Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Eye Res ; 246: 110009, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067805

RESUMEN

Myopia is predicted to impact approximately 5 billion people by 2050, necessitating mechanistic understanding of its development. Myopia results from dysregulated genetic mechanisms of emmetropization, caused by over-exposure to aberrant visual environments; however, these genetic mechanisms remain unclear. Recent human genome-wide association studies have identified a range of novel myopia-risk genes. To facilitate large-scale in vivo mechanistic examination of gene-environment interactions, this study aims to establish a myopia model platform that allows efficient environmental and genetic manipulations. We established an environmental zebrafish myopia model by dark-rearing. Ocular biometrics including relative ocular refraction were quantified using optical coherence tomography images. Spatial vision was assessed using optomotor response (OMR). Retinal function was analyzed via electroretinography (ERG). Myopia-associated molecular contents or distributions were examined using RT-qPCR or immunohistochemistry. Our model produces robust phenotypic changes, showing myopia after 2 weeks of dark-rearing, which were recoverable within 2 weeks after returning animals to normal lighting. 2-week dark-reared zebrafish have reduced spatial-frequency tuning function. ERG showed reduced photoreceptor and bipolar cell function (a- and b-waves) after only 2 days of dark-rearing, which worsened after 2 weeks of dark-rearing. We also found dark-rearing-induced changes to expression of myopia-risk genes, including egr1, vegfaa, vegfab, rbp3, gjd2a and gjd2b, inner retinal distribution of EFEMP1, TIMP2 and MMP2, as well as transiently reduced PSD95 density in the inner plexiform layer. Coupled with the gene editing tools available for zebrafish, our environmental myopia model provides an excellent platform for large-scale investigation of gene-environment interactions in myopia development.


Asunto(s)
Modelos Animales de Enfermedad , Electrorretinografía , Miopía , Refracción Ocular , Tomografía de Coherencia Óptica , Pez Cebra , Animales , Miopía/fisiopatología , Miopía/genética , Miopía/metabolismo , Refracción Ocular/fisiología , Retina/metabolismo , Retina/fisiopatología , Adaptación a la Oscuridad/fisiología , Biometría , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
eNeuro ; 9(6)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36302632

RESUMEN

Oligodendrocytes, the myelinating cells of the CNS, promote rapid action potential conduction along axons. Changes in the geometry of gaps between myelin segments, known as nodes of Ranvier, affect the conduction speed of neuronal impulses and can ultimately alter neural synchronization and circuit function. In contrast to synaptic plasticity, much less is known about how neural activity may affect node of Ranvier structure. Recently, perinodal astrocytes have been shown to remodel nodes of Ranvier by regulating thrombin proteolysis, but it is not known whether neural activity influences this process. To test this hypothesis, we used transgenic mice with astrocytic expression of a dominant-negative vesicle-associated membrane protein 2 ([gfap]dnVAMP2) to reduce exocytosis of thrombin inhibitors, modulating astrocytic regulation of paranodal loop attachment to induce nodal remodeling, under normal conditions and in adult mice maintained in darkness from postnatal day 40 (P40) to P70. This mechanism of nodal lengthening proceeded normally following binocular visual deprivation (BVD). The effect of BVD on nodal plasticity in animals with unimpaired astrocyte function has not been previously investigated. We find that when exocytosis from astrocytes was unimpaired, nodal gap length was not altered by BVD in adult mice. We conclude that if perinodal astrocytes participate in activity-dependent myelin remodeling through exocytosis, then, as with synaptic plasticity in the visual system, the process must be driven by alterations in neuronal firing other than those produced by BVD.


Asunto(s)
Nódulos de Ranvier , Trombina , Ratones , Animales , Nódulos de Ranvier/metabolismo , Trombina/metabolismo , Nervio Óptico , Vaina de Mielina/metabolismo , Axones , Ratones Transgénicos
3.
Neurochem Res ; 47(9): 2815-2825, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35933550

