Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
1.
Protein Sci ; 33(8): e5120, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39022918

RESUMEN

Deamidation frequently is invoked as an important driver of crystallin aggregation and cataract formation. Here, we characterized the structural and biophysical consequences of cumulative Asn to Asp changes in γD-crystallin. Using NMR spectroscopy, we demonstrate that N- or C-terminal domain-confined or fully Asn to Asp changed γD-crystallin exhibits essentially the same 1H-15N HSQC spectrum as the wild-type protein, implying that the overall structure is retained. Only a very small thermodynamic destabilization for the overall Asn to Asp γD-crystallin variants was noted by chaotropic unfolding, and assessment of the colloidal stability, by measuring diffusion interaction parameters, yielded no substantive differences in association propensities. Furthermore, using molecular dynamics simulations, no significant changes in dynamics for proteins with Asn to Asp or iso-Asp changes were detected. Our combined results demonstrate that substitution of all Asn by Asp residues, reflecting an extreme case of deamidation, did not affect the structure and biophysical properties of γD-crystallin. This suggests that these changes alone cannot be the major determinant in driving cataract formation.


Asunto(s)
Asparagina , Ácido Aspártico , Simulación de Dinámica Molecular , Estabilidad Proteica , gamma-Cristalinas , gamma-Cristalinas/química , gamma-Cristalinas/metabolismo , gamma-Cristalinas/genética , Asparagina/química , Asparagina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Termodinámica , Catarata/metabolismo , Catarata/genética , Sustitución de Aminoácidos
2.
BMC Neurol ; 24(1): 237, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971757

RESUMEN

PURPOSE: Glioma-associated epilepsy affects a significant proportion of glioma patients, contributing to disease progression and diminished survival rates. However, the lack of a reliable preoperative seizure predictor hampers effective surgical planning. This study investigates the potential of Alpha B crystallin protein (CRYAB) plasma levels as a predictive biomarker for epilepsy seizures in glioma patients. METHODS: Plasma samples were obtained from 75 participants, including 21 glioma patients with pre-operative epilepsy, 14 glioma patients without pre-operative epilepsy, and 21 age- and sex-matched control subjects. Additionally, 11 idiopathic epilepsy patients and 8 intractable epilepsy patients served as positive disease control groups. The study utilized ELISA to accurately quantify the circulating levels of CRYAB in the plasma samples of all participants. RESULTS: The analysis revealed a significant reduction in plasma CRYAB levels in glioma patients with pre-operative epilepsy and idiopathic epilepsy. The receiver operating characteristic (ROC) curve analysis displayed an impressive performance, indicating an AUC of 0.863 (95% CI, 0.810-0.916) across the entire patient cohort. Furthermore, plasma CRYAB levels exhibited a robust diagnostic capability, with an AUC of 0.9135, a sensitivity of 100.0%, and a specificity of 73.68%, effectively distinguishing glioma patients with preoperative epilepsy from those without epilepsy. The Decision Curve Analysis (DCA) underscored the clinical relevance of plasma CRYAB levels in predicting pre-operative epilepsy in glioma. CONCLUSION: The findings imply that the reduced levels of CRYAB may assist in prediction of seizure occurrence in glioma patients, although future large-scale prospective studies are warranted.


Asunto(s)
Neoplasias Encefálicas , Glioma , Convulsiones , Cadena B de alfa-Cristalina , Humanos , Masculino , Femenino , Glioma/cirugía , Glioma/sangre , Glioma/complicaciones , Adulto , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/complicaciones , Persona de Mediana Edad , Convulsiones/sangre , Convulsiones/diagnóstico , Convulsiones/etiología , Cadena B de alfa-Cristalina/sangre , Biomarcadores/sangre , Adulto Joven , Biomarcadores de Tumor/sangre
3.
Clin Genet ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840272

