Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(10): 6958-6969, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39331049

RESUMEN

Bacterial infection is one of the major concerns of the growing society, and over the years, different permutations and combinations of various drugs and adjuvants have been attempted, which led to considerable improvements in the efficacy of the antibacterial drugs. In this regard, macrocyclic receptors such as cyclodextrin, cucurbiturils, calixarene, etc., have played a major role by modulating the drug properties that supplement the antibacterial efficacy. In this study, we have developed cucurbit[7]uril (CB7)-functionalized Au nanoparticles (CB7AuNPs) to modulate the activity of an antibiotic, levofloxacin (LOFL). From the spectroscopic and thermodynamic changes in the LOFL, it has been established that two of the prototropic forms, LOFLH and LOFLH2+, form strong 1:1 host/guest complexes with CB7/CB7AuNP. Both these interactions led to significant upward shifts in the pKa values as well as photostability of LOFL, thereby enhancing the availability of the active form for the antibacterial activity, at the physiological pH. Further, the LOFL uptake has also been established on CB7AuNP, which retained the CB7-LOFL activity at very low concentration of the CB7 host, functionalized on AuNP. Detailed antibacterial studies of LOFL, both as complexed with CB7 and CB7AuNP, were carried out using four food-borne pathogens (Escherichia coli, S. Typhimurium, Bacillus cereus, and Staphylococcus aureus), which revealed a creditable enhancement in the antibacterial property, irrespective of the bacterium strain. These results are quite promising at this stage for the development of drugs customized for multidrug-resistant bacteria.


Asunto(s)
Antibacterianos , Hidrocarburos Aromáticos con Puentes , Oro , Imidazoles , Levofloxacino , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Oro/química , Oro/farmacología , Levofloxacino/farmacología , Levofloxacino/química , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/farmacología , Nanopartículas del Metal/química , Imidazoles/química , Imidazoles/farmacología , Ensayo de Materiales , Escherichia coli/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Staphylococcus aureus/efectos de los fármacos , Estructura Molecular , Compuestos Heterocíclicos con 2 Anillos , Compuestos Macrocíclicos , Imidazolidinas
2.
J Mol Model ; 30(10): 337, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287913

RESUMEN

CONTEXT: An inclusion complex between 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH), a widely employed azocompound, and cucurbit[7]util (CB[7]), has shown an increased yield of radicals derived from the homolytic cleavage of the azo bond. Aimed to get insights about the formation of complexes and their effect on the yield of radicals production, complexes of CB[7] with seven azocompounds were studied by computational methods. Molecular electrostatic surfaces and structural analysis showed that the inclusion of symmetrical azocompounds inside of CB[7] depends mainly on the charge density and position of the functional groups at the main chain of the azoderivative. Analysis of non-covalent interactions and thermodynamic outcomes revealed that positively charged azocompounds with amidinium or imidazolium groups presented strong favorable interactions (multiple hydrogen bonds) with the oxygens of CB[7] portals. Additionally, carbon-centered radicals generated from the complexes (azocompounds@CB[7]) were corroborated using the electron localization function (ELF). Results evidenced that the strength of the interactions and the level of inclusion (partial or complete) between the azocompound and CB[7] determined the final orientation of the radicals (located out- or inside of the CB[7] cavity). Obtained results could be employed to design new supramolecular systems based on the properties of azocomplound@CB[7] complexes for new scientific or industrial applications. METHODS: First-principles calculations at B3LYP-D3BJ/6-311g(d,p) level theory in the gas phase and in solvent (PCM, water) were performed in Gaussian 16 software package. The dispersion energy correction was included through the Grimme's dispersion with Becke-Johnson damping D3(BJ). Thermodynamical data and the minimum character of all structures were obtained from vibrational frequency calculations. NBO, Multiwfn, Chemcraft, and NCIPLOT software were used to perform population analysis, analyze outcomes, visualize data, and display non-covalent interactions respectively.

