Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(46): e2305465, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37747134

RESUMEN

The constant drive to achieve higher performance in deep neural networks (DNNs) has led to the proliferation of very large models. Model training, however, requires intensive computation time and energy. Memristor-based compute-in-memory (CIM) modules can perform vector-matrix multiplication (VMM) in place and in parallel, and have shown great promises in DNN inference applications. However, CIM-based model training faces challenges due to non-linear weight updates, device variations, and low-precision. In this work, a mixed-precision training scheme is experimentally implemented to mitigate these effects using a bulk-switching memristor-based CIM module. Low-precision CIM modules are used to accelerate the expensive VMM operations, with high-precision weight updates accumulated in digital units. Memristor devices are only changed when the accumulated weight update value exceeds a pre-defined threshold. The proposed scheme is implemented with a system-onchip of fully integrated analog CIM modules and digital sub-systems, showing fast convergence of LeNet training to 97.73%. The efficacy of training larger models is evaluated using realistic hardware parameters and verifies that CIM modules can enable efficient mix-precision DNN training with accuracy comparable to full-precision software-trained models. Additionally, models trained on chip are inherently robust to hardware variations, allowing direct mapping to CIM inference chips without additional re-training.

2.
Front Neurosci ; 10: 333, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27493624

RESUMEN

In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...