RESUMEN

The current genetic diagnostic workup of congenital cataract (CC) is mainly based on NGS panels, whereas exome sequencing (ES) has occasionally been employed. In this multicentre study, we investigated by ES the detection yield, mutational spectrum and genotype-phenotype correlations in a CC cohort recruited between 2020 and mid-2022. The cohort consisted of 67 affected individuals from 51 unrelated families and included both non-syndromic (75%) and syndromic (25%) phenotypes, with extra-CC ocular/visual features present in both groups (48% and 76%, respectively). The functional effect of variants was predicted by 3D modelling and hydropathy properties changes. Variant clustering was used for the in-depth assessment of genotype-phenotype correlations. A diagnostic (pathogenic or likely pathogenic) variant was identified in 19 out of 51 probands/families (~37%). In a further 14 probands/families a candidate variant was identified: in 12 families a VUS was detected, of which 9 were considered plausibly pathogenic (i.e., 4 or 5 points according to ACMG criteria), while in 2 probands ES identified a single variant in an autosomal recessive gene associated with CC. Eighteen probands/families, manifesting primarily non-syndromic CC (15/18, 83%), remained unsolved. The identified variants (8 P, 12 LP, 10 VUS-PP, and 5 VUS), half of which were unreported in the literature, affected five functional categories of genes involved in transcription/splicing, lens formation/homeostasis (i.e., crystallin genes), membrane signalling, cell-cell interaction, and immune response. A phenotype-specific variant clustering was observed in four genes (KIF1A, MAF, PAX6, SPTAN1), whereas variable expressivity and potential phenotypic expansion in two (BCOR, NHS) and five genes (CWC27, KIF1A, IFIH1, PAX6, SPTAN1), respectively. Finally, ES allowed to detect variants in six genes not commonly included in commercial CC panels. These findings broaden the genotype-phenotype correlations in one of the largest CC cohorts tested by ES, providing novel insights into the underlying pathogenetic mechanisms and emphasising the power of ES as first-tier test.

4.
Exp Eye Res ; 245: 109984, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945517

RESUMEN

Aging changes the responsiveness of our immune defense, and this decline in immune reactivity plays an important role in the increased susceptibility to infections that marks progressing age. Aging is also the most pronounced risk factor for development of age-related macular degeneration (AMD), a disease that is characterized by dysfunctional retinal pigment epithelial (RPE) cells and loss of central vision. We have previously shown that acute systemic viral infection has a large impact on the retina in young mice, leading to upregulation of chemokines in the RPE/choroid (RPE/c) and influx of CD8 T cells in the neuroretina. In this study, we sought to investigate the impact of systemic infection on the RPE/c in aged mice to evaluate whether infection in old age could play a role in the pathogenesis of AMD. We found that systemic infection in mice led to upregulation of genes from the crystallin family in the RPE/c from aged mice, but not in the RPE/c from young mice. Crystallin alpha A (CRYAA) was the most upregulated gene, and increased amounts of CRYAA protein were also detected in the aged RPE/c. Increased CRYAA gene and protein expression has previously been found in drusen and choroid from AMD patients, and this protein has also been linked to neovascularization. Since both drusen and neovascularization are important hallmarks of advanced AMD, it is interesting to speculate if upregulation of crystallins in response to infection in old age could be relevant for the pathogenesis of AMD.


Asunto(s)
Envejecimiento , Coroides , Degeneración Macular , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina , Regulación hacia Arriba , Animales , Ratones , Coroides/metabolismo , Coroides/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Degeneración Macular/metabolismo , Degeneración Macular/genética , Modelos Animales de Enfermedad , Western Blotting , Infecciones Virales del Ojo/metabolismo , Infecciones Virales del Ojo/virología , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Fundam Res ; 4(2): 394-400, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38933503