RESUMEN

An appropriate sensory experience during the early developmental period is important for brain maturation. Dark rearing during the visual critical period delays the maturation of neuronal circuits in the visual cortex. Although the formation and structural plasticity of the myelin sheaths on retinal ganglion cell axons modulate the visual function, the effects of dark rearing during the visual critical period on the structure of the retinal ganglion cell axons and their myelin sheaths are still unclear. To address this question, mice were reared in a dark box during the visual critical period and then normally reared to adulthood. We found that myelin sheaths on the retinal ganglion cell axons of dark-reared mice were thicker than those of normally reared mice in both the optic chiasm and optic nerve. Furthermore, whole-mount immunostaining with fluorescent axonal labeling and tissue clearing revealed that the myelin internodal length in dark-reared mice was shorter than that in normally reared mice in both the optic chiasm and optic nerve. These findings demonstrate that dark rearing during the visual critical period affects the morphology of myelin sheaths, shortens and thickens myelin sheaths in the visual pathway, despite the mice being reared in normal light/dark conditions after the dark rearing.


Asunto(s)
Corteza Visual , Vías Visuales , Animales , Axones , Ratones , Vaina de Mielina/metabolismo , Células Ganglionares de la Retina/metabolismo , Corteza Visual/metabolismo
4.
Exp Eye Res ; 215: 108913, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34965404

RESUMEN

Inherited retinal diseases (IRDs) are a collection of rare genetic conditions, which can lead to complete blindness. A large number of causative genes have been identified for IRDs and while some success has been achieved with gene therapies, they are limited in scope to each individual gene and/or the specific mutation harbored by each patient with an IRD. Multiple studies are underway to elucidate common underlying mechanisms contributing to photoreceptor (PR) loss and to design gene-agnostic, pan-disease therapeutics. The rd10 mouse, which recapitulates slow degeneration of PRs, is an in vivo IRD model used commonly by vision researchers. Light deprivation by rearing animals in complete darkness significantly delays PR death in rd10 mice, subsequently increasing the time window for in vivo studies investigating neuroprotective strategies. Longitudinal in vivo retinal imaging following the same rd10 mice over time is a potential solution for reducing the number of animals required to complete a study. We describe a previously unreported phenotype in the dark-reared rd10 model that is characterized by dramatic PR degeneration following brief exposure to low-intensity light. This exquisite light sensitivity precludes the use of longitudinal studies employing in vivo imaging or other functional assessment requiring room light in rd10 mice and highlights the importance of closely following animal models of IRD to determine any deviations from the expected degeneration curve during routine experimentation.


Asunto(s)
Degeneración Retiniana , Células Fotorreceptoras Retinianas Bastones , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Retina/diagnóstico por imagen , Degeneración Retiniana/genética
5.
Behav Brain Res ; 418: 113638, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695541

RESUMEN

Disruptions in light/dark cycle have been associated with an altered ability to form and retrieve memory in human and animals. Animal studies have shown that chronic light deprivation disrupts the light/dark cycle and alters the neural connections that mediate hippocampal memory formation. In order to better understand how light deprivation affects the formation and retrieval of memory in adult rats, we examined the effect of total darkness on spatial and auditory fear learning and memory formation and BDNF/TRKB protein levels during the light and dark phases of the rat circadian cycle. Male Wistar rats (n = 60), were randomly divided into two main groups: normal rearing (NR, 12 h light/dark cycle for 3 weeks) and dark rearing (DR, kept in constant darkness for 3 weeks); and each of these groups had a "light (day)" and "dark (night)" sub-group. After 3 weeks, the Morris Water maze and auditory fear conditioning were used to assess spatial and fear memory acquisition and retrieval, respectively. BDNF and TRKB protein levels in the hippocampus of rats from the four sub-groups were measured by Western blot, at the completion of the 3 week constant darkness exposure and after the behavioral experiments. These studies revealed that DR for 3 weeks impaired spatial memory retrieval and enhanced extinction of auditory fear memory specifically during the light (day) phase. DR also eliminated the normal fluctuations in BDNF/TRKB levels observed in the hippocampus across the light/dark cycle.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Fotoperiodo , Receptor trkB/metabolismo , Memoria Espacial/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Wistar , Receptor trkB/genética
6.
Front Neural Circuits ; 15: 637638, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935657