3.
Molecules ; 29(18)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39339389

RESUMEN

Among a variety of diverse host molecules distinguished by specific characteristics, the cucurbit[n]uril (CB) family stands out, being widely known for the attractive properties of its representatives along with their increasingly expanding area of applications. The presented herewith density functional theory (DFT)-based study is inspired by some recent studies exploring CBs as a key component in multifunctional hydrogels with applications in materials science, thus considering CB-assisted supramolecular polymeric hydrogels (CB-SPHs), a new class of 3D cross-linked polymer materials. The research systematically investigates the inclusion process between the most applied representative of the cavitand family CB[7] and a series of laser dye molecules as guests, as well as the possible encapsulation of a model side chain from the photoanisotropic polymer PAZO and its sodium-containing salt. The obtained results shed light on the most significant factors that play a key role in the recognition process, such as binding mode, charge, and dielectric constant of the solvent. The observed findings provide valuable insights at a molecular level for the design of dye-CB[7] systems in various environments, with potential applications in intriguing and prosperous fields like photonics and material science.

4.
Int J Pharm ; 660: 124351, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38897491

RESUMEN

Piroxicam (PX) is a nonsteroidal anti-inflammatory drug (NSAID) commonly associated with gastrointestinal (GI) injuries, including dyspepsia, heartburn, inflammation, bleeding, ulceration, and life-threatening perforation. The ß-cyclodextrin (ß-CD)-based PX formulation (PX@CD) has been shown to reduce gastric side effects by improving PX's solubility and dissolution rates. However, the solubility of PX can only be increased to a limited extent by ß-CD, due to the low binding constant between PX and ß-CD (∼100 M-1). As a result, adverse reactions such as epigastric pain and pyrosis are still commonly reported. Cucurbit[7]uril (CB[7]) is a synthetic macrocyclic host compound that binds strongly to various drugs. In this study, we demonstrated that CB[7] forms complexes with PX in the gastric acid environment with a binding constant approximately 70 times higher than that between ß-CD and PX. The PX@CB[7] inclusion complexes exhibited rapid dissolution rates in the gastric environment. In addition, PX@CB[7] showed significantly higher oral bioavailability and maximum concentration (Cmax) compared to PX and PX@CD (1:2.5), resulting in improved anti-inflammatory effects in both mouse and rat models. Moreover, PX@CB[7] (1:2.5) had the least adhesion to the gastric mucosa and caused the mildest gastric side effects in rat models when compared to PX, PX@CD (1:2.5), and PX@CB[7] (1:1). Lastly, CB[7] demonstrated good oral biocompatibility in a subacute toxicity evaluation study. These findings indicate that CB[7] could be used as an excipient to improve treatment effectiveness and decrease adverse reactions in orally administered formulations with a favorable safety profile.


Asunto(s)
Antiinflamatorios no Esteroideos , Disponibilidad Biológica , Hidrocarburos Aromáticos con Puentes , Imidazoles , Piroxicam , Solubilidad , beta-Ciclodextrinas , Animales , Piroxicam/administración & dosificación , Piroxicam/química , Piroxicam/farmacocinética , Piroxicam/efectos adversos , Imidazoles/química , Imidazoles/administración & dosificación , Imidazoles/farmacocinética , Imidazoles/efectos adversos , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/administración & dosificación , Hidrocarburos Aromáticos con Puentes/farmacocinética , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/efectos adversos , beta-Ciclodextrinas/química , beta-Ciclodextrinas/administración & dosificación , Masculino , Ratones , Ratas Sprague-Dawley , Ratas , Liberación de Fármacos , Administración Oral , Compuestos Heterocíclicos con 2 Anillos , Compuestos Macrocíclicos , Imidazolidinas
5.
Small ; 20(36): e2402403, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38682732

RESUMEN

Viologen-based covalent organic networks represent a burgeoning class of materials distinguished by their captivating properties. Here, supramolecular chemistry is harnessed to fabricate polyrotaxanated ionic covalent organic polymers (iCOP) through a Schiff-base condensation reaction under solvothermal conditions. The reaction between 1,1'-bis(4-aminophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride (DPV-NH2) and 1,3,5-triformylphloroglucinol (TPG) in various solvents yields an iCOP-1 and iCOP-2. Likewise, employing cucurbit[7]uril (CB[7]) in the reaction yielded polyrotaxanated iCOPs, denoted as iCOP-CB[7]-1 and iCOP-CB[7]-2. All four iCOPs exhibit exceptional stability under the acidic and basic conditions. iCOP-CB[7]-2 displays outstanding electrocatalytic Oxygen Evolution Reaction (OER) performance, demanding an overpotential of 296 and 332 mV at 10 and 20 mA cm-2, respectively. Moreover, the CB[7] integrated iCOP-2 exhibits a long-term stable nature for 30 h in 1 m KOH environment. Further, intrinsic activity studies like TOF show a 4.2-fold increase in generation of oxygen (O2) molecules than the bare iCOP-2. Also, it is found that iCOP-CB[7]-2 exhibits a high specific (19.48 mA cm-2) and mass activity (76.74 mA mg-1) at 1.59 V versus RHE. Operando-EIS study evident that iCOP-CB[7]-2 commences OER at a relatively low applied potential of 1.5 V versus RHE. These findings pave the way for a novel approach to synthesizing various mechanically interlocked molecules through straightforward solvothermal conditions.