RESUMEN

Protein misfolding and aggregation are crucial pathogenic factors for cataracts, which are the leading cause of visual impairment worldwide. α-crystallin, as a small molecular chaperone, is involved in preventing protein misfolding and maintaining lens transparency. The chaperone activity of α-crystallin depends on its oligomeric state. Our previous work identified a natural compound, celastrol, which could regulate the oligomeric state of αB-crystallin. In this work, based on the UNcle and SEC analysis, we found that celastrol induced αB-crystallin to form large oligomers. Large oligomer formation enhanced the chaperone activity of αB-crystallin and prevented aggregation of the cataract-causing mutant ßA3-G91del. The interactions between αB-crystallin and celastrol were detected by the FRET (Fluorescence Resonance Energy Transfer) technique, and verified by molecular docking. At least 9 binding patterns were recognized, and some binding sites covered the groove structure of αB-crystallin. Interestingly, αB-R120G, a cataract-causing mutation located at the groove structure, and celastrol can decrease the aggregates of αB-R120G. Overall, our results suggested celastrol not only promoted the formation of large αB-crystallin oligomers, which enhanced its chaperone activity, but also bound to the groove structure of its α-crystallin domain to maintain its structural stability. Celastrol might serve as a chemical and pharmacological chaperone for cataract treatment.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38919080

RESUMEN

Traumatic and inherited cataract spiking blindness is caused by accumulated deposition of mutant eye lens protein or lens microarchitecture alteration. A traumatic cataract is a clouding of the eye's natural lens that occurs as a result of physical trauma to the eye. This trauma can be caused by various incidents such as blunt force injury, penetration by a foreign object, or a significant impact on the eye area. Inheritance cataracts or hereditary cataracts are cataracts that are genetically inherited from one or both parents. Complications following cataract surgery encompass various adverse outcomes such as inflammation, infection, bleeding, swelling, drooping eyelid, glaucoma, secondary cataracts, and complete loss of vision. The main purpose of the review is to highlight common pathophysiology associated with traumatic and inherited cataracts. Also, the review discusses diagnosis and treatment strategies for such cataract types by targeting their key pathological hallmarks. γD-crystallin plays a crucial role in maintaining the optical properties of the lens during the life span of an individual. Carbamazepine, Resveratrol, and Myricetin (CRM) are effectively bound at the γD-crystallin binding site and thereby could minimize misfolding and aggregation of γD-crystallin. miR-202, miR-193b, miR-135a, miR365, and miR-376a had the highest levels of abundance in the aqueous humor of individuals diagnosed with cataracts. The validation of these miRs will provide more insights into their functional roles and may be used for diagnostic purposes. The effective CRM combination as a multidrug formulation may postpone both traumatic and inherited cataracts and protect the eye from blindness.

7.
Protein Sci ; 33(7): e5092, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38924206

RESUMEN

Conserved tryptophan residues are critical for the structure and the stability of ß/γ-crystallin in the lenses of vertebrates. During aging, in which the lenses are continuously exposed to ultraviolet irradiation and other environmental stresses, oxidation of tryptophan residues in ß/γ-crystallin is triggered and impacts the lens proteins to varying degrees. Kynurenine derivatives, formed by oxidation of tryptophan, accumulate, resulting in destabilization and insolubilization of ß/γ-crystallin, which correlates with age-related cataract formation. To understand the contribution of tryptophan modification on the structure and stability of human ßB2-crystallin, five tryptophan residues were mutated to phenylalanine considering its similarity in structure and hydrophilicity to kynurenine. Among all mutants, W59F and W151F altered the stability and homo-oligomerization of ßB2-crystallin-W59F promoted tetramerization whereas W151F blocked oligomerization. Most W59F dimers transformed into tetramer in a month, and the separated dimer and tetramer of W59F demonstrated different structures and hydrophobicity, implying that the biochemical properties of ßB2-crystallin vary over time. By using SAXS, we found that the dimer of ßB2-crystallin in solution resembled the lattice ßB1-crystallin dimer (face-en-face), whereas the tetramer of ßB2-crystallin in solution resembled its lattice tetramer (domain-swapped). Our results suggest that homo-oligomerization of ßB2-crystallin includes potential inter-subunit reactions, such as dissociation, unfolding, and re-formation of the dimers into a tetramer in solution. The W>F mutants are useful in studying different folding states of ßB2-crystallin in lens.