RESUMEN

Monocular deprivation (MD) of vision during early postnatal life induces amblyopia, and most neurons in the primary visual cortex lose their responses to the closed eye. Anatomically, the somata of neurons in the closed-eye recipient layer of the lateral geniculate nucleus (LGN) shrink and their axons projecting to the visual cortex retract. Although it has been difficult to restore visual acuity after maturation, recent studies in rodents and cats showed that a period of exposure to complete darkness could promote recovery from amblyopia induced by prior MD. However, in cats, which have an organization of central visual pathways similar to humans, the effect of dark rearing only improves monocular vision and does not restore binocular depth perception. To determine whether dark rearing can completely restore the visual pathway, we examined its effect on the three major concomitants of MD in individual visual neurons, eye preference of visual cortical neurons and soma size and axon morphology of LGN neurons. Dark rearing improved the recovery of visual cortical responses to the closed eye compared with the recovery under binocular conditions. However, geniculocortical axons serving the closed eye remained retracted after dark rearing, whereas reopening the closed eye restored the soma size of LGN neurons. These results indicate that dark rearing incompletely restores the visual pathway, and thus exerts a limited restorative effect on visual function.


Asunto(s)
Ambliopía , Corteza Visual , Animales , Axones , Gatos , Cuerpos Geniculados , Corteza Visual Primaria , Privación Sensorial
7.
Eur J Neurosci ; 54(2): 4514-4527, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34013578

RESUMEN

The superior colliculus (SC) is richly endowed with neurons that integrate cues from different senses to enhance their physiological responses and the overt behaviors they mediate. However, in the absence of experience with cross-modal combinations (e.g., visual-auditory), they fail to develop this characteristic multisensory capability: Their multisensory responses are no greater than their most effective unisensory responses. Presumably, this impairment in neural development would be reflected as corresponding impairments in SC-mediated behavioral capabilities such as detection and localization performance. Here, we tested that assumption directly in cats raised to adulthood in darkness. They, along with a normally reared cohort, were trained to approach brief visual or auditory stimuli. The animals were then tested with these stimuli individually and in combination under ambient light conditions consistent with their rearing conditions and home environment as well as under the opposite lighting condition. As expected, normally reared animals detected and localized the cross-modal combinations significantly better than their individual component stimuli. However, dark-reared animals showed significant defects in multisensory detection and localization performance. The results indicate that a physiological impairment in single multisensory SC neurons is predictive of an impairment in overt multisensory behaviors.


Asunto(s)
Sensación , Colículos Superiores , Estimulación Acústica , Animales , Percepción Auditiva , Gatos , Neuronas , Estimulación Luminosa , Percepción Visual
8.
Neuroscience ; 452: 169-180, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197500

RESUMEN

Mutation of the α-thalassemia/mental retardation syndrome X-linked protein, ATRX, causes intellectual disability and is associated with pleiotropic defects including ophthalmological abnormalities. We have previously demonstrated that Atrx deficiency in the mouse retina leads to the selective loss of inhibitory interneurons and inner retinal dysfunction. Onset of the amacrine cell neurodegenerative phenotype in Atrx-deficient retinas occurs postnatally after neuronal specification, and coincides with eye opening. Given this timing, we sought to interrogate the influence of light-dependent visual signaling on Atrx-mediated neuronal survival and function in the mouse retina. Retina-specific Atrx conditional knockout (cKO) mice were subjected to light deprivation using two different paradigms: (1) a dark-rearing regime, and (2) genetic deficiency of metabotropic glutamate receptor 6 (mGluR6) to block the ON retinal signaling pathway. Scotopic electroretinography was performed for adult dark-reared Atrx cKO mice and controls to measure retinal neuron function in vivo. Retinal immunohistochemistry and enumeration of amacrine cells were performed for both light deprivation paradigms. We observed milder normalized a-wave, b-wave and oscillatory potential (OP) deficits in electroretinograms of dark-reared Atrx cKO mice compared to light-exposed counterparts. In addition, amacrine cell loss was partially limited by genetic restriction of retinal signaling through the ON pathway. Our results suggest that the temporal features of the Atrx cKO phenotype are likely due to a combined effect of light exposure upon eye opening and coincident developmental processes impacting the retinal circuitry. In addition, this study reveals a novel activity-dependent role for Atrx in mediating post-replicative neuronal integrity in the CNS.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Proteína Nuclear Ligada al Cromosoma X , Talasemia alfa , Animales , Ratones , Ratones Endogámicos C57BL , Retina , Proteína Nuclear Ligada al Cromosoma X/genética
9.
Front Integr Neurosci ; 14: 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425761