6.
Materials (Basel) ; 17(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38541472

RESUMEN

Herein, we report the thermal transitions and structural properties of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudopolyrotaxane (PEDOT∙CB7-PS) and polyrotaxane (PEDOT∙CB7-PR) thin films compared with those of pristine PEDOT. The structural characteristics were investigated by using variable-temperature spectroscopic ellipsometry (VTSE), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and atomic force microscopy (AFM). VTSE and DSC results indicated the presence of an endothermic process and glass transition in the PEDOT∙CB7-PS and PEDOT∙CB7-PR thin films. X-ray diffraction of PEDOT∙CB7-PS and PEDOT∙CB7-PR powders displayed the presence of interchain π-π stacking revealing a characteristic arrangement of aromatic rings in the internal structure of the crystallites. AFM imaging of PEDOT∙CB7-PS and PEDOT∙CB7-PR thin films exhibited significant differences in the surface topographies compared with those of PEDOT. A high degree of crystallization was clearly visible on the surface of the PEDOT layer, whereas the PEDOT∙CB7-PS and PEDOT∙CB7-PR thin films exhibited more favorable surface parameters. Such significant differences identified in the surface morphology of the investigated layers can, therefore, be clearly associated with the presence of surrounding CB7 on PEDOT skeletons.

7.
Angew Chem Int Ed Engl ; 63(14): e202316323, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38317057

RESUMEN

We synthesize supramolecular poly(disulfide) (CPS) containing covalently attached cucurbit[7]uril (CB[7]), which is exploited not only as a carrier to deliver plasmid DNA encoding destabilized Cas9 (dsCas9), but also as a host to include trimethoprim (TMP) by CB[7] moieties through the supramolecular complexation to form TMP@CPS/dsCas9. Once the plasmid is transfected into tumor cells by CPS, the presence of polyamines can competitively trigger the decomplexation of TMP@CPS, thereby displacing and releasing TMP from CB[7] to stabilize dsCas9 that can target and edit the genomic locus of PLK1 to inhibit the growth of tumor cells. Following the systemic administration of TMP@CPS/dsCas9 decorated with hyaluronic acid (HA), tumor-specific editing of PLK1 is detected due to the elevated polyamines in tumor microenvironment, greatly minimizing off-target editing in healthy tissues and non-targeted organs. As the metabolism of polyamines is dysregulated in a wide range of disorders, this study offers a supramolecular approach to precisely control CRISPR/Cas9 functions under particular pathological contexts.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Plásmidos , ADN , Poliaminas
8.
ACS Appl Mater Interfaces ; 15(41): 48564-48573, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37792571

RESUMEN

Supramolecular luminescent material with switchable behavior and photo-induced aggregation with emission enhancement is a current research hot spot. Herein, a size-tunable nano-supramolecular assembly with reversible photoluminescent behavior was constructed by noncovalent polymerization of diarylethene-bridged bis(coumarin) derivative (DAE-CO), cucurbit[7]uril (CB[7]), and ß-cyclodextrin-grafted hyaluronic acid (HACD). Benefiting from the macrocyclic confinement effect, the guest molecule DAE-CO was included into the cavity of CB[7] to give enhanced fluorescence emission of the resulting DAE-CO⊂CB[7]2 with longer lifetime at 432 nm to 1.43 ns, thereby further enhancing fluorescence output and lifetime (1.46 ns) when further assembled with HACD, compared with the free DAE-CO (0.95 ns). In addition, DAE-CO, DAE-CO⊂CB[7]2, and DAE-CO⊂CB[7]2&HACD all possessed characteristics of aggregation-induced emission and reversible photo-switched structural interconversion, exhibiting an obvious photophysical activation phenomenon of self-aggregation into larger nanoparticles with increase in fluorescence emission intensity, lifetime, and size after irradiation, which could be increased step by step with the alternating irradiation of 254 nm (5 min) or >600 nm (30 s) repeated 7 times. These supramolecular assemblies were successfully used in the tumor cells' targeted imaging and anti-counterfeiting because of the capability of HACD for recognizing specific receptors overexpressed on the surface of tumor cells and the excellent photo-regulated switch ability of DAE-CO, providing an approach of constructing photo-induced emission-enhanced luminescent materials.