Asunto(s)
Pliegue de Proteína , Triptófano , Cadena B de beta-Cristalina , Humanos , Triptófano/química , Triptófano/genética , Cadena B de beta-Cristalina/química , Cadena B de beta-Cristalina/genética , Cadena B de beta-Cristalina/metabolismo , Mutación , Multimerización de Proteína , Estabilidad Proteica , Interacciones Hidrofóbicas e Hidrofílicas , Sustitución de Aminoácidos
8.
Electrophoresis ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700120

RESUMEN

Post-translational modifications (PTMs), such as phosphorylation and O-N-acetyl-ß-d-glucosaminylation (O-GlcNAcylation), are involved in the fine spatiotemporal regulation of protein functions, and their dynamic interplay is at the heart of protein language. The coexistence of phosphorylation and O-GlcNAcylation on a protein leads to the diversification of proteoforms. It is therefore essential to decipher the phosphorylation/O-GlcNAcylation interplay on protein species that orchestrates cellular processes in a specific physiological or pathophysiological context. However, simultaneous visualization of phosphorylation and O-GlcNAcylation patterns on a protein of interest remains a challenge. To map the proteoforms of a protein, we have developed an easy-to-use two-dimensional electrophoresis method with a single sample processing permitting simultaneous visualization of the phosphorylated and the O-GlcNAcylated forms of the protein of interest. This method, we termed 2D-WGA-Phos-tag-PAGE relies on proteoforms retardation by affinity gel electrophoresis. With this novel approach, we established the cartography of phospho- and glycoforms of αB-crystallin and desmin in the whole extract and the cytoskeleton protein subfraction in skeletal muscle cells. Interestingly, we have shown that the pattern of phosphorylation and O-GlcNAcylation depends of the subcellular subfraction. Moreover, we have also shown that proteotoxic stress condition increased the complexity of the pattern of PTMs on αB-crystallin.

9.
Exp Eye Res ; 244: 109918, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705506

RESUMEN

The vertebrate eye lens is an unusual organ in that most of its cells lack nuclei and the ability to replace aging protein. The small heat shock protein α-crystallins evolved to become key components of this lens, possibly because of their ability to prevent aggregation of aging protein that would otherwise lead to lens opacity. Most vertebrates express two α-crystallins, αA- and αB-crystallin, and mutations in each are linked to human cataract. In a mouse knockout model only the loss of αA-crystallin led to early-stage lens cataract. We have used the zebrafish as a model system to investigate the role of α-crystallins during lens development. Interestingly, while zebrafish express one lens-specific αA-crystallin gene (cryaa), they express two αB-crystallin genes, with one evolving lens specificity (cryaba) and the other retaining the broad expression of its mammalian ortholog (cryabb). In this study we used individual mutant zebrafish lines for all three α-crystallin genes to determine the impact of their loss on age-related cataract. Surprisingly, unlike mouse knockout models, we found that the loss of the αBa-crystallin gene cryaba led to an increase in lens opacity compared to cryaa null fish at 24 months of age. Loss of αA-crystallin did not increase the prevalence of cataract. We also used single cell RNA-Seq and RT-qPCR data to show a shift in the lens expression of zebrafish α-crystallins between 5 and 10 days post fertilization (dpf), with 5 and 6 dpf lenses expressing cryaa almost exclusively, and expression of cryaba and cryabb becoming more prominent after 10 dpf. These data show that cryaa is the primary α-crystallin during early lens development, while the protective role for cryaba becomes more important during lens aging. This study is the first to quantify cataract prevalence in wild-type aging zebrafish, showing that lens opacities develop in approximately 25% of fish by 18 months of age. None of the three α-crystallin mutants showed a compensatory increase in the expression of the remaining two crystallins, or in the abundant ßB1-crystallin. Overall, these findings indicate an ontogenetic shift in the functional importance of individual α-crystallins during zebrafish lens development. Our finding that the lens-specific zebrafish αBa-crystallin plays the leading role in preventing age-related cataract adds a new twist to our understanding of vertebrate lens evolution.