RESUMEN

Although the ability to integrate information across the senses is compromised in some individuals for unknown reasons, similar defects have been observed when animals are reared without multisensory experience. The experience-dependent development of multisensory integration has been studied most extensively using the visual-auditory neuron of the cat superior colliculus (SC) as a neural model. In the normally-developed adult, SC neurons react to concordant visual-auditory stimuli by integrating their inputs in real-time to produce non-linearly amplified multisensory responses. However, when prevented from gathering visual-auditory experience, their multisensory responses are no more robust than their responses to the individual component stimuli. The mechanisms operating in this defective state are poorly understood. Here we examined the responses of SC neurons in "naïve" (i.e., dark-reared) and "neurotypic" (i.e., normally-reared) animals on a millisecond-by-millisecond basis to determine whether multisensory experience changes the operation by which unisensory signals are converted into multisensory outputs (the "multisensory transform"), or whether it changes the dynamics of the unisensory inputs to that transform (e.g., their synchronization and/or alignment). The results reveal that the major impact of experience was on the multisensory transform itself. Whereas neurotypic multisensory responses exhibited non-linear amplification near their onset followed by linear amplification thereafter, the naive responses showed no integration in the initial phase of the response and a computation consistent with competition in its later phases. The results suggest that multisensory experience creates an entirely new computation by which convergent unisensory inputs are used cooperatively to enhance the physiological salience of cross-modal events and thereby facilitate normal perception and behavior.

10.
Proc Natl Acad Sci U S A ; 116(14): 7071-7076, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30890637

RESUMEN

Parvalbumin-positive (PV+) interneurons play a pivotal role in orchestrating windows of experience-dependent brain plasticity during development. Critical period closure is marked by the condensation of a perineuronal net (PNN) tightly enwrapping subsets of PV+ neurons, both acting as a molecular brake on plasticity and maintaining mature PV+ cell signaling. As much of the molecular organization of PNNs exists at length scales near or below the diffraction limit of light microscopy, we developed a superresolution imaging and analysis platform to visualize the structural organization of PNNs and the synaptic inputs perforating them in primary visual cortex. We identified a structural trajectory of PNN maturation featuring a range of net structures, which was accompanied by an increase in Synaptotagmin-2 (Syt2) signals on PV+ cells suggestive of increased inhibitory input between PV+ neurons. The same structural trajectory was followed by PNNs both during normal development and under conditions of critical period delay by total sensory deprivation or critical period acceleration by deletion of MeCP2, the causative gene for Rett syndrome, despite shifted maturation levels under these perturbations. Notably, superresolution imaging further revealed a decrease in Syt2 signals alongside an increase in vesicular glutamate transporter-2 signals on PV+ cells in MeCP2-deficient animals, suggesting weaker recurrent inhibitory input between PV+ neurons and stronger thalamocortical excitatory inputs onto PV+ cells. These results imply a latent imbalanced circuit signature that might promote cortical silencing in Rett syndrome before the functional regression of vision.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/metabolismo , Red Nerviosa/metabolismo , Plasticidad Neuronal , Síndrome de Rett/metabolismo , Sinapsis/metabolismo , Sinaptotagmina II/metabolismo , Corteza Visual/metabolismo , Animales , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Red Nerviosa/diagnóstico por imagen , Síndrome de Rett/diagnóstico por imagen , Síndrome de Rett/genética , Sinapsis/genética , Sinaptotagmina II/genética , Corteza Visual/diagnóstico por imagen
11.
J Exp Zool B Mol Dev Evol ; 330(4): 202-214, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29904995

RESUMEN

During early ontogeny, visual opsin gene expression in cichlids is influenced by prevailing light regimen. Red light, for example, leads to an early switch from the expression of short-wavelength sensitive to long-wavelength sensitive opsins. Here, we address the influence of light deprivation on opsin expression. Individuals reared in constant darkness during the first 14 days post-hatching (dph) showed a general developmental delay compared with fish reared under a 12:12 hr light-dark cycle (control group). Several characters including pigmentation patterns and eye development, appeared later in dark-reared individuals. Quantitative real-time PCR and fluorescent in situ hybridization at six time points during the 14 days period revealed that fish from the control group expressed opsin genes from 5 dph on and maintained a short-wavelength sensitive phenotype (sws1, rh2b, and rh2a). Onset of opsin expression in dark-reared Midas cichlids was delayed by 4 days and visual sensitivity rapidly progressed toward a long-wavelength sensitive phenotype (sws2b, rh2a, and lws). Shifts in visual sensitivities toward longer wavelengths are mediated by thyroid hormone (TH) in many vertebrates. Compared to control fish, dark-reared individuals showed elevated dio3 expression levels - a validated proxy for TH concentration - suggesting higher circulating TH levels. Despite decelerated overall development, ontogeny of opsin gene expression was accelerated, resulting in retinae with long-wavelength shifted predicted sensitivities compared to light-reared individuals. Indirect evidence suggests that this was due to altered TH metabolism.