9.
Mol Pharm ; 20(9): 4517-4527, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37526016

RESUMEN

This study is designed to compare drug encapsulation by cucurbit[7]uril and ß-cyclodextrin, using fluorofenidone as a model drug. Single-crystal X-ray diffraction analysis was employed to successfully determine the crystal structures of fluorofenidone·H+@cucurbit[7]uril Form, fluorofenidone@cucurbit[7]uril Form, and fluorofenidone@ß-cyclodextrin Form. Keto-enol tautomerization of fluorofenidone mediated by cucurbit[7]uril in acid solution is confirmed by crystal structures, pH titration, and nuclear magnetic resonance experiments. However, ß-cyclodextrin cannot cause the keto-enol tautomerization of fluorofenidone under similar conditions. The phase solubility study demonstrates that cucurbit[7]uril has a much higher solubilization capacity for fluorofenidone than ß-cyclodextrin in 0.1 M HCl since the Kc values of fluorofenidone with cucurbit[7]uril and ß-cyclodextrin were 1223.97 ± 452.68 and 78.49 ± 10.56 M-1, respectively. Excellent solubility can be attributed to the keto-enol tautomerization of fluorofenidone under the conditions of cucurbit[7]uril in acid solution. The enol form of fluorofenidone is encapsulated by cucurbit[7]uril by hydrogen bonding interaction and hydrophobic interaction to increase binding affinity. Rat pharmacokinetic studies demonstrate that the area under the plasma concentration-time curve from time 0 to 7 h value of fluorofenidone@cucurbit[7]uril complex is 1.70-fold greater than that of free fluorofenidone, and the mean residence time from time 0 to 7 h is slightly prolonged from 1.29 to 1.76 h (P < 0.01) after oral administration. However, no significant difference is found between fluorofenidone and fluorofenidone@ß-cyclodextrin complex. This work indicates that the induction of keto-enol tautomerization of drugs using macrocyclic molecules has the potential to be an effective method to improve their solubility and bioavailability, providing valuable insights for the application of macrocyclic molecules in the biomedical field.


Asunto(s)
Compuestos Macrocíclicos , beta-Ciclodextrinas , Ratas , Animales , Solubilidad , beta-Ciclodextrinas/química , Compuestos Macrocíclicos/química , Hidrocarburos Aromáticos con Puentes/química
10.
Isr J Chem ; 63(1-2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37636996

RESUMEN

Metabolic incorporation of unnatural functionality on glycans has allowed chemical biologists to observe and affect cellular processes. Recent work has resulted in glycan-fluorophore structures that allow for direct visualization of glycan-mediated processes, shining light on their role in living systems. This work describes the serendipitous discovery of a small chemical reporter-fluorophore. Investigations into the mechanism of fluorescence arising from (trimethylsilyl)methylglycine appended on mannosamine suggest rigidity and restriction of lone pair geometry contribute to the fluorescent behaviour. In fact, in situ cyclization and encapsulation in cucurbit[7]uril enhance fluorescence to levels that can be observed in live cells. While the reported unnatural mannosamine does not traverse the sialic acid biosynthetic pathway, this discovery may lead to small, "turn-on" chemical reporters for incorporation in living systems.

