhizosphere. We advocate for strategic winter CC species selection, optimization of mechanical suppression techniques, and tailored phosphorus fertilization of sunflower to foster sustainable agriculture.

16.
J Plant Physiol ; 301: 154305, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39002339

RESUMEN

Human existence and the long-term viability of society depend on agriculture. Overuse of synthetic fertilizers results in increased contamination of the land, water, and atmosphere as well as financial constraints. In today's modern agriculture, environmentally friendly technology is becoming more and more significant as a substitute for conventional fertilizers and chemical pesticides. Using nanotechnology, agricultural output can be improved in terms of quality, biological support, financial stability, and environmental safety. There is a lot of promise for the sustainable application of nano-fertilizers in crop productivity and soil fertility, with little or no negative environmental effects. In this context, the present review provided an overview of the benefits of using nanofertilizers, its application and types. Mechanistic approach for increasing soil fertility and yield via nanofertilizers also described in detail. We concluded this article to compare the advantages of nanofertilizers over chemicals and nano-chemicals. Nonetheless, additional investigation is required to comprehend the effects and possible hazards of nanomaterials in the food production chain.

17.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000330

RESUMEN

Drought stress is a major meteorological threat to crop growth and yield. Barley (Hordeum vulgare L.) is a vital cereal crop with strong drought tolerance worldwide. However, the underlying growth properties and metabolomic regulatory module of drought tolerance remains less known. Here, we investigated the plant height, spike length, effective tiller, biomass, average spikelets, 1000-grain weight, number of seeds per plant, grain weight per plant, ash content, protein content, starch content, cellulose content, and metabolomic regulation mechanisms of drought stress in barley. Our results revealed that the growth properties were different between ZDM5430 and IL-12 under drought stress at different growth stages. We found that a total of 12,235 metabolites were identified in two barley genotype root samples with drought treatment. More than 50% of these metabolites showed significant differences between the ZDM5430 and IL-12 roots. The Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 368 differential metabolites mainly involved in starch and sucrose metabolism, the pentose phosphate pathway, pyrimidine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis in ZDM5430 under drought stress, whereas the different metabolites of IL-12 under drought stress related to starch and sucrose metabolism, the pentose phosphate pathway, 2-oxocarboxylic acid metabolism, cutin, suberine and wax biosynthesis, carbon metabolism, fatty acid biosynthesis, and C5-branched dibasic acid metabolism. These metabolites have application in the tricarboxylic cycle, the urea cycle, the met salvage pathway, amino acid metabolism, unsaturated fatty acid biosynthesis, phenolic metabolism, and glycolysis. On the other hand, the expression patterns of 13 genes related to the abovementioned bioprocesses in different barley genotypes roots were proposed. These findings afford an overview for the understanding of barley roots' metabolic changes in the drought defense mechanism by revealing the differently accumulated compounds.


Asunto(s)
Sequías , Hordeum , Metabolómica , Hordeum/genética , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Metabolómica/métodos , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Metaboloma , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Almidón/metabolismo , Resistencia a la Sequía
18.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39001004

RESUMEN

The survival and growth of young plants hinge on various factors, such as seed quality and environmental conditions. Assessing seedling potential/vigor for a robust crop yield is crucial but often resource-intensive. This study explores cost-effective imaging techniques for rapid evaluation of seedling vigor, offering a practical solution to a common problem in agricultural research. In the first phase, nine lettuce (Lactuca sativa) cultivars were sown in trays and monitored using chlorophyll fluorescence imaging thrice weekly for two weeks. The second phase involved integrating embedded computers equipped with cameras for phenotyping. These systems captured and analyzed images four times daily, covering the entire growth cycle from seeding to harvest for four specific cultivars. All resulting data were promptly uploaded to the cloud, allowing for remote access and providing real-time information on plant performance. Results consistently showed the 'Muir' cultivar to have a larger canopy size and better germination, though 'Sparx' and 'Crispino' surpassed it in final dry weight. A non-linear model accurately predicted lettuce plant weight using seedling canopy size in the first study. The second study improved prediction accuracy with a sigmoidal growth curve from multiple harvests (R2 = 0.88, RMSE = 0.27, p < 0.001). Utilizing embedded computers in controlled environments offers efficient plant monitoring, provided there is a uniform canopy structure and minimal plant overlap.


Asunto(s)
Germinación , Lactuca , Plantones , Lactuca/crecimiento & desarrollo , Lactuca/fisiología , Germinación/fisiología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Clorofila/análisis , Clorofila/metabolismo , Semillas/crecimiento & desarrollo , Semillas/fisiología
19.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39001005

RESUMEN

Salinity stress is a common challenge in plant growth, impacting seed quality, germination, and general plant health. Sodium chloride (NaCl) ions disrupt membranes, causing ion leakage and reducing seed viability. Gibberellic acid (GA3) treatments have been found to promote germination and mitigate salinity stress on germination and plant growth. 'Bauer' and 'Muir' lettuce (Lactuca sativa) seeds were soaked in distilled water (control), 100 mM NaCl, 100 mM NaCl + 50 mg/L GA3, and 100 mM NaCl + 150 mg/L GA3 in Petri dishes and kept in a dark growth chamber at 25 °C for 24 h. After germination, seedlings were monitored using embedded cameras, capturing red, green, and blue (RGB) images from seeding to final harvest. Despite consistent germination rates, 'Bauer' seeds treated with NaCl showed reduced germination. Surprisingly, the 'Muir' cultivar's final dry weight differed across treatments, with the NaCl and high GA3 concentration combination yielding the poorest results (p < 0.05). This study highlights the efficacy of GA3 applications in improving germination rates. However, at elevated concentrations, it induced excessive hypocotyl elongation and pale seedlings, posing challenges for two-dimensional imaging. Nonetheless, a sigmoidal regression model using projected canopy size accurately predicted dry weight across growth stages and cultivars, emphasizing its reliability despite treatment variations (R2 = 0.96, RMSE = 0.11, p < 0.001).


Asunto(s)
Germinación , Giberelinas , Lactuca , Plantones , Semillas , Giberelinas/farmacología , Lactuca/crecimiento & desarrollo , Lactuca/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Germinación/efectos de los fármacos , Germinación/fisiología , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Estrés Salino/efectos de los fármacos , Cloruro de Sodio/farmacología
20.
Plants (Basel) ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38999638

RESUMEN

The radioactive fission product 90Sr has a sufficient half-life (28.8 years) to be detected long after its appearance in the environment. After its uptake into the soil-edible plant system, it enters the food chain and represents a potential source of contamination that threatens human health. Due to these facts, tracking the distribution of the artificial radionuclide 90Sr in the soil-edible plant system is a subject of intense research. The tracking of the 90Sr radionuclide distribution in the soil profile, as well as in the crops on the long-term experimental fields was carried out using beta radiation spectrometry. The radiochemical analytical method was used to analyze the 90Sr content in cultivated soil and crops. The conducted study focused on the experimental substantiation of the developed model for predicting the behavior of 90Sr in the cultivated soil-crop system. The results of using the applied radioecological model for the transfer of 90Sr from the soil to the above-ground part of crops showed a relatively good agreement with the experimentally determined values of the soil-crop transfer factor, which indicates that the used model can be successfully applied for the prediction of the behavior of 90Sr in the soil-soil solution-crop system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...