Asunto(s)
Cíclidos/genética , Opsinas de los Conos/genética , Luz , Adaptación Fisiológica/genética , Animales , Cíclidos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Retina/crecimiento & desarrollo , Retina/efectos de la radiación , Transducción de Señal , Hormonas Tiroideas/metabolismo
12.
Neuroscience ; 384: 131-138, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859977

RESUMEN

In the visual cortex, sensory deprivation causes global augmentation of the amplitude of AMPA receptor-mediated miniature EPSCs in layer 2/3 pyramidal cells and enhancement of NMDA receptor-dependent long-term potentiation (LTP) in cells activated in layer 4, effects that are both rapidly reversed by light exposure. Layer 2/3 pyramidal cells receive both feedforward input from layer 4 and intra-cortical lateral input from the same layer, LTP is mainly induced by the former input. Whether feedforward excitatory synaptic strength is affected by visual deprivation and light exposure, how this synaptic strength correlates with the magnitude of LTP in this pathway, and the underlying mechanism have not been explored. Here, we showed that in juvenile mice, both dark rearing and dark exposure reduced the feedforward excitatory synaptic strength, and the effects can be reversed completely by 10-12 h and 6-8 h light exposure, respectively. However, inhibition of NMDA receptors by CPP or mGluR5 by MPEP, prevented the effect of light exposure on the mice reared in the dark from birth, while only inhibition of NMDAR prevented the effect of light exposure on dark-exposed mice. These results suggested that the activation of both NMDAR and mGluR5 are essential in the light exposure reversal of feedforward excitatory synaptic strength in the dark reared mice from birth; while in the dark exposed mice, only activation of NMDAR is required.


Asunto(s)
Adaptación a la Oscuridad/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Visión Binocular/fisiología , Corteza Visual/efectos de los fármacos , Vías Visuales/efectos de los fármacos , Animales , Adaptación a la Oscuridad/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/fisiología , Ratones , Piridinas/farmacología , Corteza Visual/fisiopatología
13.
J Neurosci ; 38(25): 5649-5665, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29789380

RESUMEN

Metaplasticity is the regulation of synaptic plasticity based on the history of previous synaptic activation. This concept was formulated after observing that synaptic changes in the visual cortex are not fixed, but dynamic and dependent on the history of visual information flux. In visual cortical neurons, sustained synaptic stimulation activate the enzymatic complex NOX2, resulting in the generation of reactive oxygen species (ROS). NOX2 is the main molecular structure responsible for translating neural activity into redox modulation of intracellular signaling pathways involved in plastic changes. Here, we studied the interaction between NOX2 and visual experience as metaplastic factors regulating synaptic plasticity at the supergranular layers of the mouse visual cortex. We found that genetic inhibition of NOX2 reverses the polarizing effects of dark rearing from LTP to LTD. In addition, we demonstrate that this process relies on changes in the NMDA receptor functioning. Altogether, this work indicates a role of ROS in the activity-dependent regulation of cortical synaptic plasticity.SIGNIFICANCE STATEMENT Synaptic plasticity in the visual cortex is modulated by the history of sensory experience and this modulation has been defined as metaplasticity. Dark rearing facilitates synaptic potentiation as a mechanism optimizing the range of synaptic modification. This process requires the production of reactive oxygen species mediated by the enzymatic complex NOX2. If the activity of NOX2 is inhibited, then visual deprivation results in synaptic depression. These findings increase our knowledge about metaplasticity and help in our understanding of how neural activity modulates cellular mechanisms of synaptic change.