11.
Small ; 19(46): e2304009, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37442787

RESUMEN

Macrocyclic confinement-induced supramolecular luminescence materials have important application value in the fields of bio-sensing, cell imaging, and information anti-counterfeiting. Herein, a tunable multicolor lanthanide supramolecular assembly with white light emission is reported, which is constructed by co-assembly of cucurbit[7]uril (CB[7]) encapsulating naphthylimidazolium dicarboxylic acid (G1 )/Ln (Eu3+ /Tb3+ ) complex and carbon quantum dots (CD). Benefiting from the macrocyclic confinement effect of CB[7], the supramolecular assembly not only extends the fluorescence intensity of the lanthanide complex G1 /Tb3+ by 36 times, but also increases the quantum yield by 28 times and the fluorescence lifetime by 12 times. Furthermore, the CB[7]/G1 /Ln assembly can further co-assemble with CD and diarylethene derivatives (DAE) to realize the intelligently-regulated full-color spectrum including white light, which results from the competitive encapsulation of adamantylamine and CB[7], the change of pH, and photochromic DAE. The multi-level logic gate based on lanthanide supramolecular assembly is successfully applied in anti-counterfeiting system and information storage, providing an effective method for the research of new luminescent intelligent materials.

12.
Mol Pharm ; 20(7): 3559-3569, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37327060

RESUMEN

Fibrillation is a challenge commonly encountered in the formulation and development of therapeutic peptides. Cucurbit[7]urils (CB[7]), a group of water soluble macrocycles, have been reported to suppress fibrillation in insulin and human calcitonin through association with Phe and Tyr residues which drive fibril formation. Here, we report the effect of CB[7] on the fibrillation behavior of the HIV fusion inhibitor enfuvirtide (ENF) that contains N-terminal Tyr and C-terminal Phe residues. Thioflavin T fluorescence, CD spectroscopy, and transmission electron microscopy were used to monitor fibrillation behavior. Fibrillation onset showed a strong pH dependency, with pH 6.5 identified as the condition most suitable to monitor the effects of CB[7]. Binding of CB[7] to wild-type ENF was measured by isothermal titration calorimetry and was consistent with a single site (Ka = 2.4 × 105 M-1). A weaker interaction (Ka = 2.8 × 103 M-1) was observed for an ENF mutant with the C-terminal Phe substituted for Ala (ENFm), suggesting that Phe was the specific site for CB[7] recognition. The onset of ENF fibrillation onset was delayed, rather than fully suppressed, in the presence of CB[7]. The ENFm mutant showed a greater delay in fibrillation onset but with no observable effect on fibrillation kinetics in the presence of CB[7]. Interestingly, ENF/CB[7] and ENFm fibrils exhibited comparable morphologies, differing from those observed for ENF alone. The results indicate that CB[7] is capable of modulating fibrillation onset and the resulting ENF fibrils by specifically binding to the C-terminal Phe residue. The work reinforces the potential of CB[7] as an inhibitor of fibrillation and highlights its role in determining fibril morphologies.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Compuestos Macrocíclicos , Humanos , Hidrocarburos Aromáticos con Puentes/farmacología , Hidrocarburos Aromáticos con Puentes/química , Cinética , Péptidos , Compuestos Macrocíclicos/química
13.
Small ; 19(21): e2208088, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36843266

RESUMEN

Protein mutations alter protein-protein interactions that can lead to a number of illnesses. Mutations in lamin A (LMNA) have been reported to cause laminopathies. However, the proteins associated with the LMNA mutation have mostly remained unexplored. Herein, a new chemical tool for proximal proteomics is reported, developed by a combination of proximity chemical tagging and a bio-orthogonal supramolecular latching based on cucurbit[7]uril (CB[7])-based host-guest interactions. As this host-guest interaction acts as a noncovalent clickable motif that can be unclicked on-demand, this new chemical tool is exploited for reliable detection of the proximal proteins of LMNA and its mutant that causes laminopathic dilated cardiomyopathy (DCM). Most importantly, a comparison study reveals, for the first time, mutant-dependent alteration in LMNA proteomic environments, which allows to identify putative laminopathic DCM-linked proteins including FOXJ3 and CELF2. This study demonstrates the feasibility of this chemical tool for reliable proximal proteomics, and its immense potential as a new research platform for discovering biomarkers associated with protein mutation-linked diseases.