Asunto(s)
Envejecimiento , Catarata , Cristalino , Pez Cebra , Cadena A de alfa-Cristalina , Animales , Catarata/metabolismo , Catarata/genética , Catarata/patología , Cristalino/metabolismo , Cadena A de alfa-Cristalina/genética , Cadena A de alfa-Cristalina/metabolismo , Modelos Animales de Enfermedad , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Biomolecules ; 14(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786000

RESUMEN

Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and ßγ) to contain little cysteine. Yet, the Cys content of γ-crystallins is well above the average for human proteins. We review literature relevant to this longstanding puzzle and take advantage of expanding genomic databases and improved machine learning tools for protein structure prediction to investigate it further. We observe remarkably low Cys conservation in the ßγ-crystallin superfamily; however, in γ-crystallin, the spatial positioning of Cys residues is clearly fine-tuned by evolution. We propose that the requirements of long-term lens transparency and high lens optical power impose competing evolutionary pressures on lens ßγ-crystallins, leading to distinct adaptations: high Cys content in γ-crystallins but low in ßB-crystallins. Aquatic species need more powerful lenses than terrestrial ones, which explains the high methionine content of many fish γ- (and even ß-) crystallins. Finally, we discuss synergies between sulfur-containing and aromatic residues in crystallins and suggest future experimental directions.


Asunto(s)
Cisteína , Cristalino , gamma-Cristalinas , gamma-Cristalinas/metabolismo , gamma-Cristalinas/química , gamma-Cristalinas/genética , Cisteína/metabolismo , Cisteína/química , Humanos , Cristalino/metabolismo , Cristalino/química , Animales , Catarata/metabolismo
11.
FEBS Lett ; 598(13): 1620-1632, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697952

RESUMEN

Mycobacterium tuberculosis (M. tb) has a complex cell wall, composed largely of mycolic acids, that are crucial to its structural maintenance. The M. tb desaturase A1 (DesA1) is an essential Ca2+-binding protein that catalyses a key step in mycolic acid biosynthesis. To investigate the structural and functional significance of Ca2+ binding, we introduced mutations at key residues in its Ca2+-binding ßγ-crystallin motif to generate DesA1F303A, E304Q, and F303A-E304Q. Complementation of a conditional ΔdesA1 strain of Mycobacterium smegmatis, with the Ca2+ non-binders F303A or F303A-E304Q, failed to rescue its growth phenotype; these complements also exhibited enhanced cell wall permeability. Our findings highlight the criticality of Ca2+ in DesA1 function, and its implicit role in the maintenance of mycobacterial cellular integrity.


Asunto(s)
Proteínas Bacterianas , Calcio , Pared Celular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Calcio/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Pared Celular/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mutación , Unión Proteica , Ácidos Micólicos/metabolismo
12.
Cureus ; 16(3): e56793, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38650819

RESUMEN

A cataract is a loss of the transparency of a normal crystalline lens. Multiple factors, including age as the major risk factor for cataracts, can disturb the transparency of the crystalline lens due to cumulative damage from environmental insults to proteins, particularly crystallins. Lens proteins do not turnover, and crystallins undergo extensive post-translational modifications (PTMs) with age in order to interact with each other and maintain their soluble basis for lens transparency. These PTMs include truncation, oxidation, deamidation, acetylation, phosphorylation, and glycosylation. Cataract formation, apart from protein PTMs, involves protein crosslinking, protein insolubilization, and aggregation. Oxidation is a key feature in age-related cataract formation. Due to the role of genetic and environmental factors, as well as its variable clinical presentation, we consider cataracts to be a multifactorial disease. The preliminary results of our study indicate that proteins implicated in the pathway of a structural constituent of the eye lens (BFSP1, BFSP2, CRYAA, CRYAB, CRYBA, CRYBB, CRYGC, CRYGD, CRYGS, KRTs, and VIM), together with AQP1 and AQP5, may also be involved in lens aging.