Asunto(s)
NADPH Oxidasa 2/metabolismo , Plasticidad Neuronal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Corteza Visual/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Curr Biol ; 27(16): 2407-2419.e4, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28781054

RESUMEN

Spontaneous patterns of activity in the developing visual system may play an important role in shaping the brain for function. During the period 4-9 dpf (days post-fertilization), larval zebrafish learn to hunt prey, a behavior that is critically dependent on the optic tectum. However, how spontaneous activity develops in the tectum over this period and the effect of visual experience are unknown. Here we performed two-photon calcium imaging of GCaMP6s zebrafish larvae at all days from 4 to 9 dpf. Using recently developed graph theoretic techniques, we found significant changes in both single-cell and population activity characteristics over development. In particular, we identified days 5-6 as a critical moment in the reorganization of the underlying functional network. Altering visual experience early in development altered the statistics of tectal activity, and dark rearing also caused a long-lasting deficit in the ability to capture prey. Thus, tectal development is shaped by both intrinsic factors and visual experience.


Asunto(s)
Colículos Superiores/fisiología , Vías Visuales/fisiología , Pez Cebra/fisiología , Animales , Femenino , Masculino , Colículos Superiores/crecimiento & desarrollo , Vías Visuales/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo
15.
J Neurosci ; 37(39): 9353-9360, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28821676

RESUMEN

LTP has been known to be a mechanism by which experience modifies synaptic responses in the neocortex. Visual deprivation in the form of dark exposure or dark rearing from birth enhances NMDAR-dependent LTP in layer 2/3 of visual cortex, a process often termed metaplasticity, which may involve changes in NMDAR subunit composition and function. However, the effects of reexposure to light after dark rearing from birth on LTP induction have not been explored. Here, we showed that the light exposure after dark rearing revealed a novel NMDAR independent form of LTP in the layer 2/3 pyramidal cells in visual cortex of mice of both sexes, which is dependent on mGluR5 activation and is associated with intracellular Ca2+ rise, CaMKII activity, PKC activity, and intact protein synthesis. Moreover, the capacity to induce mGluR-dependent LTP is transient: it only occurs when mice of both sexes reared in the dark from birth are exposed to light for 10-12 h, and it does not occur in vision-experienced, male mice, even after prolonged exposure to dark. Thus, the mGluR5-LTP unmasked by short visual experience can only be observed after dark rearing but not after dark exposure. These results suggested that, as in hippocampus, in layer 2/3 of visual cortex, there is coexistence of two distinct activity-dependent systems of synaptic plasticity, NMDAR-LTP, and mGluR5-LTP. The mGluR5-LTP unmasked by short visual experience may play a critical role in the faster establishment of normal receptive field properties.SIGNIFICANCE STATEMENT LTP has been known to be a mechanism by which experience modifies synaptic responses in the neocortex. Visual deprivation in the form of dark exposure or dark rearing from birth enhances NMDAR-dependent LTP in layer 2/3 of visual cortex, a process often termed metaplasticity. NMDAR-dependent form of LTP in visual cortex has been well characterized. Here, we report that an NMDAR-independent form of LTP can be promoted by novel visual experience on dark-reared mice, characterized as dependent on intracellular Ca2+ rise, PKC activity, and intact protein synthesis and also requires the activation of mGluR5. These findings suggest that, in layer 2/3 of visual cortex, as in hippocampus, there is coexistence of two distinct activity-dependent systems of synaptic plasticity.


Asunto(s)
Potenciación a Largo Plazo , Corteza Visual/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa , Proteína Quinasa C/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología , Receptor del Glutamato Metabotropico 5/genética , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Visual/citología , Corteza Visual/metabolismo
16.
J Comp Neurol ; 524(13): 2643-53, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-26878686

