Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
DNA Repair (Amst) ; 109: 103246, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847380

RESUMEN

Genomic DNA in the nucleus is wrapped around nucleosomes, a repeating unit of chromatin. The nucleosome, consisting of octamer of core histones, is a barrier for several cellular processes that require access to the naked DNA. The FAcilitates Chromatin Transcription (FACT), a histone chaperone complex, is involved in nucleosome remodeling via eviction or assembly of histones during transcription, replication, and DNA repair. Increasing evidence suggests that FACT plays an important role in multiple DNA repair pathways including transcription-coupled nucleotide excision repair (TC-NER) of UV-induced damage, DNA single- and double-strand breaks (DSBs) repair, and base excision repair (BER) of oxidized or alkylated damaged bases. Further, studies have shown overexpression of FACT in multiple types of cancer and its association with drug resistance and patients' poor prognosis. In this review, we discuss how FACT is accumulated at the damage site and what functions it performs. We describe the known mechanisms by which FACT facilitates repair of different types of DNA damage. Further, we highlight the recent advances in a class of FACT inhibitors, called curaxins, which show promise as a new adjuvant therapy to sensitize multiple types of cancer to chemotherapy and radiation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Reparación del ADN , Chaperonas de Histonas/metabolismo , Nucleosomas/metabolismo , Animales , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
2.
Trends Mol Med ; 26(2): 141-149, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31679987

RESUMEN

The role of 3D genome organization in the precise regulation of gene expression is well established. Accordingly, the mechanistic connections between 3D genome alterations and disease development are becoming increasingly apparent. This opinion article provides a snapshot of our current understanding of the 3D genome alterations associated with cancers. We discuss potential connections of the 3D genome and cancer transcriptional addiction phenomenon as well as molecular mechanisms of action of 3D genome-disrupting drugs. Finally, we highlight issues and perspectives raised by the discovery of the first pharmaceutical strongly affecting 3D genome organization.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Genoma/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales , Cromatina/genética , ADN/genética , Epigenómica/métodos , Humanos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
3.
J Med Virol ; 91(8): 1571-1576, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30989696

RESUMEN

A cure for human immunodeficiency virus type-1 (HIV-1) has been hampered by the limitation of current combination antiretroviral therapy (cART) to address the latent reservoirs in HIV-1 patients. One strategy proposed to eradicate these reservoirs is the "shock and kill" approach, where latency-reversing agents (LRAs) are used to reactivate and promote viral cell death and/or immune killing of reactivated cells. Here, we report that curaxin CBL0137, an antitumor compound, can potentiate tumor necrosis factor-α-mediated reactivation of latently infected HIV-1cell lines. Additionally, the single use of CBL0137 is sufficient to reactivate HIV-1 latent reservoirs in peripheral mononuclear cells (PBMCs) isolated from HIV-1 positive, cART-treated, aviremic patients. Thus, CBL0137 possesses capabilities as a LRA and could be considered for the "shock and kill" approach.


Asunto(s)
Carbazoles/farmacología , Infecciones por VIH/virología , VIH-1/fisiología , Activación Viral/efectos de los fármacos , Latencia del Virus , Células Cultivadas , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/virología , Factor de Necrosis Tumoral alfa/metabolismo
4.
Front Microbiol ; 8: 2007, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29089933

RESUMEN

Despite combination antiretroviral therapy (cART), acquired immunodeficiency syndrome (AIDS), predominantly caused by the human immunodeficiency virus type 1 (HIV-1), remains incurable. The barrier to a cure lies in the virus' ability to establish a latent infection in HIV/AIDS patients. Unsurprisingly, efforts for a sterilizing cure have focused on the "shock and kill" strategy using latency-reversing agents (LRAs) to complement cART in order to eliminate these latent reservoirs. However, this method faces numerous challenges. Recently, the "block and lock" strategy has been proposed. It aims to reinforce a deep state of latency and prevent sporadic reactivation ("blip") of HIV-1 using latency-promoting agents (LPAs) for a functional cure. Our studies of curaxin 100 (CBL0100), a small-molecule targeting the facilitates chromatin transcription (FACT) complex, show that it blocks both HIV-1 replication and reactivation in in vitro and ex vivo models of HIV-1. Mechanistic investigation elucidated that CBL0100 preferentially targets HIV-1 transcriptional elongation and decreases the occupancy of RNA Polymerase II (Pol II) and FACT at the HIV-1 promoter region. In conclusion, CBL0100 is a newly identified inhibitor of HIV-1 transcription that can be used as an LPA in the "block and lock" cure strategy.

5.
Mol Biol (Mosk) ; 50(4): 599-610, 2016.
Artículo en Ruso | MEDLINE | ID: mdl-27668600

RESUMEN

Conventional antitumor therapy is often complicated by the emergence of the so-called cancer stem cells (CSCs), which are characterized by low metabolic rates and high resistance to almost all existing therapies. Many problems of clinical oncology and a poor efficacy of current treatments in particular are ascribed to CSCs. Therefore, it is important to develop new compounds capable of eliminating both rapidly proliferating tumor cells and standard treatment-resistant CSCs. Curaxins have been demonstrated to manifest various types of antitumor activity. Curaxins simultaneously affect at least three key molecular cascades involved in tumor development, including the p53, NF-κB, and HSF1 metabolic pathways. In addition, studies of some curaxins indicate that they can inhibit the transcriptional induction of the genes for matrix metalloproteinases 1 and 8 (MMP1 and MMP8); the PI3K/AKT/mTOR signaling cascades; cIAP-1 (apoptosis protein 1) inhibitor activity; topoisomerase II; and a number of oncogenes, such as c-MYC and others. In vivo experiments have shown that the CSC population increases on gemcitabine monotherapy and is reduced on treatment with curaxin CBL0137. The data support the prospective use of FACT inhibitors as new anticancer drugs with multiple effects on cell metabolism.

6.
Surg Oncol Clin N Am ; 22(4): 665-84, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24012394

RESUMEN

The elucidation of the heat shock response (HSR) as a mediator of cellular stress has created a framework for understanding how these processes may promote tumorigenesis. Furthermore, the identification of specific components of the HSR and how they are co-opted by cancer cells has led to the discovery of new therapeutic targets. A wide range of small molecule inhibitors of the HSR are in various stages of development for clinical application in patients with cancer. The introduction of these novel small molecule inhibitors offers the opportunity for synergy with existing therapies and the potential for highly targeted treatments.


Asunto(s)
Antineoplásicos/uso terapéutico , Transformación Celular Neoplásica/efectos de los fármacos , Respuesta al Choque Térmico/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...