13.
Front Immunol ; 15: 1330796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665909

RESUMEN

Introduction: There is no useful method to discriminate between latent tuberculosis infection (LTBI) and active pulmonary tuberculosis (PTB). This study aimed to investigate the potential of cytokine profiles to discriminate between LTBI and active PTB using whole-blood stimulation with Mycobacterium tuberculosis (MTB) antigens, including latency-associated antigens. Materials and methods: Patients with active PTB, household contacts of active PTB patients and community exposure subjects were recruited in Manila, the Philippines. Peripheral blood was collected from the participants and used for whole-blood stimulation (WBS) with either the early secretory antigenic target and the 10-kDa culture filtrate protein (ESAT-6/CFP-10), Rv3879c or latency-associated MTB antigens, including mycobacterial DNA-binding protein 1 (MDP-1), α-crystallin (Acr) and heparin-binding hemagglutinin (HBHA). Multiple cytokine concentrations were analyzed using the Bio-Plex™ multiplex cytokine assay. Results: A total of 78 participants consisting of 15 active PTB patients, 48 household contacts and 15 community exposure subjects were eligible. The MDP-1-specific IFN-γ level in the active PTB group was significantly lower than that in the household contact group (p < 0.001) and the community exposure group (p < 0.001). The Acr-specific TNF-α and IL-10 levels in the active PTB group were significantly higher than those in the household contact (TNF-α; p = 0.001, IL-10; p = 0.001) and community exposure (TNF-α; p < 0.001, IL-10; p = 0.01) groups. However, there was no significant difference in the ESAT-6/CFP-10-specific IFN-γ levels among the groups. Conclusion: The patterns of cytokine profiles induced by latency-associated MTB antigens using WBS have the potential to discriminate between LTBI and active PTB. In particular, combinations of IFN-γ and MDP-1, TNF-α and Acr, and IL-10 and Acr are promising. This study provides the first demonstration of the utility of MDP-1-specific cytokine responses in WBS.


Asunto(s)
Antígenos Bacterianos , Citocinas , Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Humanos , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/sangre , Masculino , Tuberculosis Latente/diagnóstico , Tuberculosis Latente/inmunología , Tuberculosis Latente/sangre , Tuberculosis Latente/microbiología , Femenino , Mycobacterium tuberculosis/inmunología , Filipinas , Adulto , Citocinas/sangre , Persona de Mediana Edad , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/microbiología , Adulto Joven , Proteínas Bacterianas/inmunología
14.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585788

RESUMEN

αB-crystallin is an archetypical member of the small heat-shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we mutated a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin. This resulted in a profound structural transformation, from highly polydispersed caged-like native assemblies into a comparatively well-ordered helical fibril state amenable to high-resolution cryo-EM analysis. The reversible nature of the induced fibrils facilitated interrogation of functional effects due to perturbation of the NT-IXI motif in both the native-like oligomer and fibril states. Together, our investigations unveiled several features thought to be key mechanistic attributes to sHSPs and point to a critical significance of the NT-IXI motif in αB-crystallin assembly, dynamics and chaperone activity.

15.
Biochimie ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636798

RESUMEN

Small Heat Shock Proteins are considered as the first line of defense when proteostasis fails. Among them, αB-crystallin is expressed in striated muscles in which it interacts with desmin intermediate filaments to stabilize them, maintaining cytoskeleton's integrity and muscular functionalities. Desmin is a key actor for muscle health; its targeting by αB-crystallin is thus crucial, especially in stress conditions. αB-crystallin is phosphorylated and O-GlcNAcylated. Its phosphorylation increases consecutively to various stresses, correlated with its recruitment for cytoskeleton's safeguarding. However, phosphorylation as unique signal for cytoskeleton translocation remains controversial; indeed, O-GlcNAcylation was also proposed to be involved. Thus, there are still some gaps for a deeper comprehension of how αB-crystallin functions are finely regulated by post-translational modifications. Furthermore, desmin also bears both post-translational modifications; while desmin phosphorylation is closely linked to desmin intermediates filaments turnover, it is unclear whereas its O-GlcNAcylation could impact its proper function. In the herein paper, we aim at identifying whether phosphorylation and/or O-GlcNAcylation are involved in αB-crystallin targeting towards cytoskeleton in proteotoxic stress induced by proteasome inhibition in C2C12 myotubes. We demonstrated that proteotoxicity led to αB-crystallin's phosphorylation and O-GlcNAcylation patterns changes, both presenting a dynamic interplay depending on protein subfraction. Importantly, both post-translational modifications showed a spatio-temporal variation correlated with αB-crystallin translocation towards cytoskeleton. In contrast, we did not detect any change of desmin phosphorylation and O-GlcNAcylation. All together, these data strongly support that αB-crystallin phosphorylation/O-GlcNAcylation interplay rather than changes on desmin is a key regulator for its cytoskeleton translocation, preserving it towards stress.