RESUMEN

An extended duration of darkness starting near the time of birth preserves immature neuronal characteristics and prolongs the accentuated plasticity observed in young animals. Brief periods of complete darkness have emerged as an effective means of restoring a high capacity for neural plasticity and of promoting recovery from the effects of monocular deprivation (MD). We examined whether 10 days of darkness imposed in adulthood or beyond the peak of the critical period could rejuvenate the ability of MD to reduce the size of neuron somata within deprived layers of the cat dorsal lateral geniculate nucleus (dLGN). For adult cats subjected to 10 days of darkness before 7 days of MD, we observed no alteration in neuron size or neurofilament labeling within the dLGN. At 12 weeks of age, MD that followed immediately after 10 days of darkness produced an enhanced reduction of neuron soma size within deprived dLGN layers. For this age we observed that 10 days of darkness also enhanced the loss of neurofilament protein within deprived dLGN layers. These results indicate that, although 10 days of darkness in adulthood does not enhance the susceptibility to 7 days of MD, darkness imposed near the trailing edge of the critical period can restore a heightened susceptibility to MD more typical of an earlier developmental stage. The loss of neurofilament in juveniles exposed to darkness prior to MD suggests that the enhanced capacity for structural plasticity is partially rooted in the ability of darkness to modulate molecules that inhibit plasticity. J. Comp. Neurol. 524:2643-2653, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Período Crítico Psicológico , Oscuridad/efectos adversos , Plasticidad Neuronal/fisiología , Privación Sensorial/fisiología , Visión Monocular/fisiología , Corteza Visual/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Gatos , Cuerpos Geniculados/fisiología , Vías Visuales/fisiología
17.
Dev Neurobiol ; 76(5): 473-86, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26084632

RESUMEN

Gap junctions are composed of connexin 36 (Cx36) and play a critical role in the rod photoreceptor signaling pathways of the vertebrate retina. Despite the fact that their connection and modulation in various rod pathways have been extensively studied in adult animals, little is known about the contribution and regulation of gap junctions to the development of the AII amacrine cell (AC)-mediated rod pathway. Using immunohistochemistry and microinjection, this study demonstrates a steady increase in relative Cx36 protein expression in both plexiform layers of the rabbit retina at around the time of eye opening. However, immediately after eye opening, most Cx36 immunoreactive AII ACs show no gap junction coupling pattern to neighboring cells and it is not until the third postnatal week that AII cells begin to exhibit an adult-like tracer-coupling pattern. Moreover, studies using dark-rearing and AMPA receptor blockade during postnatal development both revealed that relative levels of Cx36 immunoreactivity in AII ACs were increased when neural activity was inhibited. Our findings suggest that Cx36 expression in the AII-mediated rod pathway is activity dependent in the developing rabbit retina.


Asunto(s)
Conexinas/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Privación Sensorial , Vías Visuales/crecimiento & desarrollo , Vías Visuales/fisiología , Percepción Visual , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Animales Recién Nacidos , Antagonistas de Aminoácidos Excitadores/farmacología , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Ácido Glutámico/metabolismo , Inmunohistoquímica , Microscopía Confocal , Conejos , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Vías Visuales/efectos de los fármacos , Percepción Visual/efectos de los fármacos , Proteína delta-6 de Union Comunicante
18.
J Neurophysiol ; 113(7): 2049-61, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25568162

RESUMEN

Progressive loss of plasticity during development prevents refined circuits from regressing to an immature state and is thought to depend on maturation of GABAergic inhibition. For example, a gradual reduction in size of visual receptive fields (RFs) occurs in the superior colliculus (SC) during development. Maintenance of the refined state throughout adulthood requires early light exposure. Here we investigate the potential role of changes in long- or short-term plasticity in experience-dependent maintenance of refined RFs. Using an acute SC slice preparation, we found that long-term plasticity was not affected by visual deprivation, indicating that it does not underlie deprivation-induced RF enlargement. In contrast, visual deprivation altered short-term plasticity in an unexpected way. Specifically, GABAB receptor (GABABR)-mediated paired pulse depression was increased in slices from dark-reared animals. This increase was mimicked by GABAAR blockade in slices from normally reared animals, suggesting that experience-dependent maintenance of GABAAR function prevents an increase in probability of neurotransmitter release. GABABR-mediated short-term depression in response to strong stimulation (such as occurs during vision) was reduced in slices from dark-reared animals. This change was mimicked in slices from normal animals by reducing GABA release. These results are consistent with the hypothesis that early visual experience maintains GABAergic inhibition and prevents later deprivation-induced alterations of short-term depression in SC. Identifying how plasticity is restricted in mature circuits could guide therapies to enhance recovery of function in adults.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Plasticidad Neuronal/fisiología , Receptores de GABA-B/fisiología , Colículos Superiores/crecimiento & desarrollo , Percepción Visual/fisiología , Factores de Edad , Animales , Adaptación a la Oscuridad/fisiología , Femenino , Masculino , Mesocricetus , Técnicas de Cultivo de Órganos , Colículos Superiores/citología , Campos Visuales/fisiología
19.
Vision Res ; 114: 151-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25536470