Asunto(s)
Cardiomiopatía Dilatada , Neoplasias Cutáneas , Humanos , Proteómica , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Mutación , Biomarcadores , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas CELF/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
14.
Biosens Bioelectron ; 227: 115170, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36827794

RESUMEN

The establishment of new mechanisms for target identification and signal amplification continues to drive innovation in electrochemiluminescence (ECL) sensing platforms. In this paper, a novel ECL insulin sensing platform was constructed by utilizing the molecular recognition properties of cucurbit[7]uril. Specifically, the macrocyclic host molecule cucurbit[7]uril was immobilized on the surface of the sensing platform as an identification probe, which could selectively capture insulin according to the inherent properties of the protein N-terminal. Introducing the rigid molecule cucurbit[7]uril into the sensing interface could reduce the influence of the environmental parameters on the sensing system, which provides a reliable guarantee for the accurate detection of insulin. Furthermore, gold nanoclusters were modified by utilizing the molecular recognition properties of cucurbit[7]uril, and used as anode signal probes for ECL sensing platform. The macrocyclic molecules cucurbit[7]uril passivated the surface of the nanoclusters, inhibited the non-radiative relaxation and improved the physical stability of the luminophore, leading to a significant increase in the sensitivity and stability of the ECL probe. The ECL sensing platforms exhibited a linear range from 50.00 fg/mL to 100.0 ng/mL, with a detection limit of 5.44 fg/mL. This study revealed the critical role of cucurbit[7]uril in target recognition and signal amplification, extending the scope of supramolecular applications in ECL.


Asunto(s)
Técnicas Biosensibles , Compuestos Macrocíclicos , Insulina , Fotometría , Mediciones Luminiscentes , Límite de Detección , Técnicas Electroquímicas
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121971, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36288627

RESUMEN

Novel conjugates consist of 4-styrylpyridinium dye and 2,2-diphenyl-2H-chromene moiety were obtained, and their affinity to double stranded DNA and cucurbit[7]uril was investigated. With a combination of absorption, fluorescence and circular dichroism spectroscopies as well as MALDI-TOF mass spectrometry, we demonstrate that these compounds can interact with macromolecules to form of the supramolecular assemblies due to two suitable binding sites. The ternary complex is formed as a result of the intercalation of a positively charged styryl part between DNA base pairs, while cucurbit[7]uril is located on the alkyl chain between two moieties of conjugate. All these findings provide valuable information into controlling the interaction between organic molecules, DNA and cucurbit[7]uril.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Imidazoles , Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , ADN , Benzopiranos
16.
Small ; 18(44): e2204182, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36148850

RESUMEN

Nanoparticle surfactants (NPSs) offer a powerful means to stabilize the oil-water interface and construct all-liquid devices with advanced functions. However, as the nanoparticle size decreases to molecular-scale, the binding energy of the NPS to the interface reduces significantly, leading to a dynamic adsorption of NPS and "liquid-like" state of the interfacial assemblies. Here, by using the host-guest recognition between a water-soluble small molecule, cucurbit[7]uril (CB[7]) and an oil-soluble polymer ligand, methyl viologen-terminated polystyrene, a supramolecular NPS model, termed CB[7] surfactant, is described. CB[7] surfactants form and assemble rapidly at the oil-water interface, generating an elastic film with excellent mechanical properties. The binding energy of CB[7] surfactant to the interface is sufficiently high to hold it in a jammed state, transforming the interfacial assemblies from a "liquid-like" to "solid-like" state, enabling the structuring of liquids. With CB[7] surfactants as the emulsifier, O/W, W/O and O/W/O emulsions can be prepared in one step. Owing to the guest-competitive responsiveness of CB[7] surfactants, the assembly/disassembly and jamming/unjamming of CB[7] surfactants can be well controlled, leading to the reconfiguration of all-liquid constructs.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Tensoactivos , Tensoactivos/química , Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Agua/química
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121474, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35797954

RESUMEN

The effect of solvents and supramolecular hosts on the binding of metal ion with an excited state intramolecular proton transfer (ESIPT) active fluorophore 2-(2'-hydroxyphenyl)benzoxazole (HPBO) are investigated to scrutinize a possible metal ion carry and delivery system. The fluorophore forms strong fluorescent complex with Zn2+ ion. In aqueous medium, ß-cyclodextrin (ß-CD) breaks the HPBO-Zn2+ complex and encapsulate the freed fluorophore. Hence, the initially blocked ESIPT process is restored by forming an inclusion complex with the host molecules. However, in dimethyl sulphoxide (DMSO), ß-CD does not break the complex. But cucurbit[7]uril (CB-7) breaks the complex in both DMSO and water. The tuned emission characteristics are considered for constructing different molecular logic gates. BUFFER, NOT, PASS, IMPLICATION and INHIBIT logic operations are substantiated based on Zn2+, CB-7 and ß-CD response.