16.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474073

RESUMEN

Alpha-B-crystallin, a member of the small heat shock family of proteins, has been implicated in a variety of cardiomyopathies and in normal cardiac homeostasis. It is known to function as a molecular chaperone, particularly for desmin, but also interacts with a wide variety of additional proteins. The molecular chaperone function is also enhanced by signal-dependent phosphorylation at specific residues under stress conditions. Naturally occurring mutations in CRYAB, the gene that encodes alpha-B-crystallin, have been suggested to alter ionic intermolecular interactions that affect dimerization and chaperone function. These mutations have been associated with myofibrillar myopathy, restrictive cardiomyopathy, and hypertrophic cardiomyopathy and promote pathological hypertrophy through different mechanisms such as desmin aggregation, increased reductive stress, or activation of calcineurin-NFAT signaling. This review will discuss the known mechanisms by which alpha-B-crystallin functions in cardiac homeostasis and the pathogenesis of cardiomyopathies and provide insight into potential future areas of exploration.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Restrictiva , Humanos , Desmina/genética , Cardiomiopatías/patología , Mutación , Cardiomiopatía Restrictiva/complicaciones , Chaperonas Moleculares/genética
17.
Biochimie ; 222: 151-168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38494110

RESUMEN

To date, several pathogenic mutations have been identified in the primary structure of human α-Crystallin, frequently involving the substitution of arginine with a different amino acid. These mutations can lead to the incidence of cataracts and myopathy. Recently, an important cataract-associated mutation has been reported in the functional α-Crystallin domain (ACD) of human αB-Crystallin protein, where arginine 107 (R107) is replaced by a leucine. In this study, we investigated the structure, chaperone function, stability, oligomerization, and amyloidogenic properties of the p.R107L human αB-Crystallin using a number of different techniques. Our results suggest that the p.R107L mutation can cause significant changes in the secondary, tertiary, and quaternary structures of αB-Crystallin. This cataractogenic mutation led to the formation of protein oligomers with larger sizes than the wild-type protein and reduced the chemical and thermal stability of the mutant chaperone. Both fluorescence and microscopic assessments indicated that this mutation significantly altered the amyloidogenic properties of human αB-Crystallin. Furthermore, the mutant protein indicated an attenuated in vitro chaperone activity. The molecular dynamics (MD) simulation confirmed the experimental results and indicated that p.R107L mutation could alter the proper conformation of human αB-Crystallin dimers. In summary, our results indicated that the p.R107L mutation could promote the formation of larger oligomers, diminish the stability and chaperone activity of human αB-Crystallin, and these changes, in turn, can play a crucial role in the development of cataract disorder.


Asunto(s)
Catarata , Cadena B de alfa-Cristalina , Humanos , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/química , Cadena B de alfa-Cristalina/metabolismo , Sustitución de Aminoácidos , Catarata/genética , Catarata/metabolismo , Simulación de Dinámica Molecular , Mutación , Mutación Missense , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica
18.
Int J Biol Macromol ; 262(Pt 2): 130191, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360245

RESUMEN

Congenital cataract is a major cause of childhood blindness worldwide, with crystallin mutations accounting for over 40 % of gene-mutation-related cases. Our research focused on a novel R114C mutation in a Chinese family, resulting in bilateral coronary cataract with blue punctate opacity. Spectroscopic experiments revealed that ßA3-R114C significantly altered the senior structure, exhibiting aggregation, and reduced solubility at physiological temperature. The mutant also displayed decreased resistance and stability under environmental stresses such as UV irradiation, oxidative stress, and heat. Further, cellular models confirmed its heightened sensitivity to environmental stresses. These data suggest that the R114C mutation impairs the hydrogen bond network and structural stability of ßA3-crystallin, particularly at the boundary of the second Greek-key motif. This study revealed the pathological mechanism of ßA3-R114C and may help in the development of potential treatment strategies for related cataracts.