RESUMEN

Deprivation of patterned vision of frontal eyed mammals early in postnatal life alters structural and functional attributes of neurones in the central visual pathways, and can produce severe impairments of the vision of the deprived eye that resemble the visual loss observed in human amblyopia. A traditional approach to treatment of amblyopia has been the occlusion of the stronger fellow eye in order to force use of the weaker eye and thereby strengthen its connections in the visual cortex. Although this monocular treatment strategy can be effective at promoting recovery of visual acuity of the amblyopic eye, such binocular visual functions as stereoscopic vision often remain impaired due in part to the lack of concordant vision during the period of unilateral occlusion. The recent development of binocular approaches for treatment of amblyopia that improve the possibility for binocular interaction have achieved success in promoting visual recovery. The full and rapid recovery of visual acuity observed in amblyopic kittens placed in complete darkness is an example of a binocular treatment whose success may in part derive from a restored balance of visually-driven neural activity. In the current study we examined as an alternative to dark rearing the efficacy of binocular lid suture (BLS) to stimulate anatomical and visual recovery from a preceding amblyogenic period of monocular deprivation. In the dorsal lateral geniculate nucleus (dLGN) of monocularly deprived kittens, darkness or BLS for 10days produced a complete recovery of neurone soma size within initially deprived layers. The growth of neurone somata within initially deprived dLGN layers after darkness or BLS was accompanied by an increase in neurotrophin-4/5 labeling within these layers. Although anatomical recovery was observed in both recovery conditions, BLS failed to promote any improvement of the visual acuity of the deprived eye no matter whether it followed immediately or was delayed with respect to the prior period of monocular deprivation. Notwithstanding the lack of visual recovery with BLS, all animals in the BLS condition that were subsequently placed in darkness exhibited a substantial recovery of visual acuity in the amblyopic eye. We conclude that the balanced binocular visual input provided by BLS does not stimulate the collection of neural events necessary to support recovery from amblyopia. The complete absence of visually-driven activity that occurs with dark rearing evidently plays an important role in the recovery process.


Asunto(s)
Ambliopía/fisiopatología , Adaptación a la Oscuridad/fisiología , Cuerpos Geniculados/patología , Privación Sensorial/fisiología , Ambliopía/patología , Animales , Gatos , Párpados/cirugía , Femenino , Cuerpos Geniculados/citología , Cuerpos Geniculados/metabolismo , Masculino , Factores de Crecimiento Nervioso/metabolismo , Neuronas/citología , Visión Binocular/fisiología , Visión Monocular/fisiología , Agudeza Visual/fisiología , Corteza Visual/fisiopatología , Vías Visuales
20.
Cereb Cortex ; 25(4): 904-17, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24108803

RESUMEN

Visual deprivation is reported to prevent or delay the development of mature receptive field (RF) properties in primary visual cortex (V1) in several species. In contrast, visual deprivation neither prevents nor delays refinement of RF size in the superior colliculus (SC) of Syrian hamsters, although vision is required for RF maintenance in the SC. Here, we report that, contrary to expectation, visual cortical RF refinement occurs normally in dark-reared animals. As in the SC, a brief period of visual experience is required to maintain V1 RF refinement in adulthood. Whereas in the SC, 3 days of visual experience within a sensitive period (P37-40) was sufficient to protect RFs from deprivation-induced enlargement in adulthood, 7 days (P33-40) were required for RF size maintenance in V1. Thus, spontaneous activity is sufficient for RF refinement at these 2 levels of the visual pathway, and visual input is necessary only to prevent deprivation-induced RF enlargement in adulthood. These studies show that sensory experience during a late juvenile sensitive period protects the visual pathway against sensory deprivation in adulthood, and suggest that more importance may have been placed on the role of early visual experience in visual RF development than is warranted.


Asunto(s)
Privación Sensorial/fisiología , Colículos Superiores/fisiología , Corteza Visual/fisiología , Campos Visuales/fisiología , Percepción Visual/fisiología , Potenciales de Acción , Animales , Período Crítico Psicológico , Oscuridad , Femenino , Vivienda para Animales , Masculino , Mesocricetus , Microelectrodos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Estimulación Luminosa , Colículos Superiores/crecimiento & desarrollo , Corteza Visual/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...