Asunto(s)
Protones , Zinc , Benzoxazoles , Dimetilsulfóxido , Colorantes Fluorescentes/química , Agua
18.
Nano Lett ; 22(12): 4839-4847, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35667033

RESUMEN

A safe, biocompatible, and stimuli-responsive cucurbit[7]uril-mediated supramolecular bactericidal nanoparticle was fabricated by encapsulating a highly bioactive carbazole-decorated imidazolium salt (A1, EC50 = 0.647 µg/mL against phytopathogen Xanthomonas oryzae pv oryzae) into the host cucurbit[7]uril (CB[7]), thereby leading to self-assembled topographies from microsheets (A1) to nanospheroidal architectures (A1@CB[7]). The assembly behaviors were elucidated by acquired single-crystal structures, 1H NMR, ITC, and X-ray powder diffraction experiments. Complex A1@CB[7] displayed lower phytotoxicity and could efficiently switch on its potent antibacterial ability via introducing a simple competitor 1-adamantanamine hydrochloride (AD). In vivo antibacterial trials against rice bacterial blight revealed that A1@CB[7] could relieve the disease symptoms after being triggered by AD and provide a workable control efficiency of 42.6% at 100 µg/mL, which was superior to bismerthiazol (33.4%). These materials can provide a viable platform for fabricating diverse stimuli-responsive supramolecular bactericides for managing bacterial infections with improved safety.


Asunto(s)
Infecciones Bacterianas , Nanopartículas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Preparaciones de Acción Retardada , Compuestos Heterocíclicos con 2 Anillos , Humanos , Imidazolidinas , Compuestos Macrocíclicos
19.
Chemistry ; 28(38): e202200456, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35532096

RESUMEN

Two "hot segments" within an islet amyloid polypeptide are responsible for its self-assembly, which in turn is linked to the decline of ß-cells in type 2 diabetes (T2D). A readily available water-soluble, macrocyclic host, cucurbit[7]uril (CB[7]), effectively inhibits islet amyloid polypeptide (IAPP) aggregation through ion-dipole and hydrophobic interactions with different residues of the monomeric peptide in its random-coil conformation. A HSQC NMR study shows that CB[7] likely modulates IAPP self-assembly by interacting with and masking major residues present in the "hot segments" at the N terminus. CB[7] also prevents the formation of toxic oligomers and inhibits seed-catalyzed fibril proliferation. Importantly, CB[7] recovers rat insulinoma cells (RIN-m) from IAPP-assembly associated cytotoxicity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Amiloide/química , Animales , Compuestos Heterocíclicos con 2 Anillos , Imidazolidinas , Polipéptido Amiloide de los Islotes Pancreáticos/química , Compuestos Macrocíclicos , Ratas
20.
Front Chem ; 10: 870137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494653

RESUMEN

The incorporation of a guest, with different basic sites, into an organized system (host), such as macrocycles, could stabilize, detect, or promote the formation of a certain protomer. In this context, this work aimed to study the influence of cucurbit[7]uril (CB7) on dyes such as 7-(dimethylamino)-aza-coumarins, which have more than one basic site along their molecular structure. For this, three 3-styryl derivatives of 7-(dialkylamino)-aza-coumarin dyes (SAC1-3) were synthesized and characterized by NMR, ESI-HRMS and IR. The spectral behaviour of the SACs in the absence and presence of CB7 was studied. The results showed large shifts in the UV-vis spectrum in acid medium: a hypsochromic shift of ≈5400 cm-1 (SAC1-2) and ≈3500 cm-1 (SAC3) in the absence of CB7 and a bathochromic shift of ≈4500 cm-1 (SAC1-3) in the presence of CB7. The new absorptions at long and short wavelengths were assigned to the corresponding protomers by computational calculations at the density functional theory (DFT) level. Additionally, the binding mode was corroborated by molecular dynamics simulations. Findings revealed that in the presence of CB7 the heterocyclic nitrogen was preferably protonated instead of the dialkylamino group. Namely, CB7 induces a change in the protonation preference at the basic sites of the SACs, as consequence of the molecular recognition by the macrocycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...