Asunto(s)
Catarata , Cristalinas , Humanos , Cristalinas/genética , Cristalinas/metabolismo , Catarata/genética , Catarata/metabolismo , Mutación
19.
Int J Biol Macromol ; 263(Pt 1): 130261, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368978

RESUMEN

αB-Crystallin (αB-Cry) is a small heat shock protein known for its protective role, with an adaptable structure that responds to environmental changes through oligomeric dynamics. Cu(II) ions are crucial for cellular processes but excessive amounts are linked to diseases like cataracts and neurodegeneration. This study investigated how optimal and detrimental Cu(II) concentrations affect αB-Cry oligomers and their chaperone activity, within the potassium-regulated ionic-strength environment. Techniques including isothermal titration calorimetry, differential scanning calorimetry, fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy, cyclic voltammetry, dynamic light scattering, circular dichroism, and MTT assay were employed and complemented by computational methods. Results showed that potassium ions affected αB-Cry's structure, promoting Cu(II) binding at multiple sites and scavenging ability, and inhibiting ion redox reactions. Low concentrations of Cu(II), through modifications of oligomeric interfaces, induce regulation of surface charge and hydrophobicity, resulting in an increase in chaperone activity. Subunit dynamics were regulated, maintaining stable interfaces, thereby inhibiting further aggregation and allowing the functional reversion to oligomers after stress. High Cu(II) disrupted charge/hydrophobicity balance, sewing sizable oligomers together through subunit-subunit interactions, suppressing oligomer dissociation, and reducing chaperone efficiency. This study offers insights into how Cu(II) and potassium ions influence αB-Cry, advancing our understanding of Cu(II)-related diseases.


Asunto(s)
Cobre , Cadena B de alfa-Cristalina , Humanos , Cobre/química , Cadena B de alfa-Cristalina/química , Chaperonas Moleculares , Homeostasis , Iones
20.
J Mol Biol ; 436(8): 168499, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401625

RESUMEN

Small heat shock proteins (sHSPs) are ATP-independent chaperones vital to cellular proteostasis, preventing protein aggregation events linked to various human diseases including cataract. The α-crystallins, αA-crystallin (αAc) and αB-crystallin (αBc), represent archetypal sHSPs that exhibit complex polydispersed oligomeric assemblies and rapid subunit exchange dynamics. Yet, our understanding of how this plasticity contributes to chaperone function remains poorly understood. Using biochemical and biophysical analyses combined with single-particle electron microscopy (EM), we examined structural changes in αAc, αBc and native heteromeric lens α-crystallins (αLc) in their apo-states and at varying degree of chaperone saturation leading to co-aggregation, using lysozyme and insulin as model clients. Quantitative single-particle analysis unveiled a continuous spectrum of oligomeric states formed during the co-aggregation process, marked by significant client-triggered expansion and quasi-ordered elongation of the sHSP oligomeric scaffold, whereby the native cage-like sHSP assembly displays a directional growth to accommodate saturating conditions of client sequestration. These structural modifications culminated in an apparent amorphous collapse of chaperone-client complexes, resulting in the creation of co-aggregates capable of scattering visible light. Intriguingly, these co-aggregates maintain internal morphological features of highly elongated sHSP oligomers with striking resemblance to polymeric α-crystallin species isolated from aged lens tissue. This mechanism appears consistent across αAc, αBc and αLc, albeit with varying degrees of susceptibility to client-induced co-aggregation. Importantly, our findings suggest that client-induced co-aggregation follows a distinctive mechanistic and quasi-ordered trajectory, distinct from a purely amorphous process. These insights reshape our understanding of the physiological and pathophysiological co-aggregation processes of α-crystallins, carrying potential implications for a pathway toward cataract formation.


Asunto(s)
Catarata , Cristalinas , Proteínas de Choque Térmico Pequeñas , alfa-Cristalinas , Humanos , Anciano , alfa-Cristalinas/metabolismo , Chaperonas Moleculares/metabolismo , Cristalinas/metabolismo , Catarata/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...